Quinuclidine derivatives and their use as muscarinic M3 receptor ligands

- Almirall, S.A.

A compound according to formula (I) wherein: © is a phenyl ring, a C4 to C9 heteroaromatic compound containing one or more heteroatoms, or a naphthalenyl, 5,6,7,8-tetrahydronaphthalenyl or biphenyl group; which shows high affinity for muscarinic M3 receptors (Hm3).

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from Spain application No. 9901580 filed Jul. 14, 1999 and PCT application No. PCT/EP00/06469 filed Jul. 7, 2000, the contents of each are incorporated herein by reference.

This invention relates to new therapeutically useful quinuclidine derivatives, to some processes for their preparation and to pharmaceutical compositions containing them.

The novel structures according to the invention are antimuscarinic agents with a potent and long lasting effect. In particular, these compounds show high affinity for muscarinic M3 receptors(Hm3).

In accordance with their nature as M3 antagonists, the new compounds are suitable for treating the following diseases: respiratory disorders such as chronic obstructive pulmonary disease (COPD), chronic bronchitis, bronchial hyperreactivity, asthma and rhinitis; urological disorders such as urinary incontinence, pollakinuria in neuripenia pollakinuria, neurogenic or unstable bladder, cystospasm and chronic cystitis; and gastrointestinal disorders such as irritable bowel syndrome, spastic colitis, diverticulitis and peptic ulceration.

The compounds claimed are also useful for the treatment of the respiratory diseases detailed above in association with β2 agonists, steroids, antiallergic drugs or phosphodiesterase IV inhibitors.

Compounds of the present invention may also be expected to have anti-tussive properties.

Depending on their nature the new compounds may be suitable for treating vagally induced sinus bradycardia.

Compounds with related structures have been described as anti-spasmodics and anti-cholinergic agents in several patents.

For example, in patent FR 2012964 are described quinuclidinol derivatives of the formula:


in which R is H, OH or an alkyl group having 1 to 4 carbon atoms; R1 is a phenyl or thienyl group; and R2 is a cyclohexyl, cyclopentyl or thienyl group, or, when R is H, R1 and R2 together with the carbon atom to which they are attached, form a tricyclic group of the formula:


in which X is —O—, —S— or —CH2—, or an acid addition or quaternary ammonium salt thereof.

EP-418716 describes thienyl carboxylate esters of formula


wherein A is a group

  • m and n=1 or 2
  • Q is a —CH2—CH2—, —CH2—CH2—CH2—, —CH═CH—, group

  • Q′ is a ═NR or NRR═ group; R1 is a thienyl, phenyl, furyl, cyclopentyl or cyclohexyl group, optionally substituted; R2 is H, OH, C1-C4 alkoxy or C1-C4 alkyl and Ra is H, F, Cl, CH3— or —NR.

U.S. Pat. No. 5,654,314 describes compounds of formula:


wherein R is an optionally halo- or hydroxy-substituted C1-4 alkyl group; R is a C1-4 alkyl group; or R and R═ together form a C4-6 alkylene group; Xis an anion; and R1 is H, OH, —CH2OH, C1-4 alkyl or C1-4 alkoxy.

The present invention provides new quinuclidine derivatives with potent antagonist activity at muscarinic M3 receptors which have the chemical structure described in formula (I):


wherein:

  • © is a phenyl ring, a C4 to C9 heteroaromatic group containing one or more heteroatoms (preferably selected from nitrogen, oxygen and sulphur atoms), or a naphthalenyl, 5,6,7,8-tetrahydronaphthalenyl or biphenyl group;
  • R1, R2 and R3 each independently represent a hydrogen or halogen atom, or a hydroxy group, or a phenyl, —OR4, —SR4, —NR4R5, —NHCOR4, —CONR4R5, —CN, —NO2, —COOR4 or —CF3 group, or a straight or branched lower alkyl group which may optionally be substituted, for example, with a hydroxy or alkoxy group, wherein R4 and R5 each independently represent a hydrogen atom, straight or branched lower alkyl group, or together form an alicyclic ring; or R1 and R2 together form an aromatic, alicyclic or heterocyclic ring;
  • n is an integer from 0 to 4;
  • A represents a —CH2—, —CH═CR6—, —CR6═CH—, —CR6R7—, —CO—, —O—, —S—, —S—(O)—, SO2 or —NR6— group, wherein R6 and R7 each independently represent a hydrogen atom, straight or branched lower alkyl group, or R6 and R7 together form an alicyclic ring;
  • m is an integer from 0 to 8; provided that when m=0, A is not —CH2—;
  • p is an integer from 1 to 2 and the substitution in the azoniabicyclic ring may be in the 2, 3 or 4 position including all possible configurations of the asymmetric carbons;
  • B represents a group of formula i) or ii):

  •  wherein R10 represents a hydrogen atom, a hydroxy or methyl group; and R8 and R9 each independently represents

  •  wherein R11 represents a hydrogen or halogen atom, or a straight or branched lower alkyl group and Q represents a single bond, —CH2—, —CH2—CH2—, —O—, —O—CH2—, —S—, —S—CH2— or —CH═CH—, and when i) or ii) contain a chiral centre they may represent either configuration; X represents a pharmaceutically acceptable anion of a mono or polyvalent acid.

In the quaternary ammonium compounds of the present invention represented by formula (I) an equivalent of an anion (X)is associated with the positive charge of the N atom. Xmay be an anion of various mineral acids such as, for example, chloride, bromide, iodide, sulfate, nitrate, phosphate, and organic acids such as, for example, acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, methanesulfonate and p-toluenesulfonate. Xis preferably an anion selected from chloride, bromide, iodide, sulphate, nitrate, acetate, maleate, oxalate or succinate. More preferably Xis chloride, bromide or trifluoroacetate.

The compounds of the present invention represented by the formula (I) described above, which may have one or more assymetric carbons, include all the possible stereoisomers. The single isomers and mixtures of the isomers fall within the scope of the present invention.

If any of R1 to R7 or R11 represents an alkyl group, it is preferred that said alkyl group contains 1 to 8, preferably 1 to 6 and more preferably 1 to 4 carbon atoms. In particular it is preferred that any alkyl group is represented by a methyl, ethyl, propyl, including i-propyl, butyl including a n-butyl, sec-butyl and tert-butyl.

The alicyclic and heterocyclic rings mentioned in relation to formula (I) preferably comprise from 3 to 10, preferably from 5 to 7 members. The aromatic rings mentioned in relation to formula (I) above preferably contain from 6 to 14, preferably 6 or 10 members.

Preferred compounds of formula (I) are those wherein © represents a phenyl, pyrrolyl, thienyl, furyl, biphenyl, naphthalenyl, 5,6,7,8-tetrahydronaphthalenyl, benzo[1,3]dioxolyl, imidazolyl or benzothiazolyl group, in particular a phenyl, pyrrolyl, or thienyl group; R1, R2 and R3 each independently represent a hydrogen or halogen atom, or a hydroxyl, methyl, tert-butyl, —CH2OH, 3-hydroxypropyl, —OMe, —NMe2, —NHCOMe, —CONH2, —CN, —NO2, —COOMe or —CF3 group, in particular a hydrogen atom, a hydroxy group or a halogen atom, wherein the halogen atom is preferably fluorine; n=0 or 1; m is an integer from 1 to 6, particularly 1, 2 or 3; A represents a —CH2—, —CH═CH—, —CO—, —NH—, —NMe—, —O— or —S— group, in particular a —CH2—, —CH═CH— or —O— group.

It is also preferred that p=2 and the substituent group —OC(O)B attached to the azoniabicyclo[2.2.2]octane is at the 3 position, preferably having the (R) configuration.

Further preferred compounds of formula I are those wherein B is a group of formula i) or ii) as defined above wherein, if B is a group of formula (i), R8 and R9 each independently represent a phenyl, 2-thienyl, 3-thienyl, 2-furyl or 3-furyl group, wherein R11 is hydrogen atom; and, if B is a group of formula (Ii), Q represents a single bond, —CH2—, —CH2—CH2—, —O— or —S— group, in particular a single bond, —CH2—, —CH2—CH2— or —O— group, most preferably a single bond or —O— group; and in any case R10 is a hydrogen atom or a hydroxy or methyl group; and when i) or ii) contain a chiral centre they may represent either the (R) or the (S) configuration.

Most preferably the —OC(O)B group in formula (I) is diphenylacetoxy, 2-hydroxy-2,2-diphenyl-acetoxy, 2,2-diphenylpropionyloxy, -hydroxy-2-phenyl-2-thien-2-yl-acetoxy, 2-furan-2-yl-2-hydroxy-2-phenylacetoxy, 2,2-dithien-2-ylacetoxy, 2-hydroxy-2,2-di-thien-2-ylacetoxy, 2-hydroxy-2,2-di-thien-3-ylacetoxy, 9-hydroxy-9[H]-fluorene-9-carbonyloxy, 9-methyl-9[H]-fluorene-9-carbonyloxy, 9[H]-xanthene-9-carbonyloxy, 9-hydroxy-9[H]-xanthene-9-carbonyloxy, 9-methyl-9[H]-xanthene-9-carbonyloxy, 2,2-bis(4-fluorophenyl)-2-hydroxyacetoxy, 2-hydroxy-2,2-di-p-tolylacetoxy, 2,2-difuran-2-yl-2-hydroxy acetoxy, 2,2-dithien-2-ylpropionyloxy, 9,10-dihydroanthracene-9-carbonyloxy, 9 [H]-thioxanthene-9-carbonyloxy, or 5[H]-dibenzo[a,d]cycloheptene-5-carbonyloxy. Especially preferred compounds are those wherein the —OC(O)B group in formula (I) is diphenylacetoxy, 2-hydroxy-2,2-diphenyl-acetoxy, 2,2-diphenylpropionyloxy, 2-hydroxy-2-phenyl-2-thien-2-yl-acetoxy, 2-furan-2-yl-2-hydroxy-2-phenylacetoxy, 2,2-dithien-2-ylacetoxy, 2-hydroxy-2,2-di-thien-2-ylacetoxy, 2-hydroxy-2,2-di-thien-3-ylacetoxy, 9-hydroxy-9[H]-fluorene-9-carbonyloxy, 9-methyl-9[H]-fluorene-9-carbonyloxy, 9[H]-xanthene-9-carbonyloxy, 9-hydroxy-9[H]-xanthene-9-carbonyloxy or 9-methyl-9[H]-xanthene-9-carbonyloxy.

