Twin sealing chamber hub

- COVIDIEN LP

Devices and methods for cooling microwave antennae and microwave hub construction are disclosed herein. The cooling system and hub can be utilized with a variety of microwave antenna types. A microwave hub is utilized to provide cooling fluids to a microwave antenna. The hub is constructed using no glue or adhesive for holding the different parts of the chambers in place. O-rings provide an increased reliability and consistency for fluid-tight seals in the hub. The various parts of the hub are form fitted and work together with the o-rings.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND

The present invention relates generally to the field of ablation. More particularly, the present invention relates to apparatus, systems, and methods for cooling electrosurgical probes or microwave antennas. More particularly, the present invention relates to methods of assembly of electro-surgery and microwave antennas.

During the course of surgical procedures, it is often necessary for medical personnel to utilize electrosurgical instruments to ablate tissue in a body. High frequency probes or antennas are often utilized to ablate tissue in a body. In use, the probes or antennas are connected to a high frequency power source to heat body tissue when inserted into the tissue. Among the drawbacks of such devices is the potential that the probes or antennas will overheat, thus causing damage to the bodily tissue or causing damage to the instrument. A cooling system may be used in conjunction with the instrument to provide cooling of the instrument and often to the tissue adjacent to the instrument so as to provide optimal thermal characteristics in the instrument and the tissue. In the event that the heat is not dissipated in the instrument, charring of the tissue or failure of the instrument can occur.

Surgical systems exist that provide cooling systems for the instrument. Existing systems provide a flow of a cooling fluid to the instrument thus cooling the instrument and potentially the tissue adjacent to or abutting the targeted tissue. These systems generally employ a mechanism whereby the cooling fluid flows into a hub through a chamber. The fluid flows into a lumen path and down to the tip of the instrument, providing cooling along the shaft of the instrument. The fluid returns to another chamber in the hub and exits through a fluid egress channel.

The chambers, lumen paths, hub and seals of a hub are constructed in a manner requiring an adhesive, or glue, to maintain their integrity during stress. It is known that during use, pressure is created in the interior of the hub causing stress at the seal locations, in the chambers and at the connection points. However, adhesives or glue can be inconsistent and unreliable. Not only can adhesives breakdown under stress or heat conditions, but the application of the adhesives during the manufacturing process can be inconsistent. These breakdowns and inconsistencies can lead to malfunctions and inadequate cooling.

SUMMARY OF THE INVENTION

According to one embodiment of the present invention, there is provided an electro surgical hub. The hub is adapted to provide cooling fluid to probes that extend from a distal end of the hub. The probes are utilized by medical personnel to ablate tissue in a body.

Two chambers and a dual path lumen provide cooling liquid to a probe. Cooling fluid enters into the hub and is channeled from a first chamber through a lumen path which transports the fluid to the probes for cooling purposes. An insert defines the boundary for the first chamber and causes the cooling fluid to spin, thus reducing the presence of air bubbles. The insert is adapted to accommodate a first o-ring to form a seal between the first chamber and a second chamber. A connector connected to the probes which conducts power to the probe, is also adapted to accommodate a second o-ring to form a seal on the back side of the first chamber.

The cooling fluid returns through a second lumen path and enters a second chamber. A plug is adapted to accommodate a third o-ring to form a second seal on the second chamber. The plug has an annular ring utilized to center the plug in the hub and maintain the third o-ring in position during high stress conditions.

In general, the apparatus of the present invention is directed to a twin sealing chamber ablation hub constructed without glues or adhesives. The system offers a method of construction that improves reliability in the chamber seals. The apparatus includes a geometry whereby air bubbles which can cause hot spots on the ablation probe are substantially removed from the cooling liquid.

There is accordingly a need for an electrosurgical hub that provides consistency in manufactured result as well as reliability under stress conditions. There is a need for a hub that overcomes the breakdown of adhesives. There is also a need for a hub that allows for consistent manufacturing procedures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers;

FIG. 2 is an alternate view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers; and

FIG. 3 is a view of an insert of an embodiment of the invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

In one embodiment of the invention, a twin chamber microwave ablation hub comprises a plurality of inserts and o-rings causing seals between the chambers. A first chamber provides fluidic connection to an input port and a second chamber provides fluidic connection to an exit port. A dual path lumen provides fluidic connection from the first chamber to the second chamber. The first and second chambers are adapted to minimize the presence of air bubbles in a cooling fluid as the fluid travels through the input port and the first chamber, through a first path in the lumen to the distal end of an ablation probe. The cooling fluid returns via a second path in the lumen to the second chamber and exits the hub via the exit port. The first path and second path are concentric.

The term “probe” is not limited to the present embodiment or depiction. Naturally, the efficacy of the present invention may be optimized by different types of devices intended to facilitate energy focalization in a body, such as electrodes, antennas or other suitable device. The term “probe” is used to include any device, mechanism or structure capable of being inserted into a body and allowing an energy source to be focalized for ablation or other medical treatment.

FIG. 1 is a view of an embodiment of the invention showing a hub 10 and probe 20. Hub 10 comprises a first chamber 30, a second chamber 40, a first lumen path 50, a second lumen path 60, a first port 70 and a second port 72. First port 70 fluidicly couples to first chamber 30. First chamber 30 fluidicly couples to first lumen path 50. First lumen path 50 extends along a substantial portion of the probe 20. The second lumen path 60 extends around and along the first lumen path 50 and fluidicly couples with the second chamber 40.

The first 30 and second 40 chambers are defined by inserts inside the hub 10. A first insert 80 fits inside one end of hub 10. In one embodiment, the first chamber 30 is at one end by the first insert toward the handle end of the hub 10. The first insert 80 is positioned against stops 88. Stops 88 provide a positioning stop on the interior walls 90 of the hub for the first insert 80. The stops 88 provide a more precise positioning for the first insert 80 and eliminate placement guesswork. This allows for ease of insertion by providing a physical indicator of the proper insertion position.

The interior walls 90 of the hub 10 may be graduated so that they are of decreasing diameter from the handle end of the hub to the stops 88. This also allows for ease of insertion as well as precision in placement. In an embodiment of the invention, the graduation of the interior walls ceases prior to the stop 88, creating a zone where the interior wall 90 is flat. As discussed below, the flat zone in wall 90 allows for more reliable sealing of the first chamber 30.

An o-ring 82 is positioned in space 83 of the insert first 80. It is understood that the space 83 is a groove or other indentation in the first insert 80. When the first insert 80 in inserted into the hub 10 to the proper depth, the o-ring 82 will contact the flat portion of the interior wall. The o-ring 82 provides for continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the first insert 80 or hub 10. The flat area allows for continued contact of the o-ring 82 in the event of slight movement. The o-ring 82 provides a water-tight seal for the first chamber 30. Accordingly, any cooling fluid will not flow around chamber 30 and past stops 88.

The second chamber 40 is positioned distally of the first chamber 30, toward the probe end of the hub 10. As noted above, the first insert 80 is inserted inside the hub 10 to stops 88. One end of the second chamber 40 is formed by the back side of the first insert 80. The second chamber 40 is completed by second insert 95 opposite the first insert 80. Insert 95 is inserted into the distal end of the hub 10 opposite the first insert 80. In one embodiment, the interior walls of the hub 10 at the distal end are graduated so that they are of decreasing diameter from the end of hub 10 to the interior. The graduation of the interior walls ceases at the location where the o-ring 84 reside. This creates a flat zone which allows continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the insert 95 or hub 10. The graduation of the interior walls of hub 10 allow for ease of insertion of insert 95 as well as precision in placement.

The insert 95 comprises an end portion 96 adapted to provide a stopping mechanism. The end portion 96 acts to contact the end of hub 10. End portion 96 abuts the hub 10 and provides for precision in placement. An o-ring 84 is positioned in the second insert 95 to contact the interior wall 90 when the second insert 95 is inserted into the hub 10. The O-ring 84 is positioned in space 98 of the second insert 95. The o-ring 84 provides a water-tight seal for the second chamber 40. Accordingly, cooling fluid will not flow around chamber 40 or into the first chamber 30. The second insert 95 is molded to hub 10 on the opposite end of the hub 10 from handle 100. The molding maintains closure and sealing during high pressure conditions.

When the second insert 95 is inserted, a centered position in the hub is desired to help eliminate any leakage that may occur otherwise. An annular ring 120 is utilized to maintain a centered position of the second insert 95 and the o-ring 84 within the hub 10. When the second insert 95 in inserted so that the end portion 96 abuts the hub 10, the annular ring 120 contacts the interior wall 90 and disallows movement of the second insert 95.

A third o-ring 86 is positioned in handle 100. The third o-ring 86 provides a fluid seal on the back side of chamber 30. The handle 100 in inserted into the end of the hub 10 opposing the position of insert 95. In an embodiment, the handle 100 is molded to hub 10. The handle 100 is adapted to abut or closely abut first insert 80. The position of insert 80 is maintained by the handle 100 under high pressure conditions.

Handle 100 connects to the probe 20. Box 110 disallows improper insertion of the handle 100 and ensures that the probe 20 is connected properly through the hub 10. Box 110 protrudes away from the hub to disallow upside down insertion of the handle 100. The probe 20 protrudes through the first 30 and second 40 chambers and first 80 and second 95 inserts.

FIG. 2 is a perspective view of an embodiment of the invention showing hub 210 and probe 220 extending from within the handle 299 out through the distal end of the hub 210. The probe 220 connects within the handle 299 to a power source (not shown). Hub 210 comprises a first chamber 230, a second chamber 240, a first lumen path 250, a second lumen path 260 and a first 270 and second 272 port. In an embodiment, the first 270 and second 272 ports are angled in relation to the axis of the hub 210 so that they are not perpendicular to the axis. The angle of the ports 270, 272 forms an acute angle toward the proximal end of the hub 210. The handle 299 forms a seal at the proximal end of the hub 210.

A first insert 280 forms the first chamber 230 between the handle 299 and the first insert 280. A second insert 295 forms the second chamber 240 between the first insert 280 and the second insert 295. The first chamber 230 is sealed by an o-ring 282 on the distal end of the chamber 230 and an o-ring 286 on the proximal end of the chamber 230. The second chamber 240 is sealed by o-ring 282 and an o-ring 284 on the distal end of the second chamber 240. Each O-ring 282, 284, 286 resides in a groove, or other formation, formed to receive the o-ring in the first insert 280, the second insert 295 and the handle 299, respectively.

The first lumen path 250 forms a fluid passage allowing a cooling fluid to travel from the first chamber 230 along the probe 220 to the distal end of the probe 220. The cooling fluid provides a cooling action along the length and tip (not shown) of the probe 220. The second lumen path 260 provides a return passage for the cooling liquid and is fluidicly coupled to the second chamber 240. The cooling liquid returns concentrically and outside the first lumen path 250 and empties into the second chamber 240.

As noted above relating to FIGS. 1 and 2, the first insert (80 in FIGS. 1 and 280 in FIG. 2) defines a boundary for the first chamber (30 in FIGS. 1 and 230 in FIG. 2) and causes the cooling fluid to spin and thus reduce the presence of air bubbles. FIG. 3 provides a detailed view of the first insert 280. As noted above, the first insert 280 creates the first chamber (230 FIG. 2). The first insert 280 creates the chamber by using a seal 310 in the hub (210 FIG. 2). In an embodiment, the seal 310 is an o-ring which fits in a grooved portion 320, or other formed recess, of the insert. The grooved portion 320 is adapted to accommodate the o-ring 310.

Cooling fluid flows into the first chamber and fills the space within the first insert 280. The geometry 325 on the insert 280 is concave and induces spin in the cooling fluid as it enters the first chamber. The vortex type action induced on the cooling fluid allows it to move around the probe as it moves down the first lumen path. The vortex action aids in the elimination of air bubbles which may cause overheating of the probe.

The first insert 280 comprises a plurality of legs 330. In one embodiment, four legs 330 provide support for the first insert 280. The legs 330 provide a mechanism to abut the handle (not shown in FIG. 3) when the hub (not shown in FIG. 3) is assembled. The legs 330 will push against the handle to force the insert 280 against the stops on the interior of the hub.

Referring again to FIG. 1, regarding the operation of the invention. Cooling fluid flows into the first port 70 and fills the first chamber 30. In one embodiment, the first chamber 30 is sized so that it fills with fluid relatively rapidly. The first insert 80 is shaped so that the fluid entering the first chamber 30 spins in a circular manner. The spinning of the fluid causes any residual air bubbles to be removed from the probe 20 and the walls of the first chamber 30. Air bubbles are known in the art to cause over-heating of the probe 20 and lead to failure of the device. The o-ring 82 in the first insert 30 seals the chamber 30, thus not allowing fluid to enter the second chamber 40. It is understood by those skilled in the art that the first insert 30 provides sealing. The o-ring 82 provides an extra level of sealing to ensure integrity under pressure conditions.