The most preferred compounds of formula (I) are those wherein the azoniabicyclo group is substituted on the nitrogen atom with a 3-phenoxypropyl, 2-phenoxyethyl, 3-phenylallyl, phenethyl, 4-phenylbutyl, 3-phenylpropyl, 3-[2-hydroxyphenoxy]propyl, 3-[4-fluorophenoxy]propyl, 2-benzyloxyethyl, 3-pyrrol-1-ylpropyl, 2-thien-2-ylethyl, 3-thien-2-ylpropyl, 3-phenylaminopropyl, 3(methylphenylamino)propyl, 3-phenylsulfanylpropyl, 3-o-tolyloxypropyl, 3-(2,4,6-trimethylphenoxy)propyl, 3-(2-tert-butyl-6-methylphenoxy)propyl, 3-(biphenyl-4-yloxy)propyl, 3-(5,6,7,8-tetrahydronaphthalen-2-yloxy)-propyl, 3-(naphthalen-2-yloxy) propyl, 3-(naphthalen-1-yloxy) propyl, 3-(2-chlorophenoxy)propyl, 3-(2,4-difluorophenoxy)propyl, 3-(3-trifluoromethyl phenoxy)propyl, 3-(3-cyanophenoxy)propyl, 3-(4-cyanophenoxy)propyl, 3-(3-methoxyphenoxy)propyl, 3-(4-methoxyphenoxy)propyl, 3-(benzo[1,3]dioxol-5-yloxy) propyl, 3-(2-carbamoylphenoxy)propyl, 3-(3-dimethylaminophenoxy)propyl, 3-(4-nitrophenoxy)propyl, 3-(3-nitrophenoxy)propyl, 3-(4-acetylaminophenoxy) propyl, 3-(3-methoxycarbonylphenoxy)propyl, 3-[4-(3-hydroxypropyl) phenoxy]propyl, 3-(2-hydroxymethylphenoxy)propyl, 3-(3-hydroxymethylphenoxy)propyl, 3-(4-hydroxymethylphenoxy)propyl, 3-(2-hydroxyphenoxy)propyl, 3-(4-hydroxyphenoxy)propyl, 3-(3-hydroxyphenoxy)propyl, 4-oxo-4-thien-2-ylbutyl, 3-(1-methyl-[1H]-imidazol-2-ylsulfanyl)propyl, 3-(benzothiazol-2-yloxy)propyl, 3-benzyloxypropyl, 6-(4-phenylbutoxy)hexyl, 4-phenoxybutyl, or 2-benzyloxyethyl group. Especially preferred compounds are those wherein the azoniabicyclo group is substituted on the nitrogen atom with a 3-phenoxypropyl, 2-phenoxyethyl, 3-phenylallyl, phenethyl, 4-phenylbutyl, 3-phenylpropyl, 3-[2-hydroxyphenoxy]propyl, 3-[4-fluorophenoxy]propyl, 2-benzyloxyethyl, 3-pyrrol-1-ylpropyl, 2-thien-2-ylethyl or 3-thien-2-ylpropyl group.

The following compounds are intended to illustrate but not to limit the scope of the present invention.

  • 3(R)-Diphenylacetoxy-1-(3-phenoxy-propyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2,2-diphenyl-acetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2,2-Diphenylpropionyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2-phenyl-2-thien-2-yl-acetoxy)-1-(3-phenoxypropyl)-1-azonia-bicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2,2-Dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azonia-bicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2,2-di-thien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2,2-di-thien-2-ylacetoxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azonia-bicyclo[2.2.2]octane; bromide
  • 1-[3-(4-Fluorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; chloride
  • 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(2-hydroxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; trifluoroacetate
  • 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-pyrrol-1-ylpropyl)-1-azonia-bicyclo[2.2.2]octane; trifluoroacetate
  • 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-(2-Benzyloxyethyl)-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; trifluoroacetate
  • 3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-(3-phenylallyl)-3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9H-fluorene-9-carbonyloxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-(4-Phenylbutyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-(2-Phenoxyethyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-(3-Phenoxypropyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; bromide
  • 1-Phenethyl-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9[H]-xanthene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9[H]-xanthene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; bromide
  • 3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-(3-phenoxy-propyl)-1-azonia-bicyclo[2.2.2]octane; bromide

The present invention also provides processes for preparing compounds of formula (I).

The quaternary ammonium derivatives of general Formula I, may be prepared by reaction of an alkylating agent of general Formula II with compounds of general Formula III. In Formulas I, II and III, R1, R2, R3, ©, A, X, B, n, m and p are as defined above.

This alkylation reaction may be carried out by two different experimental procedures, a) and b) which are described below. In particular method b) provides a new experimental process, using solid phase extraction methodologies, that allows the parallel preparation of several compounds. Methods a) and b) are described in the experimental section. Compounds of general Formula II which are not commercially available have been prepared by synthesis according to standard methods. For example, compounds wherein n=0 and A=—O—, —S— or —NR61 wherein R6 is as defined above, were obtained by reaction of the corresponding aromatic derivative or its potassium salt with an alkylating agent of general formula Y—(CH2)m-X, wherein X may be a halogen and Y may be a halogen or a sulphonate ester. In other examples, compounds of general Formula II, where n>=1 were synthesised from the corresponding alcohol derivative of general Formula IV by known methods.

Compounds of general Formula III may be prepared by three different methods c, d and e illustrated in the following scheme and detailed in the experimental section.

Some compounds of general formula III where B is a group of formula i), R8 and R9 are as described above and R10 is a hydroxy group, may also be prepared from the glyoxalate esters of general formula VII by reaction with the corresponding organometallic derivative.

Compounds of general formula VII may be prepared from the corresponding glyoxylic acids following the standard methods c, d and e described above and detailed in the experimental section. The glyoxalate derivatives of formula VII where R8 is a 2-thienyl or 2-furyl group have not been described before.

The following compounds are examples of compounds of general formula III and VII which have not been described before:

  • 9-Methyl-9[H]-fluorene-9-carboxylic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-1c);
  • 9-Methyl-9[H]-xanthene-9-carboxylic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-1d);
  • 2-Hydroxydithien-2-yl-acetic acid 1-azabicyclo[2.2.2]oct-4-yl ester (intermediate I-4a).
  • Oxothien-2-yl-acetic acid 1-azabicyclo[2.2.2]oct-4-yl ester (intermediate I-4b).
  • Oxothien-2-yl-acetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-4 g).
  • Oxofuran-2-yl-acetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-4e).
  • 2-Hydroxy-2,2-difuran-2-yl-acetic acid
  • 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-4d).

Compounds of Formula V could be:

  • 4-hydroxy-1-azabicyclo[2.2.1]heptane, described in WO150080
  • 4-hydroxy-1-azabicyclo[2.2.2]octane, described in Grob, C. A. et. al. Helv. Chim. Acta (1958), 41, 1184-1190
  • 3(R)-hydroxy-1-azabicyclo[2.2.2]octane or 3(S)-hydroxy-1-azabicyclo[2.2.2]octane, described in Ringdahl, R. Acta Pharm Suec. (1979), 16, 281-283 and commercially available from CU Chemie Uetikon GmbH.

The following examples are intended to illustrate, but not to limit, the experimental procedures that have been described above.

The structures of the prepared compounds were confirmed by 1H-NMR and MS. The NMR were recorded using a Varian 300 MHz instrument and chemical shifts are expressed as parts per million (δ) from the internal reference tetramethyl silane. Their purity was determined by HPLC, using reverse phase chromatrography on a Waters instrument, with values greater than 95% being obtained. Molecular ions were obtained by electrospray ionization mass spectometry on a Hewlett Packard instrument.

Method-a

EXAMPLE 20 Preparation of 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenyl acetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane, Bromide

200 mg of (Furan-2-yl)-hydroxy-phenylacetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (0.6 mmol) were suspended in 4 ml of CH3CN and 6 ml of CHCl3. To this suspension were added 0.48 ml (3 mmol) of 3-phenoxypropyl bromide. After stirring for 72 h at room temperature in inert atmosphere, solvents were evaporated. Ether was added and the mixture stirred. The solid obtained was filtered and washed several times with ether. The yield was 0.27 g (83%) of title compound as a mixture of diastereomers.

1H-NMR (DMSO-d6): δ 1.50-2.20 (m, 6H), 2.25 (m, 1H), 3.10 (m, 1H), 3.20-3.60 (m, 6H), 3.95 (m, 1H), 4.05 (m, 2H), 5.20 (m, 1H), 6.25-6.35 (double dd, 1H), 6.45 (m, 1H), 6.95 (m, 4H), 7.30-7.50 (m, 7H), 7.70 (m, 1H); MS [M-Br]+: 462; mp 166° C.

Method-b

EXAMPLE 51 Preparation of 3(R)-(2-Hydroxy-2,2-di-thien-2-yl acetoxy)-1-[3-(naphthalen-1-yloxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

60 mg (0.17 mmols) of hydroxy-dithien-2-yl-acetic acid 1-aza-bicyclo[2.2.2]oct-3(R)-yl ester were dissolved in 1 ml of dmso. To this solution 188 mg (0.85 mmol) of 3-(naphthalen-1-yloxy)-propyl chloride were added. After stirring overnight at room temperature, the mixture was purified by solid phase extraction with a cation exchange Mega Bond Elut cartridge, previously conditioned at pH=7.5 with 0.1 M NaH2PO4 buffer. The reaction mixture was applied to the cartridge and washed first with 2 ml of DMSO and then three times with 5 ml of CH3CN, rinsing away all starting materials. The ammonium derivative was eluted with 5 ml of 0.03 M TFA solution in CH3CN:CHCl3 (2:1). This solution was neutralized with 300 mg of poly(4-vinylpyridine), filtered and evaporated to dryness.

The yield was 17 mg (15%) of title compound. 1H-NMR (DMSO-d6): δ 1.7-2.1 (m, 4H), 2.2-2.4 (m, 3H), 3.2-3.6 (m, 7H), 4.0 (m, 1H), 4.2 (t, 2H), 5.25 (m, 1H), 7.0 (m 3H), 7.2 (m, 2H), 7.4-7.6 (m, 7H), 7.85 (d, 1H), 8.2 (d, 1H); MS [M-CF3COO]+: 534.

Method-c

Methyl ester derivatives of general Formula VI were prepared by standard methods of esterification from the corresponding carboxylic acid or following the procedures described in examples I-1e, I-1f and I-1g or according to procedures described in literature: FR 2012964; Larsson. L et al. Acta Pharm. Suec. (1974), 11(3), 304-308; Nyberg, K. et. al. Acta Chem. Scand. (1970), 24, 1590-1596; and Cohen, V. I. et. al. J. Pharm. Sciences (1992), 81, 326-329.

EXAMPLE I-1a Preparation of (Furan-2-yl)hydroxyphenylacetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

3.24 g (0.014 mols) of (Furan-2-yl)-hydroxy-phenylacetic acid methyl ester were dissolved in 85 ml of toluene. To this solution were added 2.08 g (0.016 mols) of 3-(R)-hydroxy-1-azabicyclo[2.2.2]octane and 0.224 g (5.6 mmols) of HNa (60% dispersion in mineral oil). The mixture was refluxed with continuous removal of distillate and when necessary replacement with fresh toluene for 1.5 hours. The cooled mixture was extracted with 2N HCl acid, the aqueous layer washed with ethyl acetate, basified with K2CO3 and extracted with CHCl3. The organic layer was dried over Na2SO4 and evaporated. The oil obtained (3.47 g) crystallised after cooling at room temperature. This solid was suspended in hexane and filtered. The yield was 2.5 g (54%) of a mixture of diasteroisomers, mp: 140-142° C.; GC/MS [M]+: 327; 1H-NMR (CDCl3): δ 1.20-1.70 (m, 4H), 1.90-2.10 (m, 1H), 2.45-2.80 (m, 5H), 3.10-3.30 (m, 1H), 4.8 (bs, OH), 4.90-5.0 (m, 1H), 6.20 (m, 1H), 6.35 (m, 1H), 7.30-7.50 (m, 4H), 7.60-7.70 (m, 2H).

After four crystallizations of 0.5 g of this mixture from boiling acetonitrile, 0.110 g of a pure diastereomer(I) were obtained. From the mother liquors of crystallization was obtained the other diastereomer (2). (*:configuration not assigned). Diastereomer 1 was hydrolysed to yield (+)-2-hydroxy-2-phenyl-2-furan-2-ylacetic acid as a pure enantiomer, [α]25D=+5.6 (c=2, EtOH). Diastereomer 2 was hydrolysed to yield (−)-2-hydroxy-2-phenyl-2-furan-2-ylacetic acid as a pure enantiomer, [γ]25D=−5.7 (c=2, EtOH).

Diastereomer 1: 2(*)—(Furan-2-yl)hydroxyphenylacetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester.

1H-NMR (CDCl3): δ 1.20-1.70 (m, 4H), 1.90 (m, 1H), 2.45-2.50 (m, 1H), 2.50-2.80 (m, 4H), 3.10-3.20 (m, 1H), 4.8 (bs, OH), 4.90-5.0 (m, 1H), 6.20 (m, 1H), 6.35 (m, 1H), 7.30-7.50 (m, 4H), 7.60-7.70 (m, 2H).

Diastereomer 2: 2(*)—(Furan-2-yl)hydroxyphenylacetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester.

1H-NMR (CDCl3): δ 1.20-1.70 (m, 4H), 2.10 (m, 1H), 2.50-2.80 (m, 5H), 3.20-3.30 (m, 1H), 4.8 (bs, OH), 4.90-5.0 (m, 1H), 6.20 (m, 1H), 6.35 (m, 1H), 7.30-7.50 (m, 4H), 7.60-7.70 (m, 2H).

EXAMPLE I-1b Preparation of Furan-2-ylhydroxythien-2-ylacetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Prepared as in example I-1a. The yield was 3.06 g (64.3%) of a mixture of diastereoisomers, mp: 1721C; GC/MS [M]+: 333; 1H-NMR (DMSO-d6): δ 1.21-1.27 (m, 1H), 1.41-1.60 (m, 3H), 1.87 (m, 1H), 2.36-2.69 (m, 5H), 3.02-3.14 (m, 1H), 4.75-4.82 (m, 1H), 6.24-6.25 (m, 1H), 6.42-6.45 (m, 1H), 7.01-7.06 (m, 1H), 7.11-7.14 (m, 2H), 7.51-7.54 (m, 1H), 7.66-7.69 (m, 1H).

EXAMPLE I-1c

Preparation of 9-Methyl-9[H]-fluorene-9-carboxylic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Prepared as in example I-1a. The yield was 3.34 g of an oil (80%). This product was solidified by formation of the oxalate salt (1:1), mp: 1861C. MS [M free base+1]+: 334.

Oxalate salt, 1H-NMR (DMSO-d6): δ 1.43-1.55 (m, 2H), 1.68-1.78 (m, 2H), 1.75 (s, 3H), 2.02 (m, 1H), 2.70-2.90 (m, 1H), 2.92-3.15 (m, 4H), 3.50-3.57 (m, 1H), 4.88 (m, 1H), 7.35-7.47 (m, 4H), 7.62-7.70 (m, 2H), 7.89-7.91 (m, 2H).

EXAMPLE I-1d Preparation of 9-Methyl-9[H]-xanthene-9-carboxylic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Prepared as in example I-1a. The yield was 1.91 g of an oil (53%). This product was solidified by formation of the oxalate salt (1:1), mp: 1521C. MS [M free base+1]+: 350.

Oxalate salt, 1H-NMR (DMSO-d6): δ 1.20-1.30 (m, 1H), 1.40-1.52 (m, 1H), 1.64-1.81 (m, 2H), 1.90 (s, 3H), 2.0 (m, 1H), 2.53-2.66 (m, 1H), 2.71-2.76 (m, 1H), 2.97-3.10 (m, 3H), 3.44-3.52 (m, 1H), 4.90-4.92 (m, 1H), 7.12-7.18 (m, 4H), 7.32-7.38 (m, 2H), 7.43-7.48 (m, 2H), 8.0-9.8 (bs, 1H, H+).

EXAMPLE I-1e Preparation of 9-Methyl-9[H]-fluorene-9-carboxylic Acid Methyl Ester

Lithium diisopropylamide (26.7 ml of a 2M solution in heptane/tetrahydrofurane/ethylbenzene, 0.053 mol) was added to a stirred solution of 9[H]-fluorene-9-carboxylic acid (5 g, 0.0237 mol) in THF (70 ml) at between 0 and 51C in N2 atmosphere. The mixture was warmed to room temperature and refluxed 1.5 hours. The reaction mixture was cooled to room temperature and a solution of CH3I (1.85 ml, 0.03 mol) in THF (1.85 ml) was added. The mixture was stirred overnight at room temperature and evaporated. To the residue in MeOH (70 ml) was added concentrated sulfuric acid (3.9 ml) in MeOH (25 ml), the mixture was refluxed for 2 hours and evaporated. The residue was partitioned between chloroform and saturated K2CO3 solution. The aqueous layer was extracted again with chloroform and the organic layers were combined, washed with water, dried over sodium sulphate and evaporated to dryness to obtain 5.73 g of a brown oil. This product was purified by column chromatography (silica gel, hexane/ethyl acetate 95:5) to yield 4.43 g (78.5%) of a pure product, structure confirmed by 1H-NMR.

1H-NMR (CDCl3): δ 1.80 (s, 3H), 3.60 (s, 3H), 7.50-7.65 (m, 4H), 7.75 (m, 2H), 8.0 (m, 2H).

EXAMPLE I-1f Preparation of 9-Methyl-9[H]-xanthene-9-carboxylic Acid Methyl Ester

Prepared as in example I-1e. The yield was 2.65 g (47.2%). 1H-NMR (CDCl3): δ 1.90 (s, 3H), 3.6 (s, 3H), 7.05-7.35 (m, 8H).