The handle 100 has the O-ring 86 to create a seal on the back side of the first chamber 30. It is understood by those skilled in the art that the handle 100 provides a level of sealing. The o-ring 86 provides an extra level of sealing to ensure integrity under pressure conditions. The cooling fluid flows out of chamber 30 and through the first lumen path 50. The first lumen path 50 carries the cooling fluid to the proximal end of the probe 20 providing a cooling effect on the probe 20. The cooling fluid returns to the hub 10 via the second lumen path 60. The cooling fluid empties from the second lumen path 60 into the second chamber 40. The second chamber is sealed by the o-ring 82 on one end which is positioned in the first insert 80 and the o-ring 84 which is positioned in the second insert 95. It is understood by those skilled in the art that the second insert 95 provides a level of sealing. The o-ring 84 provides and extra level of sealing to ensure integrity under pressure conditions.

As the cooling fluid pressure increases in the hub 10, the pressure will cause a separating force on the components within the hub 10. This pressure will stress the position of the o-ring 82 in the first insert 80 and the o-ring 84 of the second insert 95. An external geometry (not shown) positioned on the outside of the handle 100 will hold the handle 100 in place and resist movement of the inserts 80, 95 and o-rings 82, 84.

Referring again to FIG. 2, the microwave assembly is easily manufactured with the hub 210, the first insert 280, the second insert 295 and the handle 299. The first insert 280 is inserted into the hub 210 until it abuts the stops 288 which are formed on the inside of the hub 210. The o-ring 282 in the first insert provides a seal against the interior wall of hub 210. In an embodiment, the wall of the hub 210 is graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases as the wall nears the stop 288 to allow a location for the o-ring 282 to seal.

The interior lumen path 260 connects to the central hole 292 in the first insert 280. The lumen paths 250, 260 protrude through the end of the hub 210. The second insert 295 is inserted over the lumen paths 250, 260 and into the distal end of the hub 210. O-ring 284 fits in a groove around the second insert 295 and forms a seal against the interior wall of the hub 210. In one embodiment, the wall at the distal end of the hub 210 is also graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases at a predetermined location which coincides with the position of the o-ring 284. The second insert 295 is molded to the distal end of the hub 210 to provide stability during high pressure situations.

The handle 299 and the probes are inserted into the proximal end of the hub 210. The probe 220 passes through the central holes in the inserts 280, 295 and helps create and enforce the lumen paths 250, 260. In an embodiment, the handle 299 and probe 220 are pre-assembled to maintain a sound electrical connection. A lip portion 298 extends from the portion of the hub 210 opposite the ports 270, 272. The lip portion 298 allows the insertion of the handle 299 in only one way to assure proper insertion of the handle 299. Insertion of the handle 299 provides sufficient pressure on the first insert 280 to maintain the insert 280 in the proper position. The stop 288 on the interior of the hub 210 wall prevents the first insert from being inserted too far inside the hub 210. The handle 299 is then molded to the hub 210.

It is understood that the above described embodiments are only illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present disclosure. The appended claims are intended to cover such modifications and arrangements.

Claims

1. A microwave assembly, comprising:

a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is connected to the center hole of the first insert and the second lumen path is connected to the center hole of the second insert;
a handle, the handle functionally connected to a probe;
a first chamber defined by the first insert; and
a second chamber defined by the first insert and the second insert,
wherein the first insert is inserted into the proximal end of the hub, the proximal end of the hub being adapted to receive the first insert, the second insert is inserted into the distal end of the hub, the hub adapted to receive the second insert, the first lumen path and the second lumen path extend through the center hole of the second insert and through the distal end of the hub, and the handle is inserted into the proximal end of the hub in abutting engagement with the first insert.

2. The microwave assembly of claim 1, wherein the hub further comprises an interior surface, and further comprising:

a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.

3. The microwave assembly of claim 2, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.

4. The microwave assembly of claim 1, wherein the second insert is attached to the distal end of the hub.

5. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.

6. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.

7. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.

8. A microwave assembly, comprising:

a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is received in the center hole of the first insert and the second lumen path is received in the center hole of the second insert;
a first chamber defined by the first insert and the hub; and
a second chamber defined by the first insert, the second insert, and the hub.

9. The microwave assembly of claim 8, wherein the hub further comprises an interior surface, and further comprising:

a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.

10. The microwave assembly of claim 9, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.

11. The microwave assembly of claim 8, wherein the second insert is attached to the distal end of the hub.

12. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.

13. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.

14. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.