EXAMPLE I-1g Preparation of 9-Hydroxy-9[H]-xanthene-9-carboxylic Acid Methyl Ester

Lithium diisopropylamide (20.3 ml of a 2M solution in heptane/tetrahydrofurane/ethylbenzene, 0.041 mol) was added to a stirred solution of 7 g (0.029 mol) of 9[H]-xantene-9-carboxylic acid methyl ester (prepared by a standard method) in THF (70 ml) at between 0 and 51C in N2 atmosphere. The mixture was stirred 1 h at this temperature and then was added by N2 pressure to a dry solution of oxygen in ether at 01C. After 30 min, an equal volum of NaHSO3, 40% aqueous solution, was added, and the reaction mixture was warmed to room temperature and stirred for 30 min. The two layers were separated and the aqueous phase was extracted twice with ethyl acetate. The organic phases were combined, treated with NaHSO3 (40% aqueous solution), washed with water, dried over sodium sulphate and evaporated to dryness to obtain 8.89 g of a brown solid.

This procedure was repeated with 5 g of starting material yielding 6.049 of the same brown solid. The products were combined and purified by column chromatography (silica gel, hexane/ethyl acetate 90:10) to yield 7.60 g (global Rt: 59.4%) of a pure product, structure confirmed by 1H-NMR.

1H-NMR (DMSO-d6): δ 3.5 (s, 3H), 7.0 (s, 1H, OH), 7.2 (m, 4H), 7.4 (m, 2H), 7.55 (m, 2H).

Method-d

EXAMPLE I-2a Preparation of 10,11-Dihydro-5[H]-dibenzo[a,d]cycloheptane-5-carboxylic Acid 1-azabicyclo[2.2.2]oct-3-(R)-yl Ester

2.15 g of 10,11-Dihydro-5[H]-dibenzo[a,d]cycloheptane-5-carboxylic acid (9.0 mmol) were dissolved in 40 ml of CHCl3 (ethanol free). The solution was cooled at 0° C. and 0.86 ml of oxalyl chloride (9.9 mmols) and a drop of DMF were added. The mixture was stirred and allowed warm to room temperature. After an hour at this temperature the solvents were evaporated and the residue was dissolved in CHCl3 and evaporated again. This procedure was repeated two times. The obtained oil was dissolved in 20 ml of toluene and added to a solution of 1.26 g (9.9 mmol) of 3-(R)-hydroxy-1-azabicyclo[2.2.2]octane in 40 ml of hot toluene. The reaction mixture was refluxed for 2 hours. After cooling the mixture was extracted with 2N HCl acid. The aqueous layer was basified with K2CO3 and extracted with CHCl3. The organic layer was dried over Na2SO4 and evaporated to dryness. The residue was purified by column chromatography (silica gel, CHCl3:MeOH:NH40H, 95:5:0.5). The yield was 1.5 g (48%); mp: 112-113° C.; CG/MS [M]+: 347; 1H-NMR (CDCl3): δ 1.10-1.35 (m, 2H), 1.40-1.52 (m, 1H), 1.52-1.68 (m, 1H), 1.90 (m, 1H), 2.40-2.60 (m, 2H), 2.60-2.77 (m, 3H), 2.83-2.96 (m, 2H), 3.07-3.19 (m, 1H), 3.25-3.40 (m, 2H), 4.80 (m, 2H), 7.10-7.30 (m, 8H). 10,11-Dihydro-5[H]-dibenzo[a,d]cycloheptane-5-carboxylic acid was prepared as described in Kumazawa T. et al., J. Med. Chem., (1994), 37, 804-810.

EXAMPLE I-2b Preparation of 5[H]-Dibenzo[a,d]cycloheptene-5-carboxylic Acid 1-azabicyclo[2.2.2]oct-3-(R)-yl Ester

Prepared as in example I-2a. The yield was 3.12 g (71%); mp 1291C; MS [M+1]+: 346; 1H-NMR (DMSO-d6): δ 0.90-1.10 (m, 2H), 1.30-1.50 (m, 2H), 1.58 (m, 1H), 2.21-2.26 (m, 2H), 2.47-2.50 (m, 3H), 2.86-2.94 (m, 1H), 4.48-4.51 (m, 1H), 5.33 (s, 1H), 7.0 (m, 2H), 7.29-7.43 (m, 6H), 7.49-7.51 (m, 2H).

5[H]-Dibenzo[a,d]cycloheptene-5-carboxylic acid was prepared as described in M. A. Davis et al; J. Med. Chem., (1964), Vol 7, 88-94.

EXAMPLE I-2c Preparation of 9,10-Dihydroanthracene-9-carboxylic Acid 1-azabicyclo[2.2.2]oct-3-(R)-yl Ester

Prepared as in example I-2a. The yield was 0.77 g (62.6%); mp 1391C; MS [M+1]+: 334; 1H-NMR (DMSO-d6): δ 1.1-1.2 (m, 1H), 1.25-1.40 (m, 2H), 1.40-1.55 (m, 1H), 1.73 (m, 1H), 2.20 (m, 1H), 2.35-2.65 (m, 4H), 2.90-2.98 (m, 1H), 3.93-4.14 (dd, 2H, J=1.8 Hz, J=4.3 Hz), 4.56 (m, 1H), 5.14 (s, 1H), 7.25-7.35 (m, 4H), 7.35-7.50 (m, 4H).

9,10-Dihydro-anthracene-9-carboxylic acid was prepared as described in E. L. May and E. Mossettig; J. Am. Chem. Soc., (1948), Vol 70, 1077-9.

Method-e

EXAMPLE I-3 Preparation of 2,2-Diphenylpropionic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

1.1 g (4.8 mmol) of 2,2-diphenylpropionic acid were dissolved in 20 ml of THF. To this solution were added 0.87 g (5.3 mmol) of 1,1=-carbonyldiimidazole and the mixture was refluxed for an hour. The reaction was monitored by TLC following the formation of the imidazolide. When the reaction was completed part of the solvent was evaporated and 0.67 g (5.3 mmol) of 3-(R)-hydroxy-1-azabicyclo[2.2.2]octane were added. The reaction mixture was refluxed for 16 h, cooled, diluted with ether and washed with water. The organic layer was extracted with HCl 2N, the acid solution basified with K2CO3 and extracted with CHCl3. The organic solution was dried over Na2SO4 and evaporated to dryness to yield 1.21 g (75.2%) of an oil that was identified as the title ester.

0.64 g (1.9 mmol) of 2,2-Diphenylpropionic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester were dissolved in 6 ml of ketone and 0.085 g(0.95 mmol) of oxalic acid were added. After slow addition of ether a white solid was formed. The yield was 0.33 g (45.6%) of oxalate of 2,2-Diphenylpropionic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester; mp: 1461C; MS [M free base+1]+: 336.

Oxalate salt, 1H-NMR (CDCl3): δ 1.40-1.64 (m, 2H), 1.90 (s, 3H), 1.80-2.0 (m, 2H), 2.31 (m, 1H), 2.73-2.85 (m, 1H), 3.0-3.10 (m, 1H), 3.10-3.32 (m, 3H), 3.53-3.70 (m, 1H), 5.13 (m, 1H), 7.14-7.40 (m, 10H), 9.25 (broad band, 2H, H+).

Method-f

EXAMPLE I-4a Preparation of 2-Hydroxy-2,2-dithien-2-ylacetic Acid 1-azabicyclo[2.2.2]oct-4-yl Ester

A solution of 2-thienylmagnesium bromide was prepared from 220 mg (9 mmols)of Magnesium and 0.86 ml (9 mmols) of 2-bromothiophene in 15 ml of THF. This solution was added to 1.95 g (7 mmols) of oxothien-2-yl -acetic acid 1-azabicyclo[2.2.2]oct-4-yl ester (intermediate I-4b) dissolved in 20 ml of THF. The mixture was stirred at room temperature for 1 hour, refluxed for 1 hour, cooled, treated with a saturated solution of ammonium chloride and extracted with ether. After removal of the solvent the solid obtained was recrystallised from acetonitrile to yield 1.45 g, of a white solid (56%). 1H-NMR (DMSO-d6): δ 1.80-2.0 (m, 6H), 2.80-3.0 (m, 6H), 7.0 (m, 2H), 7.13 (m, 2H), 7.18 (s, 1H), 7.51 (m, 2H); MS [M+1]: 350; mp 174° C.

EXAMPLE I-4b Preparation of Oxothien-2-yl-acetic Acid 1-azabicyclo[2.2.2]oct-4-yl Ester

Oxalyl chloride (1.5 ml, 0.017 mol) was added to a solution of oxothien-2-yl-acetic acid (2.24 g, 0,014 mol) and dimethylformamide (one drop) in 30 ml of chloroform (etanol free) at 01C. The mixture was stirred and allowed to warm at room temperature. After one hour the solvent was evaporated. The residue was dissolved in chloroform and evaporated again. This procedure was repeated two times. The product obtained was disolved in CHCl3 (30 ml) and added to a suspension of 1.1 g (0.009 mols) of 4-hydroxy-1-azabicyclo[2.2.2]octane, 1.8 ml of triethylamine (0,013 mols), 0.6 g (0.9 mmols) of N-(methylpolystyrene)-4-(methylamino) pyridine at 70° C. The mixture was refluxed for 1 hour, cooled, filtered and washed with water. The title product was extracted with a solution of diluted HCl, washed with CHCl3, basified with K2CO3 and extracted again with CHCl3. After removal of the solvent 1.47 g (45%) of a solid was obtained. 1H-NMR (dmso): δ 2.0 (m, 6H), 2.9 (m, 6H), 7.35 (m, 1H), 8.05 (m, 1H), 8.3 (m, 1H).