Referenced Cited
U.S. Patent Documents
D223367 April 1972 Kountz
D263020 February 16, 1982 Rau, III
D266842 November 9, 1982 Villers et al.
D278306 April 9, 1985 McIntosh
D295893 May 24, 1988 Sharkany et al.
D295894 May 24, 1988 Sharkany et al.
5129396 July 14, 1992 Rosen
5167619 December 1, 1992 Wuchinich
5301687 April 12, 1994 Wong et al.
5312400 May 17, 1994 Bales et al.
5370644 December 6, 1994 Langberg
D354218 January 10, 1995 Van de Peer
5507744 April 16, 1996 Tay et al.
5545137 August 13, 1996 Rudie et al.
5603697 February 18, 1997 Grundy et al.
5624392 April 29, 1997 Saab
5693082 December 2, 1997 Warner et al.
5741249 April 21, 1998 Moss et al.
5974343 October 26, 1999 Brevard et al.
5980505 November 9, 1999 Wilson
5993447 November 30, 1999 Blewett et al.
5995875 November 30, 1999 Blewett et al.
6014581 January 11, 2000 Whayne et al.
D424693 May 9, 2000 Pruter
D424694 May 9, 2000 Tetzlaff et al.
D425201 May 16, 2000 Tetzlaff et al.
6061551 May 9, 2000 Sorrells et al.
6106524 August 22, 2000 Eggers et al.
6117101 September 12, 2000 Diederich et al.
6139527 October 31, 2000 Laufer et al.
6186978 February 13, 2001 Samson et al.
6188355 February 13, 2001 Gilboa
6210367 April 3, 2001 Carr
6235024 May 22, 2001 Tu
6277113 August 21, 2001 Berube
D449886 October 30, 2001 Tetzlaff et al.
6355016 March 12, 2002 Bagaoisan et al.
D457958 May 28, 2002 Dycus et al.
D457959 May 28, 2002 Tetzlaff et al.
6398781 June 4, 2002 Goble et al.
6485486 November 26, 2002 Trembly et al.
6494892 December 17, 2002 Ireland et al.
6496737 December 17, 2002 Rudie et al.
6496738 December 17, 2002 Carr
6514249 February 4, 2003 Maguire et al.
6547788 April 15, 2003 Maguire et al.
6599288 July 29, 2003 Maguire et al.
6629951 October 7, 2003 Laufer et al.
6629974 October 7, 2003 Penny et al.
6635055 October 21, 2003 Cronin
6645234 November 11, 2003 Evans et al.
6652515 November 25, 2003 Maguire et al.
6676657 January 13, 2004 Wood
D487039 February 24, 2004 Webster et al.
6706040 March 16, 2004 Mahon et al.
6723091 April 20, 2004 Goble et al.
6740108 May 25, 2004 Just et al.
6770070 August 3, 2004 Balbierz
6780183 August 24, 2004 Jimenez, Jr. et al.
D496997 October 5, 2004 Dycus et al.
D499181 November 30, 2004 Dycus et al.
6847848 January 25, 2005 Sterzer et al.
6869431 March 22, 2005 Maguire et al.
6893436 May 17, 2005 Woodard et al.
6932776 August 23, 2005 Carr
6997925 February 14, 2006 Maguire et al.
7004938 February 28, 2006 Ormsby et al.
7047068 May 16, 2006 Haissaguerre
7049068 May 23, 2006 Thorp et al.
D525361 July 18, 2006 Hushka
7089063 August 8, 2006 Lesh et al.
7113832 September 26, 2006 Longo
D531311 October 31, 2006 Guerra et al.
D533942 December 19, 2006 Kerr et al.
D535027 January 9, 2007 James et al.
7197356 March 27, 2007 Carr
D541418 April 24, 2007 Schechter et al.
7200445 April 3, 2007 Dalbec et al.
D541938 May 1, 2007 Kerr et al
7233820 June 19, 2007 Gilboa
7261001 August 28, 2007 Heijnsdijk et al.
7263398 August 28, 2007 Carr
7275547 October 2, 2007 Willis
7285116 October 23, 2007 de la Rama et al.
7294125 November 13, 2007 Phalen et al.
7300436 November 27, 2007 Penny et al.
7303558 December 4, 2007 Swanson
D564662 March 18, 2008 Moses et al.
7402168 July 22, 2008 Sanderson et al.
7410486 August 12, 2008 Fuimaono et al.
D576932 September 16, 2008 Strehler
7438712 October 21, 2008 Chouinard
7460898 December 2, 2008 Brister et al.
7467015 December 16, 2008 van der Weide
7507229 March 24, 2009 Hewitt et al.
D594736 June 23, 2009 Esjunin
D594737 June 23, 2009 Kelly et al.
7559916 July 14, 2009 Smith et al.
7608056 October 27, 2009 Kennedy, II
7611508 November 3, 2009 Yang et al.
D606203 December 15, 2009 Husheer et al.
D613412 April 6, 2010 DeCarlo
7697972 April 13, 2010 Verard et al.
7706894 April 27, 2010 Stewart et al.
7713259 May 11, 2010 Gosiengfiao et al.
7722604 May 25, 2010 Brown, III et al.
7734330 June 8, 2010 Carr
7766844 August 3, 2010 Sjostrom
7769469 August 3, 2010 Carr et al.
7824392 November 2, 2010 Zhou
7826904 November 2, 2010 Appling et al.
7833218 November 16, 2010 Lunn et al.
7850685 December 14, 2010 Kunis et al.
D634010 March 8, 2011 DeCarlo
7921855 April 12, 2011 Danek et al.
7933660 April 26, 2011 Carr
7981051 July 19, 2011 Quick et al.
7993351 August 9, 2011 Worley et al.
8021351 September 20, 2011 Boldenow et al.
8075532 December 13, 2011 Kassab et al.
8152795 April 10, 2012 Farr et al.
8182466 May 22, 2012 Stehr et al.
8206373 June 26, 2012 Zhou
8206380 June 26, 2012 Lenihan et al.
8226566 July 24, 2012 Nita
8251987 August 28, 2012 Willyard
8277438 October 2, 2012 Griffin et al.
8289551 October 16, 2012 Wu
8292881 October 23, 2012 Brannan et al.
8328799 December 11, 2012 Brannan
8328800 December 11, 2012 Brannan
8328801 December 11, 2012 Brannan
8340740 December 25, 2012 Holzer et al.
8343145 January 1, 2013 Brannan
8394092 March 12, 2013 Brannan
8412306 April 2, 2013 Kurpad et al.
D681810 May 7, 2013 DeCarlo
8467853 June 18, 2013 Hunter et al.
8476242 July 2, 2013 Mon
8515554 August 20, 2013 Carr
8632461 January 21, 2014 Glossop
8655454 February 18, 2014 Prakash et al.
8672932 March 18, 2014 van der Weide et al.
8768485 July 1, 2014 Hancock et al.
8795268 August 5, 2014 Willyard
8852180 October 7, 2014 Brannan
8906008 December 9, 2014 Brannan et al.
8920410 December 30, 2014 Brannan
8936631 January 20, 2015 Nguyen et al.
8945113 February 3, 2015 Brannan et al.
8951225 February 10, 2015 Evard et al.
8968290 March 3, 2015 Brannan et al.
8968300 March 3, 2015 Brannan
9017328 April 28, 2015 Bahney
9039698 May 26, 2015 Ormsby et al.
9066681 June 30, 2015 Arts et al.
9125639 September 8, 2015 Mathis et al.
20020022836 February 21, 2002 Goble et al.
20030004508 January 2, 2003 Morgan et al.
20030191451 October 9, 2003 Gilmartin
20050215942 September 29, 2005 Abrahamson et al.
20050245920 November 3, 2005 Vitullo et al.
20060009833 January 12, 2006 Chobotov et al.
20060085054 April 20, 2006 Zikorus et al.
20060089637 April 27, 2006 Werneth et al.
20060167416 July 27, 2006 Mathis et al.
20060241564 October 26, 2006 Corcoran et al.
20060253102 November 9, 2006 Nance et al.
20070073285 March 29, 2007 Peterson
20070088319 April 19, 2007 Martone
20070208351 September 6, 2007 Turner et al.
20070287912 December 13, 2007 Khuri-Yakub et al.
20080027424 January 31, 2008 DeCarlo et al.
20080091169 April 17, 2008 Heideman et al.
20080147056 June 19, 2008 van der Weide et al.
20080161890 July 3, 2008 Lafontaine
20080208039 August 28, 2008 Kurpad et al.
20080228167 September 18, 2008 Mittermeyer et al.
20080255507 October 16, 2008 Mushtaha
20080262342 October 23, 2008 Averbruch
20080287946 November 20, 2008 DeCarlo et al.
20090076409 March 19, 2009 Wu et al.
20090138010 May 28, 2009 DeCarlo
20090187180 July 23, 2009 Brannan
20090222002 September 3, 2009 Bonn et al.
20090234220 September 17, 2009 Maschke
20100036369 February 11, 2010 Hancock
20100185191 July 22, 2010 Carr et al.
20100262134 October 14, 2010 Jensen et al.
20100268196 October 21, 2010 Hastings et al.
20110004205 January 6, 2011 Chu et al.
20110054458 March 3, 2011 Behnke
20110085720 April 14, 2011 Averbuch
20110130750 June 2, 2011 Ormsby et al.
20110166518 July 7, 2011 Nguyen et al.
20110166519 July 7, 2011 Nguyen et al.
20110282336 November 17, 2011 Brannan et al.
20110301587 December 8, 2011 Deem et al.
20120029359 February 2, 2012 Sterzer et al.
20120035603 February 9, 2012 Lenihan
20120065481 March 15, 2012 Hunter et al.
20120071822 March 22, 2012 Romo et al.
20120078175 March 29, 2012 Vreeman
20120078230 March 29, 2012 Lowe et al.
20120277730 November 1, 2012 Salahieh et al.
20130137977 May 30, 2013 Eder
20130197481 August 1, 2013 Guo et al.
20130197482 August 1, 2013 Akitomo
20130237980 September 12, 2013 Brannan
20130241769 September 19, 2013 Brannan et al.
20130245624 September 19, 2013 Bahney
20130253500 September 26, 2013 Lee et al.
20130261617 October 3, 2013 Podhajsky
20130261620 October 3, 2013 Brannan et al.
20130267946 October 10, 2013 Brannan et al.
20130289560 October 31, 2013 DeCarlo et al.
20130296841 November 7, 2013 Brannan
20130304057 November 14, 2013 Rossetto
20130317407 November 28, 2013 Reid, Jr. et al.
20130317495 November 28, 2013 Brannan
20130317499 November 28, 2013 Brannan et al.
20130324910 December 5, 2013 Ohri et al.
20130324911 December 5, 2013 Ohri et al.
20130338661 December 19, 2013 Behnke, II
20130345541 December 26, 2013 Nau, Jr.
20130345551 December 26, 2013 Arts et al.
20130345552 December 26, 2013 Arts et al.
20130345553 December 26, 2013 Arts et al.
20130345699 December 26, 2013 Brannan et al.
20140000098 January 2, 2014 Dunning et al.
20140005655 January 2, 2014 Brannan
20140005657 January 2, 2014 Brannan et al.
20140018668 January 16, 2014 Zheng et al.
20140018677 January 16, 2014 Sharonov
20140018793 January 16, 2014 Sharonov
20140094789 April 3, 2014 Brannan
20140094792 April 3, 2014 Sharonov
20140094793 April 3, 2014 Sharonov
20140094794 April 3, 2014 Orszulak
20140094797 April 3, 2014 Brannan
20150022342 January 22, 2015 Will et al.
20150065944 March 5, 2015 Ohri et al.
20150065964 March 5, 2015 Ohri et al.
Foreign Patent Documents
1103807 June 1995 CN
390937 March 1924 DE
390937 March 1924 DE
1099658 February 1961 DE
1099658 February 1961 DE
1139927 November 1962 DE
1139927 November 1962 DE
1149832 June 1963 DE
1149832 June 1963 DE
1439302 January 1969 DE
1439302 January 1969 DE
2439587 February 1975 DE
2439587 February 1975 DE
2455174 May 1975 DE
2455174 May 1975 DE
2407559 August 1975 DE
2407559 August 1975 DE
2415263 October 1975 DE
2415263 October 1975 DE
2429021 January 1976 DE
2429021 January 1976 DE
2460481 June 1976 DE
2460481 June 1976 DE
2602517 July 1976 DE
2602517 July 1976 DE
2504280 August 1976 DE
2504280 August 1976 DE
2627679 January 1977 DE
2627679 January 1977 DE
2540968 March 1977 DE
2540968 March 1977 DE
2820908 November 1978 DE
2820908 November 1978 DE
2803275 August 1979 DE
2803275 August 1979 DE
2823291 November 1979 DE
2823291 November 1979 DE
2946728 May 1981 DE
2946728 May 1981 DE
3143421 May 1982 DE
3143421 May 1982 DE
3045996 July 1982 DE
3045996 July 1982 DE
3120102 December 1982 DE
3120102 December 1982 DE
3510586 October 1986 DE
3510586 October 1986 DE
3604823 August 1987 DE
3604823 August 1987 DE
8712328 February 1988 DE
8712328 March 1988 DE
3711511 June 1988 DE
3711511 June 1988 DE
3904558 August 1990 DE
3904558 August 1990 DE
3942998 July 1991 DE
3942998 July 1991 DE
4238263 May 1993 DE
4238263 May 1993 DE
4303882 August 1994 DE
04303882 February 1995 DE
4339049 May 1995 DE
4339049 May 1995 DE
29616210 November 1996 DE
29616210 January 1997 DE
19608716 April 1997 DE
19608716 April 1997 DE
19751106 May 1998 DE
19751106 May 1998 DE
19717411 November 1998 DE
19717411 November 1998 DE
19751108 May 1999 DE
19751108 May 1999 DE
19801173 July 1999 DE
19801173 July 1999 DE
19848540 May 2000 DE
19848540 May 2000 DE
10224154 December 2003 DE
10224154 December 2003 DE
10310765 September 2004 DE
10328514 March 2005 DE
10328514 March 2005 DE
102004022206 December 2005 DE
102004022206 December 2005 DE
202005015147 February 2006 DE
202005015147 March 2006 DE
102009015699 May 2010 DE
0 246 350 November 1987 EP
0 246 350 November 1987 EP
0 521 264 January 1993 EP
0 521 264 January 1993 EP
0 556 705 August 1993 EP
0 556 705 August 1993 EP
0 558 429 September 1993 EP
0 558 429 September 1993 EP
0 648 515 April 1995 EP
0 836 868 April 1998 EP
0 836 868 April 1998 EP
0 882 955 December 1998 EP
1034747 September 2000 EP
1034748 September 2000 EP
1055400 November 2000 EP
1 159 926 May 2001 EP
1159926 March 2003 EP
2147651 January 2010 EP
2322113 May 2011 EP
179 607 November 1906 FR
1 275 415 September 1960 FR
1 275 415 November 1961 FR
1 347 865 November 1963 FR
1 347 865 January 1964 FR
2 276 027 June 1974 FR
2 235 669 January 1975 FR
2 235 669 January 1975 FR
2 276 027 January 1976 FR
2 313 708 December 1976 FR
2 313 708 December 1976 FR
2 502 935 October 1982 FR
2 502 935 October 1982 FR
2 517 953 June 1983 FR
2 517 953 June 1983 FR
2 573 301 November 1984 FR
2 573 301 May 1986 FR
2 862 813 May 2005 FR
2 862 813 May 2005 FR
2 864 439 July 2005 FR
2 864 439 July 2005 FR
5-5106 January 1993 JP
05-40112 February 1993 JP
06343644 December 1994 JP
06343644 December 1994 JP
07265328 October 1995 JP
07265328 October 1995 JP
8-56955 March 1996 JP
08056955 March 1996 JP
08252263 October 1996 JP
08252263 October 1996 JP
09000492 January 1997 JP
09010223 January 1997 JP
09010223 January 1997 JP
11244298 September 1999 JP
11244298 September 1999 JP
2000342599 December 2000 JP
2000342599 December 2000 JP
2000350732 December 2000 JP
2000350732 December 2000 JP
2001003776 January 2001 JP
2001008944 January 2001 JP
2001008944 January 2001 JP
2001029356 February 2001 JP
2001029356 February 2001 JP
2001037775 February 2001 JP
2001128990 May 2001 JP
2001128990 May 2001 JP
2001231870 August 2001 JP
2008142467 June 2008 JP
20070093068 September 2007 KR
20100014406 February 2010 KR
20120055063 May 2012 KR
166452 November 1964 SU
166452 January 1965 SU
401367 October 1973 SU
401367 November 1974 SU
727201 April 1980 SU
727201 April 1980 SU
94/16632 August 1994 WO
97/24074 July 1997 WO
00/10456 March 2000 WO
00/36985 June 2000 WO