EXAMPLE I-4c Preparation of (Furan-2-yl)hydroxyphenylacetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Phenylmagnesium bromide, 0.0057 mol (5.7 ml of a solution 1M in THF), was added to a solution of 1.3 g (0.0052 mol) of oxofuran-2-ylacetic acid 1-azabicyclo[2.2.2]oct-3(R)-yl ester (intermediate I-4e-) dissolved in 15 ml of THF, at −701C in N2 atmosphere. The mixture was stirred at this temperature for 10 minuts, and then warmed to room temperature. After 1 hour, the reaction mixture was treated with a saturated solution of ammonium chloride and extracted three times with ethyl acetate The organic phases were combined, washed with water and dried over Na2SO4. After removal of the solvent, the solid obtained was treated with ether and filtered to yield 0.67 g (40%) of a product whose structure was confirmed by 1H-NMR. This compound was also prepared as is described in Example I-1a (Method c). The diastereomers were separated by crystallization from acetonitrile and distinguished by 1H-NMR.

EXAMPLE I-4d Preparation of 2-Hydroxy-2,2-difur-2-yl-acetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

The title compound was synthesised as in example I-4c from intermediate I-4e—and 2-furanyl lithium which was prepared with furane and butyl lithium following a standard method. The yield was 380 mg (8%). 1H-NMR (CDCl3): δ 1.2-1.4 (m, 1H), 1.4-1.8 (m, 3H), 2.0 (m, 1H), 2.6-2.85 (m, 5H), 3.2 (m, 1H), 5.0 (m, 1H), 6.4 (m, 3H), 7.3 (m, 1H), 7.5 (m, 2H). MS [M+1]+: 318.

EXAMPLE I-4e Preparation of Oxofuran-2-yl-acetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Oxalyl chloride (9.75 ml, 0.112 mol) was added to a solution of oxofuran-2-ylacetic acid (10 g, 0.071 mol) and dimethylformamide (one drop) in 150 ml of chloroform (etanol free) at 01C. The mixture was stirred and allowed to warm at room temperature. After five hours the solvent was evaporated. The residue was dissolved in chloroform and evaporated again. This procedure was repeated two times. The product obtained was disolved in CHCl3 (150 ml) and a solution of 3(R)-quinuclidinol (10.90 g, 0.086 mol) in CHCl3 (150 ml) was added to this at 01C. The mixture was stirred and allowed to warm at room temperature. After 15 h at r.t., the mixture was washed with 10% aqueous potassium carbonate, then with water, dried over Na2SO4 and evaporated to give 9.34 g (52.5%) of the title compound as a dark oil. Estructure confirmed by NMR.

1H-NMR (CDCl3): δ 1.40-1.60 (m, 1H), 1.60-1.80 (m, 2H), 1.80-2.05 (m, 1H), 2.20 (m, 1H), 2.70-3.10 (m, 5H), 3.30-3.45 (m, 1H), 5.10 (m, 1H), 6.7 (m, 1H), 7.7 (m, 1H), 7.8 (m, 1H).

EXAMPLE I-4f Preparation of 2-Hydroxy-2-phenyl-2-thien-2-ylacetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

The title compound was prepared as described in example I-4c from intermediate I-4 g. The yield was 3 g (33%) as a mixture of diastereomers. After five crystallizations of 1.5 g of this mixture from boiling isopropanol, 0.200 g of a pure diastereomer(1) were obtained. The mother liquors from first crystallization were enriched with the other diastereomer (2). Diastereomer 1 was hidrolysed to yield (+)-2-Hydroxy-2-phenyl-2-thien-2-ylacetic acid as a pure enantiomer, [α]25D=+25.4 (c=2, EtOH). This value was assigned to the R configuration provided that in literature (A. I. Meyers et. al. J. Org. Chem.(1980), 45(14), 2913) the 2(S) enantiomer has been described whith [α]25D=−20 (c=2, EtOH).

Diastereomer 1: 2(R)-2-Hydroxy-2-phenyl-2-thien-2-ylacetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester.

1H-NMR (DMSO-d6): δ 1.1-1.25 (m, 1H), 1.3-1.6 (m, 3H), 1.83 (m, 1H), 2.4-2.7 (m, 5H), 3.1 (m, 1H), 4.8 (m, 1H), 7.0 (m, 2H), 7.05 (m, 1H), 7.3-7.4 (m, 3H), 7.4-7.45 (m, 2H), 7.5 (m, 1H).

Diastereomer 2: 2(S)-2-Hydroxy-2-phenyl-2-thien-2-ylacetic Acid 1-aza Bicyclo[2.2.2]oct-3(R)-yl Ester.

1H-NMR (DMSO-d6): δ 1.1-1.25 (m, 1H), 1.4-1.6 (m, 3H), 1.9 (m, 1H), 2.3-2.7 (m, 5H), 3.05 (m, 1H), 4.8 (m, 1H), 7.0 (m, 2H), 7.05 (m, 1H), 7.3-7.4 (m, 3H), 7.4-7.45 (m, 2H), 7.5 (m, 1H).

EXAMPLE I-4g

Preparation of Oxothien-2-yl-acetic Acid 1-azabicyclo[2.2.2]oct-3(R)-yl Ester

Oxalyl chloride (1.34 ml, 0.0154 mol) was added to a solution of oxothien-2-yl-acetic acid (2 g, 0,0128 mol) and dimethylformamide (one drop) in 30 ml of chloroform (etanol free) at 01C. The mixture was stirred and allowed to warm at room temperature. After one hour the solvent was evaporated. The residue was dissolved in chloroform and evaporated again. This procedure was repeated two times. The product obtained was disolved in CHCl3 (30 ml) and a solution of 3(R)-quinuclidinol (1.95 g, 0.0154 mol) in CHCl3 (30 ml) was added to this at 01C. The mixture was stirred and allowed to warm at room temperature. After 1.5 h at r.t., the mixture was washed with 10% aqueous potassium carbonate, then with water, dried over Na2SO4 and evaporated to give 3.14 g (92.6%) of the title compound as a yellow oil. 1H-NMR (CDCl3): δ 1.40-1.50 (m, 1H), 1.50-1.70 (m, 1H), 1.70-1.80 (m, 1H), 1.90-2.0 (m, 1H), 2.15 (m, 1H), 2.70-3.05 (m, 5H), 3.30-3.40 (m, 1H), 5.05 (m, 1H), 7.20 (m, 1H), 7.85 (m, 1H), 8.10 (m, 1H).

Other carboxylic acids of Formula B—C(O)OH, whose preparation (or the syntheses of their derivatives methyl ester, chloride or imidazolide) have not been described in methods c, d, e or in the Examples I-1e, 1-1f and I-1g, and that are not commercially available, could be prepared as is described in the following references:

  • FR 2012964
  • M. A. Davis et al; J. Med. Chem. (1963), 6, 513-516.
  • T. Kumazawa et al; J. Med. Chem, (1994), 37(6), 804-810.
  • M. A. Davis et al; J. Med. Chem., (1964), Vol (7), 88-94.
  • Sestanj, K; Can. J. Chem., (1971), 49, 664-665.
  • Burtner, R.; J. Am. Chem. Soc., (1943), 65, 1582-1585
  • Heacock R. A. et al.; Ann. Appl. Biol., (1958), 46(3), 352-365.
  • Rigaudy J. et. al.; Bull. Soc. Chim. France, (1959), 638-43.
  • Ueda I. et al.; Bull. Chem. Soc. Jpn; (1975), 48 (8), 2306-2309.
  • E. L. May et. al.; J. Am. Chem. Soc., (1948), 70, 1077-9.

Also included within the scope of the present invention are pharmaceutical composition which comprise, as the active ingredient, at least one quinuclidine derivative of general formula (I) in association with a pharmaceutically acceptable carrier or diluent. Preferably the composition is made up in a form suitable for oral administration.

The pharmaceutically acceptable carrier or diluents which are mixed with the active compound or compounds, to form the composition of this invention are well-known per se and the actual excipients used depend inter alia on the intended method of administration of the composition.

Compositions of this invention are preferably adapted for oral administration. In this case, the composition for oral administration may take the form of tablets, film-coated tablets, liquid inhalant, powder inhalant and inhalation aerosol; all containing one or more compounds of the invention; such preparations may be made by methods well-known in the art.

The diluents which may be used in the preparations of the compositions include those liquid and solid diluents which are compatible with the active ingredient, together with colouring or flavouring agents, if desired. Tablets or film-coated tablets may conveniently contain between 500 and 1 mg, preferably from 5 to 300 mg of active ingredient. The inhalant compositions may contain between 1Φg and 1,000 Φg, preferably from 10 to 800 Φg of active ingredient. In human therapy, the dose of the compound of general formula (I) depend on the desired effect and duration of treatment; adult doses are generally between 3 mg and 300 mg per day as tablets and 10 Φg and 800 Φg per day as inhalant composition.

Pharmacological Action

The following examples demonstrate the excellent pharmacological activities of the compounds of the present invention. The results on human muscarinic receptors binding and in the test on bronchospasm in guinea pig, were obtained as described below.

Human Muscarinic Receptor Studies.

The binding of [3H]-NMS to human muscarinic receptors was performed according to Waelbroek et al (1990) (1). Assays were carried out at 25° C. Membrane preparations from stably transfected chinese hamster ovary-K1 cells (CHO) expressing the genes for the human muscarinic receptors Hm3 were used.