0057811 October 2000 WO
0100114 January 2001 WO
01/67035 September 2001 WO
02/45790 June 2002 WO
2006084676 August 2006 WO
2008/068485 June 2008 WO
2010/035831 April 2010 WO
Other references
  • LigaSureTM Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004.
  • Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr).
  • Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008.
  • McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65.
  • Michael Choti, “Abdominoperineal Resection with the LigaSureTM Vessel Sealing System and LigaSureTM Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
  • Muller et al., “Extended Left Hemicolectomy Using the LigaSureTM Vessel Sealing System” Innovations That Work. LJ, Sep. 1999.
  • Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences—Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(2005-03); pp. 160-184.
  • Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
  • Organ, L W., “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/1977).
  • P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320.
  • Palazzo et al., “Randomized clinical trial of LigaSureTM versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
  • R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699.
  • Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr).
  • Rothenberg et al., “Use of the LigaSureTM Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000.
  • Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
  • Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166.
  • Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203.
  • Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
  • T. Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817-825.
  • Urologix, Inc.—Medical Professionals: TargisTM Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com!medicaUtechnology.html > Nov. 18, 1999; 3 pages.
  • Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169 (3):845-847.
  • ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999.
  • W. Scott Helton, “LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
  • Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264.
  • Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095.
  • U.S. Appl. No. 08/136,098, filed Oct. 14, 1993; Roger A. Stern.
  • U.S. Appl. No. 08/483,742, filed Jun. 7, 1995; Roger A. Stern.
  • Anonymous. (1987) Homer Mammalok™ Breast Lesion Needle/Wire Localizer, Namic ® Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages.
  • B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management, Feb. 2003.
  • B. Levy M.D., “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
  • B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565.
  • C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990.
  • Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.TM. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte, NC 2003.
  • Carus et al., “Initial Experience With the LigaSure.TM. Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
  • Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSureTM ” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003.
  • Crawford et al., “Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17.
  • Dulemba et al., “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
  • E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
  • Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002.
  • Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radio, vol. 12, pp. 1021-1032.
  • Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr).
  • H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731.
  • Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801.
  • Herman at al., “Laparoscopic Intestinal Resection With the LigaSureTM Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
  • Humphries Jr. et al., “Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media”, Proc. Asme HTD-355, 131 (1997).
  • Jarrett et al., “Use of the LigaSureTM Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
  • Johnson et al., “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature, Jan. 2004.
  • Johnson, “Evaluation of the LigaSureTM Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000).
  • Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, VOL., BME-31, No. 1, Jan. 1984, pp. 28-37.
  • Johnson, “Use of the LigaSureTM Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
  • Joseph Ortenberg, “LigaSureTM System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
  • U.S. Appl. No. 12/129,482, filed May 29, 2008.
  • U.S. Appl. No. 12/135,425, filed Jun. 9, 2008.
  • U.S. Appl. No. 12/135,690, filed Jun. 9, 2008.
  • U.S. Appl. No. 12/147,093, filed Jun. 26, 2008.
  • U.S. Appl. No. 12/181,504, filed Jul. 29, 2008.
  • U.S. Appl. No. 12/184,556, filed Aug. 1, 2008.
  • U.S. Appl. No. 12/194,254, filed Aug. 19, 2008.
  • U.S. Appl. No. 12/197,601, filed Aug. 25, 2008.
  • U.S. Appl. No. 12/197,405, filed Aug. 25, 2008.
  • U.S. Appl. No. 12/197,473, filed Aug. 25, 2008.
  • U.S. Appl. No. 12/199,935, filed Aug. 28, 2008.
  • U.S. Appl. No. 12/203,474, filed Sep. 3, 2008.
  • U.S. Appl. No. 12/236,686, filed Sep. 24, 2008.
  • U.S. Appl. No. 12/244,850, filed Oct. 3, 2008.
  • U.S. Appl. No. 12/250,110, filed Oct. 13, 2008.
  • U.S. Appl. No. 12/250,171, filed Oct. 13, 2008.
  • U.S. Appl. No. 12/251,857, filed Oct. 15, 2008.
  • U.S. Appl. No. 12/253,457, filed Oct. 17, 2008.
  • U.S. Appl. No. 12/366,298, filed Feb. 5, 2009.
  • U.S. Appl. No. 12/389,906, filed Feb. 20, 2009.
  • U.S. Appl. No. 12/389,915, filed Feb. 20, 2009.
  • U.S. Appl. No. 12/401,268, filed Mar. 10, 2009.
  • U.S. Appl. No. 12/416,583, filed Apr. 1, 2009.
  • U.S. Appl. No. 12/419,395, filed Apr. 7, 2009.
  • U.S. Appl. No. 12/423,609, filed Apr. 14, 2009.
  • U.S. Appl. No. 12/434,903, filed May 4, 2009.
  • U.S. Appl. No. 12/436,237, filed May 6, 2009.
  • U.S. Appl. No. 12/436,239, filed May 6, 2009.
  • U.S. Appl. No. 12/436,231, filed May 6, 2009.
  • U.S. Appl. No. 12/472,831, filed May 27, 2009.
  • U.S. Appl. No. 12/475,082, filed May 29, 2009.
  • U.S. Appl. No. 12/476,960, filed Jun. 2, 2009.
  • U.S. Appl. No. 12/487,917, filed Jun. 19, 2009.
  • U.S. Appl. No. 12/493,302, filed Jun. 29, 2009.
  • U.S. Appl. No. 12/504,738, filed Jul. 17, 2009.
  • U.S. Appl. No. 12/508,700, filed Jul. 24, 2009.
  • U.S. Appl. No. 12/535,851, filed Aug. 5, 2009.
  • U.S. Appl. No. 12/535,856, filed Aug. 5, 2009.
  • U.S. Appl. No. 12/536,616, filed Aug. 6, 2009.
  • U.S. Appl. No. 12/542,348, filed Aug. 17, 2009.
  • U.S. Appl. No. 12/542,785, filed Aug. 18, 2009.
  • U.S. Appl. No. 12/547,155, filed Aug. 25, 2009.
  • U.S. Appl. No. 12/548,644, filed Aug. 27, 2009.
  • U.S. Appl. No. 12/555,576, filed Sep. 8, 2009.
  • U.S. Appl. No. 12/556,010, filed Sep. 9, 2009.
  • U.S. Appl. No. 12/561,096, filed Sep. 16, 2009.
  • U.S. Appl. No. 12/562,575, filed Sep. 18, 2009.
  • U.S. Appl. No. 12/562,842, filed Sep. 18, 2009.
  • U.S. Appl. No. 12/566,299, filed Sep. 24, 2009.
  • U.S. Appl. No. 12/568,067, filed Sep. 28, 2009.
  • U.S. Appl. No. 12/568,524, filed Sep. 28, 2009.
  • U.S. Appl. No. 12/568,551, filed Sep. 28, 2009.
  • U.S. Appl. No. 12/568,777, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/568,838, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/568,883, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/568,972, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/569,171, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/569,685, filed Sep. 29, 2009.
  • U.S. Appl. No. 12/582,857, filed Oct. 21, 2009.
  • U.S. Appl. No. 12/606,769, filed Oct. 27, 2009.
  • U.S. Appl. No. 12/607,221, filed Oct. 28, 2009.
  • U.S. Appl. No. 12/607,268, filed Oct. 28, 2009.
  • U.S. Appl. No. 12/619,462, filed Nov. 16, 2009.
  • U.S. Appl. No. 12/620,289, filed Nov. 17, 2009.
  • Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance spatial Accuracy” Journal Neurosurgery, 83 (1995), pp. 271-276.
  • Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307.
  • Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product instructions), 2 pages.
  • Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages.
  • Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages.
  • Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000.
  • Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000.
  • B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
  • B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
  • Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151.
  • Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41.
  • C. H. Durney et al., “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee.
  • Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3.
  • Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428.
  • Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
  • Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988.
  • Cosman et al., “Theoretical aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15: (1984), pp. 945-950.
  • E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
  • Esterline, “Light Key Projection Keyboard” 2004 Advanced Input Systems, located at: http://www.advanced-input.com/lightkey>last visited on Feb. 10, 2005.
  • Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”, Nov. 1, 2003; 4 pages.
  • Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
  • Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
  • Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320.
  • Joseph G. Andriole M.D. et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983.
  • Joseph Ortenberg, “LigaSure™ System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
  • Kennedy et al., “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
  • Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use With Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538.
  • Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
  • Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, pp. 205-210.
  • M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May/Jun. 1982.
  • Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246.
  • McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
  • MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page.
  • MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page.
  • MEDTREX Brochure “The O.R. Pro 300” 1 page, Sep. 1998.
  • Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164.
  • Ogden, “Goertzel Alternative to the Fourier Transform” Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687.
  • Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001, pp. 236-237.
  • Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
  • Valleylab Brochure, “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001.
  • Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989.
  • Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
  • Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
  • Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
  • Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995.
  • T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 410-415, 1997.
  • Urologix, Inc.—Medical Professionals: Targis™ Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com!medicaUtechnology.html > last visited on Apr. 27, 2001, 3 pages.
  • Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995.
  • Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation-‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
  • Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
  • European Search Report EP 98300964.8 dated Dec. 13, 2000.
  • European Search Report EP 98944778 dated Nov. 7, 2000.
  • European Search Report EP 98958575.7 dated Oct. 29, 2002.
  • European Search Report EP 03721482 dated Feb. 6, 2006.
  • European Search Report EP 04009964 dated Jul. 28, 2004.
  • European Search Report EP 04013772 dated Apr. 11, 2005.
  • European Search Report EP 04015980 dated Nov. 3, 2004.
  • European Search Report EP 04015981.6 dated Oct. 25, 2004.
  • European Search Report EP 04027314 dated Mar. 31, 2005.
  • European Search Report EP 04027479 dated Mar. 17, 2005.
  • European Search Report EP 04027705 dated Feb. 10, 2005.
  • European Search Report EP 04710258 dated Oct. 15, 2004.
  • European Search Report EP 04752343.6 dated Jul. 31, 2007.
  • European Search Report EP 04778192.7 dated Jul. 1, 2009.
  • European Search Report EP 05002027.0 dated May 12, 2005.
  • European Search Report EP 05002769.7 dated Jun. 19, 2006.
  • European Search Report EP 05013463.4 dated Oct. 7, 2005.
  • European Search Report EP 05013895 dated Oct. 21, 2005.
  • European Search Report EP 05014156.3 dated Jan. 4, 2006.
  • European Search Report EP 05016399 dated Jan. 13, 2006.
  • European Search Report EP 05017281 dated Nov. 24, 2005.
  • European Search Report EP 05019130.3 dated Oct. 27, 2005.
  • European Search Report EP 05019882 dated Feb. 16, 2006.
  • European Search Report EP 05020665.5 dated Feb. 27, 2006.
  • European Search Report EP 05020666.3 dated Feb. 27, 2006.
  • European Search Report EP 05021025.1 dated Mar. 13, 2006.
  • European Search Report EP 05021197.8 dated Feb. 20, 2006.