For determination of IC50, membrane preparations were suspended in DPBS to a final concentration of 89 μg/ml for the Hm3 subtype. The membrane suspension was incubated with the tritiated compound for 60 min. After incubation the membrane fraction was separated by filtration and the bound radioactivity determined. Non specific binding was determined by addition of 10−4 M atropine. At least six concentrations were assayed in duplicate to generate individual displacement curves.

COMPOUNDS BINDING TO RECEPTOR No M3 (IC50 nM) ATROPINE 3.2 IPRATROPIUM 3.0 1 31 2 15 7 22 8 4.8 17 14 18 6.6 20 6.8 35 13 36 2.7 39 3.8 44 4.4 53 5.6 71 8.2 74 16 77 3.1 78 5 84 9.9 89 5.4 99 31 100 14 101 7.6 109 31 114 14 116 23 126 13 127 16 128 8.8 129 6.3 136 11 137 6.9 138 19 146 13
  • (1) M. Waelbroek, M. Tastenoy, J. Camus, J Christophe. Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. Mol. Pharmacol. (1990) 38: 267-273.

Our results show that the compounds of the present invention have affinities for the M3 receptors which are very similar to the reference compounds.

The compounds of the invention preferably have high affinities for muscarinic M3 receptors (HM3), preferably human muscarinic receptors. Affinity levels can typically be measured by in vitro assays, for example, as described above.

Preferred compounds of the invention have an IC50 (nM) value for M3 receptors of less than 35, preferably less than 25,20 or 15, more preferably less than 10, 8 or 5.

Test on Bronchospasm in Guinea Pig

The studies were performed according to Konzett and Rössler (2). Aqueous solutions of the agents to be tested were nebulized and inhaled by anaesthetized ventilated male guinea pigs (Dunkin-Hartley). The bronchial response to intravenous acetylcholine challenge was determined before and after drug administration and the percent change in pulmonary resistance at several time-points.

  • 2. Konzett H., Roössler F. Versuchsanordnung zu Untersuchungen ander bronchialmuskulatur. Arch. Exp. Path. Pharmacol. 195: 71-74 (1940)

The compounds of the present invention inhibited the bronchospasm response to acetylcholine with high potency and a long duration of action.

From the above described results one of ordinary skill in the art can readily understand that the compounds of the present invention have excellent antimuscarinic activity (M3) and thus are useful for the treatment of diseases in which the muscarinic M3 receptor is implicated, including respiratory diseases such as chronic obstructive pulmonary disease, chronic bronchitis, asthma and rhinitis, urinary diseases such as urinary incontinence and pollakinuria in neuripenia pollakinuria, neurogenic bladder, nocturnal enuresis, unstable bladder, cystospasm and chronic cystitis and gastrointestinal diseases such as irritable bowel syndrome, spastic colitis and diverticulitis.

The present invention further provides a compound of formula (I) or a pharmaceutically acceptable composition comprising a compound of formula(I) for use in a method of treatment of the human or animal body by therapy, in particular for the treatment of respiratory, urinary or gastrointestinal disease.

The present invention further provides the use of a compound of formula (I) or a pharmaceutically acceptable composition comprising a compound of formula (I) for the manufacture of a medicament for the treatment of respiratory, urinary or gastrointestinal disease.

Further, the compounds of formula (I) and pharmaceutical compositions comprising a compound of formula (I) can be used in a method of treating respiratory, urinary or gastrointestinal disease, which method comprises administering to a human or animal patient in need of such treatment an effective amount of a compound of formula (I) or a pharmaceutical composition comprising a compound of formula (I).

The present invention will be further illustrated by the following examples. The examples are given by way of illustration only and are not to be construed as limiting.

EXAMPLE 1

3(R)-Diphenylacetoxy-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 500 mg, 81%. 1H-NMR (CDCl3): δ 1.72-2.18 (m, 6H), 2.35 (m, 1H), 3.0 (m, 1H), 3.23 (m, 1H), 3.59-3.88 (m, 5H), 4.0 (m, 2H), 4.30 (m, 1H), 5.1 (s, 1H), 5.25 (m, 1H), 6.8-6.9 (m, 2H), 6.9-7.0 (m, 1H), 7.2-7.4 (m, 12H); MS [M-Br]+: 456; mp 129° C.

EXAMPLE 2

3(R)-(2-Hydroxy-2,2-diphenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 280 mg,42%. 1H-NMR (DMSO-d6): δ 1.5-1.7 (m, 2H), 1.9-2.1 (m, 4H), 2.3 (m, 1H), 3.1 (m, 1H), 3.2-3.5 (m, 6H), 3.9-4.1 (m, 3H), 5.25 (m, 1H), 6.8 (bs, OH), 6.95 (m, 3H), 7.2-7.5 (m, 12H); MS [M-Br]+: 472; mp 199° C.

EXAMPLE 3

3(R)-[2,2-Bis(4-fluorophenyl)-2-hydroxyacetoxy]-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 400 mg,85%. 1H-NMR (DMSO-d6): δ 1.5-1.65 (m, 1H), 1.7-1.8 (m, 1H), 1.85-2.0 (m, 2H), 2.05-2.2 (m, 2H), 2.3 (m, 1H), 3.1-3.2 (m, 1H), 3.3-3.5 (m,6H), 3.95 (m, 1H), 4.05 (m, 2H), 5.25 (m, 1H), 6.9-7.0 (m, 4H), 7.1-7.5 (m, 10H); MS [M-Br]+: 508; mp 253° C.

EXAMPLE 4

3(R)-[2,2-Bis(4-fluorophenyl)-2-hydroxyacetoxy]-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 300 mg,67%. 1H-NMR (DMSO-d6): δ 1.5-1.65 (m, 1H), 1.7-1.85 (m, 1H), 1.85-2.1 (m, 2H), 2.3 (m, 1H), 2.9-3.1 (m, 2H), 3.15-3.25 (m, 1H), 3.3-3.6 (m, 6H), 3.95-4.05 (m, 1H), 5.25 (m, 1H), 6.95 (s, OH), 7.1-7.5 (m, 13H); MS [M-Br]+: 478; mp 182° C.

EXAMPLE 5

3(R)-(2-Hydroxy-2,2-di-p-tolylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 500 mg, 54%. 1H-NMR (DMSO-d6): δ 1.55-1.8 (m, 2H), 1.85-2.0 (m, 2H), 2.05-1.15 (m, 2H), 2.3 (s, 7H), 3.05-3.15 (m, 1H), 3.25-3.5 (m, 6H), 3.95 (m, 1H), 4.05 (t, 2H), 5.2 (m, 1H), 6.8 (s, OH), 6.95 (m, 3H), 7.1-7.2 (m, 4H), 7.2-7.35 (m, 6H); MS [M-Br]+: 500; mp 183° C.

EXAMPLE 6

3(R)-(2-Hydroxy-2,2-di-p-tolylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 650 mg, 74%. 1H-NMR (DMSO-d6): δ 1.55-1.8 (m, 2H), 1.85-2.05 (m, 2H), 2.25 (s, 7H), 2.9-3.05 (m, 2H), 3.1-3.25 (m, 1H), 3.3-3.55 (m, 6H), 3.95 (m, 1H), 5.25 (m, 1H), 6.8 (s, OH), 7.1-7.2 (m, 4H), 7.2-7.35 (m, 9H); MS [M-Br]+: 470; mp 144° C.

EXAMPLE 7

3(R)-(2,2-Diphenylpropionyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods e and a. The yield of final step was 250 mg, 61%. 1H-NMR (CDCl3): δ 1.47-1.60 (m, 1H), 1.8-2.0 (m, 1H), 2.0 (s, 3H), 2.0-2.15 (m, 4H), 2.39 (s, 1H), 2.6 (m, 1H), 2.92 (d, 1H), 3.6 (m, 1H), 3.7-3.9 (m, 4H), 4.0 (m, 2H), 4.3 (m, 1H), 5.25 (m, 1H), 6.85 (m, 2H), 7.0 (m, 1H), 7.3 (m, 12H); MS [M-Br]+: 470; mp 186° C.

EXAMPLE 8

3(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised as a mixture of diastereomers according to methods c and a. The yield of final step was 520 mg, 62%.1H-NMR (DMSO-d6): δ 1.5-1.95 (m, 4H), 2.1 (m, 2H), 2.3 (m, 1H), 3.1 (m, 1H), 3.3-3.5 (m, 6H), 3.9 (m, 1H), 4.05 (t, 2H), 5.2 (m, 1H), 7.0 (m, 4H), 7.15 (m, 2H), 7.35 (m, 5H), 7.5 (m, 3H); MS [M-Br]+: 478; mp 220° C.

EXAMPLE 9

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 10 mg, 23%. 1H-NMR (DMSO-d6): δ 1.5-1.6 (m, 1H), 1.65-1.75 (m, 1H), 1.8-2.0 (m, 2H), 2.05-2.1 (m, 2H), 2.3 (m, 1H), 3.05-3.2 (m, 1H), 3.25-3.55 (m, 6H), 3.85-3.95 (m, 1H), 4.0 (t, 2H), 5.2 (m, 1H), 6.95 (m, 3H), 7.03 (m, 1H), 7.15 (dd, 1H), 7.2 (s, OH), 7.3-7.5 (m, 5H), 7.45-7.55 (m, 3H); MS [M-CF3COO]+: 478.

EXAMPLE 10

3(R)-[2(S)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-phenoxy propyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 2. The yield of final step was 3 mg, 11%. 1H-NMR (DMSO-d6): δ 1.6-1.75 (m, 2H), 1.8-2.0 (m, 4H), 2.25 (m, 1H), 2.8 (t, 2H), 2.95-3.1 (m, 1H), 3.15-3.5 (m, 6H), 3.8-3.95 (m, 1H), 5.2 (m, 1H), 6.92 (m, 1H), 6.96-7.03 (m, 2H), 7.1 (dd, 1H), 7.18 (s, OH), 7.3-7.4 (m, 4H), 7.43-7.5 (m, 2H), 7.51 (dd, 1H); MS [M-CF3COO]+: 478.

EXAMPLE 11

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 9 mg, 22%. 1H-NMR (DMSO-d6): δ 1.45-1.55 (m, 1H), 1.65-1.75 (m, 1H), 1.85-2.05 (m, 2H), 2.3 (m, 1H), 2.9-3.1 (m, 2H), 3.1-3.25 (m, 1H), 3.25-3.55 (m, 6H), 3.9-4.0 (m, 1H), 5.25 (m, 1H), 7.05 (m, 1H), 7.15 (m, 1H), 7.2 (m, 1H), 7.25-7.4 (m, 8H), 7.45 (m, 2H, 7.55 (m, 1H); MS [M-CF3COO]+: 448.

EXAMPLE 12

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 11 mg, 26%. 1H-NMR (DMSO-d6): δ 1.45-1.55 (m, 1H), 1.6-1.75 (m, 1H), 1.8-2.0 (m, 4H), 2.25 (m, 1H), 2.55 (t, 2H), 3.0-3.1 (m, 1H), 3.15-3.55 (m, 6H), 3.8-3.9 (m, 1H), 5.2 (m, 1H), 7.0 (m, 1H), 7.1 (m, 1H), 7.15-7.4 (m, 9H), 7.45 (m, 2H), 7.5 (m, 1H); MS [M-CF3COO]+: 462.

EXAMPLE 13

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 10 mg, 24%. 1H-NMR (DMSO-d6): δ 1.45-1.55 (m, 1H), 1.65-1.75 (m, 1H), 1.8-2.0 (m, 2H), 2.3 (m, 1H), 3.1-3.6 (m, 9H), 3.9-4.0 (m, 1H), 5.25 (m, 1H), 7.0 (m, 3H), 7.15 (dd, 1H), 7.2 (s, OH), 7.3-7.4 (m, 3H), 7.45-7.55 (m, 4H); MS [M-CF3COO]+: 454.

EXAMPLE 14

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 8 mg, 19%. 1H-NMR (DMSO-d6): δ 1.45-1.6 (m, 1H), 1.65-1.75 (m, 1H), 1.8-2.05 (m, 4H), 2.25 (m, 1H), 2.8 (t, 2H), 3.0-3.15 (m, 1H), 3.2-3.5 (m, 6H), 3.8-3.95 (m, 1H), 5.2 (m, 1H), 6.92 (m, 1H), 6.96-7.03 (m, 2H), 7.13 (dd, 1H), 7.2 (s, OH), 7.3-7.4 (m, 4H), 7.45-7.5 (m, 2H), 7.52 (dd, 1H); MS [M-CF3COO]+: 468.

EXAMPLE 15

3(R)-[2(S)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 2. The yield of final step was 7 mg, 26%. 1H-NMR (DMSO-d6): δ 1.6-1.75 (m, 2H), 1.8-2.0 (m, 4H), 2.25 (m, 1H), 2.8 (t, 2H), 2.95-3.1 (m, 1H), 3.15-3.5 (m, 6H), 3.8-3.95 (m, 1H), 5.2 (m, 1H), 6.92 (m, 1H), 6.96-7.03 (m, 2H), 7.1 (dd, 1H), 7.18 (s, OH), 7.3-7.4 (m, 4H), 7.43-7.5 (m, 2H), 7.51 (dd, 1H); MS [M-CF3COO]+: 468.

EXAMPLE 16

3(R)-[2(R)-(2-Hydroxy-2-phenyl-2-thien-2-ylacetoxy)]-1-(2-phenoxy ethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods f and b from intermediate I-4f, diastereomer 1. The yield of final step was 11 mg, 26%. 1H-NMR (DMSO-d6): δ 1.5-1.6 (m, 1H), 1.65-1.75 (m, 1H), 1.8-2.0 (m, 2H), 2.25 (m, 1H), 3.15-3.6 (m, 5H), 3.7 (m, 2H), 4.0 (m, 2H), 4.4 (m, 2H), 5.25 (m, 1H), 6.95-7.03 (m, 4H), 7.12 (dd, 1H), 7.2 (s, OH), 7.3-7.4 (m, 5H), 7.4-7.5 (m, 3H); MS [M-CF3COO]+: 464.

EXAMPLE 17

3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised as a mixture of diastereomers according to methods c and a. The yield of final step was 240 mg, 77%. 1H-NMR (DMSO-d6): δ 1.55-2.0 (m, 4H), 2.27 (m, 1H), 3.05-3.55 (m, 5H), 3.88-3.98 (m, 1H), 4.0-4.10 (m, 2H), 5.21 (m, 1H), 6.23-6.31 (doble dd, 1H), 6.36-6.48 (m, 2H), 6.83-6.90 (dd, 1H), 6.95 (d, OH), 7.26-7.66 (m, 11H); MS [M-Br]+: 444; mp 99° C.

EXAMPLE 18

3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised as a mixture of diastereomers according to methods c and a. The yield of final step was 210 mg, 66%. 1H-NMR (DMSO-d6): δ 1.50-2.05 (m, 4H), 2.27 (m, 1H), 3.20 (m, 1H), 3.37-3.65 (m, 4H), 3.65-3.75 (m, 2H), 4.04 (m, 1H), 4.40 (m, 2H), 5.21 (m, 1H), 6.23-6.32 (doble dd, 1H), 6.44 (m, 1H), 6.94-7.04 (m, 4H), 7.33-7.50 (m, 7H), 7.64 (m, 1H); MS [M-Br]+: 448; mp 163° C.

EXAMPLE 19

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(2-phenoxy ethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-la, diastereomer 1. The yield of final step was 11 mg, 23%. 1H-NMR (DMSO-d6): δ 1.65-1.80 (m, 2H), 1.80-2.10 (m, 2H), 2.27 (m, 1H), 3.15-3.65 (m, 5H), 3.68 (m, 2H), 4.0 (m, 1H), 4.40 (t, 2H), 5.20 (m, 1H), 6.23 (d, 1H), 6.42 (m, 1H), 6.92-7.04 (m, 4H), 7.30-7.38 (m, 5H), 7.44-7.50 (m, 2H), 7.64 (m, 1H); MS [M-CF3COO]+: 448.

EXAMPLE 20

3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound has been described in method-a-.

EXAMPLE 21

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(3-phenoxy propyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a from intermediate I-1a, diastereomer 1. The yield of final step was 1.15 g 99%. 1H-NMR (DMSO-d6): δ 1.60-2.20 (m, 6H), 2.25 (m, 1H), 3.10 (m, 1H), 3.20-3.60 (m, 6H), 3.95 (m, 1H), 4.05 (m, 2H), 5.20 (m, 1H), 6.25 (dd, 1H), 6.45 (m, 1H), 6.95 (m, 4H), 7.30-7.50 (m, 7H), 7.70 (m, 1H); MS [M-Br]+: 462; mp 156° C.

EXAMPLE 22

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(3-phenoxy propyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-la, diastereomer 2. The yield of final step was 10 mg, 20%. 1H-NMR (DMSO-d6): δ 1.50-2.20 (m, 6H), 2.25 (m, 1H), 3.10 (m, 1H), 3.20-3.60 (m, 6H), 3.95 (m, 1H), 4.05 (m, 2H), 5.20 (m, 1H), 6.35 (dd, 1H), 6.45 (m, 1H), 6.95 (m, 4H), 7.30-7.50 (m, 7H), 7.70 (m, 1H); MS [M-CF3COO]+: 462.

EXAMPLE 23

3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised as a mixture of diastereomers according to methods c and b. The yield of final step was 12 mg, 13%. 1H-NMR (DMSO-d6): δ 1.5 (m, 1H), 1.7 (m, 1H), 1.9-2.05 (m, 2H), 2.3 (m, 1H), 2.95 (m, 2H), 3.15 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 1H), 5.25 (m, 1H), 6.3 (d, 1H), 6.45 (m, 1H), 6.95 (d, 1H), 7.25-7.45 (m, 8H), 7.5 (m, 2H), 7.7 (m, 1H); MS [M-CF3COO]+: 432.

EXAMPLE 24

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-1a, diastereomer 1. The yield of final step was 16 mg, 40%. 1H-NMR (DMSO-d6): δ 1.65-1.80 (m, 2H), 1.90-2.05 (m, 2H), 2.3 (m, 1H), 2.95 (m, 2H), 3.15 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 1H), 5.25 (m, 1H), 6.26 (dd, 1H), 6.46 (m, 1H), 6.95 (s, 1H, OH), 7.25-7.45 (m, 8H), 7.5 (m, 2H), 7.7 (m, 1H); MS [M-CF3COO]+: 432.

EXAMPLE 25

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-la, diastereomer 2. The yield of final step was 14 mg, 35% 1H-NMR (DMSO-d6): δ 1.50-1.80 (m, 2H), 1.90-2.05 (m, 2H), 2.3 (m, 1H), 2.95 (m, 2H), 3.15 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 1H), 5.25 (m, 1H), 6.32 (dd, 1H), 6.46 (m, 1H), 6.95 (s, 1H, OH), 7.25-7.45 (m, 8H), 7.5 (m, 2H), 7.7 (m, 1H) MS [M-CF3COO]+: 432.