  • European Search Report EP 05021777 dated Feb. 23, 2006.
  • European Search Report EP 05021779.3 dated Feb. 2, 2006.
  • European Search Report EP 05021780.1 dated Feb. 23, 2006.
  • European Search Report EP 05021935 dated Jan. 27, 2006.
  • European Search Report EP 05021936.9 dated Feb. 6, 2006.
  • European Search Report EP 05021937.7 dated Jan. 23, 2006.
  • European Search Report EP 05021939 dated Jan. 27, 2006.
  • European Search Report EP 05021944.3 dated Jan. 25, 2006.
  • European Search Report EP 05022350.2 dated Jan. 30, 2006.
  • European Search Report EP 05023017.6 dated Feb. 24, 2006.
  • European Search Report EP 05025423.4 dated Jan. 19, 2007.
  • European Search Report EP 05025424 dated Jan. 30, 2007.
  • European Search Report EP 05810523 dated Jan. 29, 2009.
  • European Search Report EP 06000708.5 dated May 15, 2006.
  • European Search Report EP 06002279.5 dated Mar. 30, 2006.
  • European Search Report EP 06005185.1 dated May 10, 2006.
  • European Search Report EP 06005540 dated Sep. 24, 2007.
  • European Search Report EP 06006717.0 dated Aug. 11, 2006.
  • European Search Report EP 06006961 dated Oct. 22, 2007.
  • European Search Report EP 06006963 dated Jul. 25, 2006.
  • European Search Report EP 06008779.8 dated Jul. 13, 2006.
  • European Search Report EP 06009435 dated Jul. 13, 2006.
  • European Search Report EP 06010499.9 dated Jan. 29, 2008.
  • European Search Report EP 06014461.5 dated Oct. 31, 2006.
  • European Search Report EP 06018206.0 dated Oct. 20, 2006.
  • European Search Report EP 06019768 dated Jan. 17, 2007.
  • European Search Report EP 06020574.7 dated Oct. 2, 2007.
  • European Search Report EP 06020583.8 dated Feb. 7, 2007.
  • European Search Report EP 06020584.6 dated Feb. 1, 2007.
  • European Search Report EP 06020756.0 dated Feb. 16, 2007.
  • European Search Report EP 06022028.2 dated Feb. 13, 2007.
  • European Search Report EP 06023756.7 dated Feb. 21, 2008.
  • European Search Report EP 06024122.1 dated Apr. 16, 2007.
  • European Search Report EP 06024123.9 dated Mar. 6, 2007.
  • European Search Report EP 06025700.3 dated Apr. 12, 2007.
  • European Search Report EP 07000885.9 dated May 15, 2007.
  • European Search Report EP 07001480.8 dated Apr. 19, 2007.
  • European Search Report EP 07001481.6 dated May 2, 2007.
  • European Search Report EP 07001485.7 dated May 23, 2007.
  • European Search Report EP 07001488.1 dated Jun. 5, 2007.
  • European Search Report EP 07001489.9 dated Dec. 20, 2007.
  • European Search Report EP 07001491 dated Jun. 6, 2007.
  • European Search Report EP 07001527.6 dated May 18, 2007.
  • European Search Report EP 07007783.9 dated Aug. 14, 2007.
  • European Search Report EP 07008207.8 dated Sep. 13, 2007.
  • European Search Report EP 07009026.1 dated Oct. 8, 2007.
  • European Search Report EP 07009028 dated Jul. 16, 2007.
  • European Search Report EP 07009029.5 dated Jul. 20, 2007.
  • European Search Report EP 07009321.6 dated Aug. 28, 2007.
  • European Search Report EP 07009322.4 dated Jan. 14, 2008.
  • European Search Report EP 07010672.9 dated Oct. 16, 2007.
  • European Search Report EP 07010673.7 dated Oct. 5, 2007.
  • European Search Report EP 07013779.9 dated Oct. 26, 2007.
  • European Search Report EP 07015191.5 dated Jan. 23, 2007.
  • European Search Report EP 07015601.3 dated Jan. 4, 2007.
  • European Search Report EP 07015602.1 dated Dec. 20, 2007.
  • European Search Report EP 07018375.1 dated Jan. 8, 2008.
  • European Search Report EP 07018821 dated Jan. 14, 2008.
  • European Search Report EP 07019173.9 dated Feb. 12, 2008.
  • European Search Report EP 07019174.7 dated Jan. 29, 2008.
  • European Search Report EP 07019178.8 dated Feb. 12, 2008.
  • European Search Report EP 07020283.3 dated Feb. 5, 2008.
  • European Search Report EP 07253835.8 dated Dec. 20, 2007.
  • European Search Report EP 08001019 dated Sep. 23, 2008.
  • European Search Report EP 08004975 dated Jul. 24, 2008.
  • European Search Report EP 08006731.7 dated Jul. 29, 2008.
  • European Search Report EP 08006733 dated Jul. 7, 2008.
  • European Search Report EP 08006734.1 dated Aug. 18, 2008.
  • European Search Report EP 08006735.8 dated Jan. 8, 2009.
  • European Search Report EP 08011282 dated Aug. 14, 2009.
  • European Search Report EP 08011705 dated Aug. 20, 2009.
  • European Search Report EP 08012829.1 dated Oct. 29, 2008.
  • European Search Report EP 08015842 dated Dec. 5, 2008.
  • European Search Report EP 08019920.1 dated Mar. 27, 2009.
  • European Search Report EP 08169973.8 dated Apr. 6, 2009.
  • European Search Report EP 09156861.8 dated Aug. 4, 2009.
  • European Search Report EP 09161502.1 dated Sep. 2, 2009.
  • European Search Report EP 09166708 dated Oct. 15, 2009.
  • International Search Report PCT/US98/18640 dated Jan. 29, 1998.
  • International Search Report PCT/US98/23950 dated Jan. 14, 1998.
  • International Search Report PCT/US99/24869 dated Feb. 11, 2000.
  • International Search Report PCT/US01/11218 dated Aug. 14, 2001.
  • International Search Report PCT/US01/11224 dated Nov. 13, 2001.
  • International Search Report PCT/US01/11340 dated Aug. 16, 2001.
  • International Search Report PCT/US01/11420 dated Oct. 16, 2001.
  • International Search Report PCT/US02/01890 dated Jul. 25, 2002.
  • International Search Report PCT/US02/11100 dated Jul. 16, 2002.
  • International Search Report PCT/US03/09483 dated Aug. 13, 2003.
  • International Search Report PCT/US03/22900 dated Dec. 2, 2003.
  • International Search Report PCT/US03/37110 dated Jul. 25, 2005.
  • International Search Report PCT/US03/37111 dated Jul. 28, 2004.
  • International Search Report PCT/US03/37310 dated Aug. 13, 2004.
  • International Search Report PCT/US04/04685 dated Aug. 27, 2004.
  • International Search Report PCT/US04/13273 dated Dec. 15, 2004.
  • International Search Report PCT/US04/15311 dated Jan. 12, 2004.
  • International Search Report PCT/US05/36168 dated Aug. 28, 2006.
  • International Search Report PCT/US08/052460 dated Apr. 24, 2008.
  • International Search Report PCT/US09/31658 dated Mar. 11, 2009.
  • European Search Report EP 10014675 dated Feb. 24, 2011 (7 pages).
Patent History
Patent number: RE46362
Type: Grant
Filed: Jun 25, 2015
Date of Patent: Apr 11, 2017
Assignee: COVIDIEN LP (Mansfield, MA)
Inventor: Arnold V. DeCarlo (Frederick, CO)
Primary Examiner: Catherine S Williams
Application Number: 14/750,817
Classifications
Current U.S. Class: Applicators (606/41)
International Classification: A61B 18/18 (20060101); A61B 18/00 (20060101);