EXAMPLE 26

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-la, diastereomer 1. The yield of final step was 10 mg, 21%. 1H-NMR (DMSO-d6): δ 1.60-1.75 (m, 2H), 1.80-2.0 (m, 4H), 2.25 (m, 1H), 2.50-2.60 (m, 2H), 3.0 (m, 1H), 3.10-3.50 (m, 6H), 3.83 (m, 1H), 5.17 (m, 1H), 6.25 (d, 1H), 6.45 (m, 1H), 6.95 (s, 1H), 7.20-7.40 (m, 8H), 7.46-7.48 (m, 2H), 7.66 (m, 1H); MS [M-CF3COO]+: 446.

EXAMPLE 27

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b from intermediate I-la, diastereomer 1. The yield of final step was 9 mg, 19%. 1H-NMR (DMSO-d6): δ 1.65-1.80 (m, 2H), 1.85-2.05 (m, 2H), 2.30 (m, 1H), 3.10-3.40 (m, 3H), 3.40-3.60 (m, 6H), 3.95 (m, 1H), 5.24 (m, 1H), 6.27 (d, 1H), 6.47 (m, 1H), 6.96 (s, 1H), 7.0-7.04 (m 2H), 7.36-7.48 (m, 4H), 7.49-7.54 (m, 2H), 7.70 (m, 1H).; MS [M-CF3COO]+: 438.

EXAMPLE 28

3(R)-[2(*)—(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)]-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesized according to methods c and b from intermediate I-1a, diastereomer 1. The yield of final step was 9 mg, 19%. 1H-NMR (DMSO-d6): δ 1.60-1.75 (m, 2H), 1.80-2.05 (m, 4H), 2.26 (m, 1H), 2.81 (t, 2H), 3.02 (m, 1H), 3.10-3.45 (m, 6H), 3.85 (m, 1H), 5.18 (m, 1H), 6.25 (d, 1H), 6.45 (m, 1H), 6.90-7.0 (m, 3H), 7.32-7.42 (m, 4H), 7.45-7.51 (m, 2H), 7.66 (m, 1H); MS [M-CF3COO]+: 452.

EXAMPLE 29

3(R)-(2-Furan-2-yl-2-hydroxy-2-thien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised as a mixture of diastereomers according to methods c and b. The yield of final step was 18 mg, 20%. 1H-NMR (DMSO-d6): δ 1.65-2.05 (m, 4H), 2.3 (m, 1H), 3.0 (m, 2H), 3.15-3.6 (m, 7H), 3.95 (m, 1H), 5.25 (m, 1H), 6.35 (dd, 1H), 6.45 (m, 1H), 7.05 (m, 1H), 7.2 (dd, 1H), 7.25-7.5 (m, 6H), 7.55 (m, 1H), 7.65 (m, 1H); MS [M-CF3COO]+: 438.

EXAMPLE 30

3(R)-(2-Furan-2-yl-2-hydroxy-2-thien-2-ylacetoxy)-1 -(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised as a mixture of diastereomers according to methods c and b. The yield of final step was 22 mg, 23%. 1H-NMR (DMSO-d6): δ 2.65-2.05 (m, 4H), 2.3 (m, 1H), 3.15-3.65 (m, 7H), 4.05 (m, 1H), 4.4 (m, 2H), 5.15 (m, 1H), 6.35 (dd, 1H), 6.45 (m, 1H), 6.95-7.05 (m, 4H), 7.15 (d, 1H), 7.3-7.4 (m, 3H), 7.5 (dd, 1H), 7.65 (d, 1H); MS [M-CF3COO]+: 454.

EXAMPLE 31

3(R)-(2-Furan-2-yl-2-hydroxy-2-thien-2-ylacetoxy)-1-(4-oxo-4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised as a mixture of diastereomers according to methods c and b. The yield of final step was 15.4 mg, 15%. 1H-NMR (DMSO-d6): δ 1.65-2.1 (m, 6H), 7.05-7.55 (m, 9H), 3.95 (m, 1H), 5.1 (m, 1H), 6.35 (dd, 1H), 6.5 (m, 1H), 7.05 (m, 1H), 7.15 (m, 1H), 7.3 (d, 1H), 7.55 (m, 3H), 7.7 (dd, 2H), 8.0 (d, 2H); MS [M-CF3COO]+: 480.

EXAMPLE 32

1-(3-phenoxypropyl)-3(R)-(2-Furan-2-yl-2-hydroxy-2-thien-2-yl-acetoxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised as a mixture of diastereomers according to methods c and a. The yield of final step was 100 mg, 41%. 1H-NMR (DMSO-d6): δ 1.65-2.05 (m, 4H), 2.1-2.0 (m, 2H), 2.3 (m, 1H), 3.15 (m, 1H), 3.25-3.6 (6H), 3.9-4.1 (m, 3H), 5.1 (m, 1H), 6.35 (d, 1H), 6.45 (s, 1H), 6.95 (m, 3H), 7.05 (m, 1H), 7.2 (d, 1H), 7.3 (m, 3H), 7.55 (d, 1H), 7.7 (s, 1H); MS [M-Br]+: 520; mp 173° C.

EXAMPLE 33

1-(3-phenoxypropyl)-3(R)-(2,2-difuran-2-yl-2-hydroxy acetoxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods f and a. The yield of final step was 200 mg, 60%. 1H-NMR (DMSO-d6): δ 1.6-2.20 (m, 6H), 2.3 (m, 1H), 2.95-3.65 (m, 7H), 3.80-4.10 (m, 3H), 5.2 (m, 1H), 6.3-6.6 (m, 4H), 6.8-7.0 (m, 3H), 7.1 (s, OH), 7.3 (m, 2H), 7.7 (m, 2H); MS [M-Br]+: 452.

EXAMPLE 34

3(R)-(2,2-Dithien-2-ylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 240 mg, 60%. 1H-NMR (DMSO-d6): δ 1.85-2.10 (m, 4H), 2.30 (s, 1H), 3.40 (m, 1H), 3.44-3.80 (m, 6H), 4.10 (m, 1H), 4.45 (m, 2H), 5.20 (m, 1H), 5.90 (s, 1H), 6.95-7.05 (m, 5H), 7.05-7.15 (m, 2H), 7.30-7.40 (m, 2H), 7.45 (m, 2H); MS [M-Br]+: 454; mp 98° C.

EXAMPLE 35

3(R)-(2,2-Dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 280 mg, 83%. 1H-NMR (DMSO-d6): δ 1.80-2.06 (m, 4H), 2.06-2.20 (m, 2H), 2.20-2.30 (m, 1H), 3.20-3.65 (m, 7H), 3.90-4.10 (m, 3H), 5.20 (m, 1H), 5.90 (s, 1H), 6.95-7.05 (m, 5H), 7.05-7.20 (m, 2H), 7.30-7.35 (m, 2H), 7.50 (m, 2H); MS [M-Br]+: 468; mp 148° C.

EXAMPLE 36

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 180 mg, 59%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (4H, m), 2.35 (m, 1H), 3.0 (m, 2H), 3.2-3.6 (m, 7H), 3.95 (m, 1H), 5.25 (m, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.35 (m, 5H), 7.55 (m, 3H); MS [M-Br]+: 454; mp 216° C.

EXAMPLE 37

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 450 mg, 58%. 1H-NMR (CDCl3): δ 1.8-2.1 (m, 6H), 2.4 (m, 1H), 2.6 (m, 2H), 3.4-3.8 (m, 7H), 4.2 (m, 1H), 5.25 (m, 1H), 6.1 (bs, OH), 6.9 (m, 2H), 7.1-7.3 (m, 9H); MS [M-Br]+: 468; mp 64° C.

EXAMPLE 38

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 260 mg, 34%. 1H-NMR (CDCl3): δ 1.8-2.05 (m, 4H), 2.4 (m, 1H), 3.55-3.95 (m, 5H), 4.15-4.5 (m, 3H), 5.25 (m, 1H), 5.9 (s, OH), 6.15 (m, 1H), 6.85 (t, 1H), 6.9-7.05 (m, 3H), 7.15 (m, 1H), 7.2-7.45 (m, 7H); MS [M-Br]+: 466; mp 124° C.

EXAMPLE 39

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 320 mg, 40%. 1H-NMR (CDCl3): δ 1.6-2.0 (m, 8H), 2.4 (m, 1H), 2.6 (m, 2H), 3.4-3.8 (m, 7H), 4.2 (m, 1H), 5.25 (m, 1H), 6.05 (bs, OH), 6.95 (m, 2H), 7.1-7.3 (m, 9H); MS [M-Br]+: 482; mp 64° C.

EXAMPLE 40

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(4-oxo-4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.7-2.0 (m, 6H), 2.15 (m, 1H), 3.1 (t, 2H), 3.15-3.55 (m, 7H), 3.95 (m, 1H), 5.25 (m, 1H), 7.0 (d, 2H), 7.15 (d, 2H), 7.55 (m, 5H), 7.65 (t, 1H), 8.0 (d, 2H); MS[M-CF3COO]+: 496.

EXAMPLE 41

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenylaminopropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 14%. 1H-NMR (DMSO-d6): δ 1.7-2.0 (m, 5H), 2.3 (m, 1H), 3.0-3.5 (m, 9H), 3.9 (m, 1H), 5.25 (m, 1H), 5.65 (t, 1H), 6.55 (m, 3H), 7.0 (d, 2H), 7.1 (t, 2H), 7.15 (m, 2H), 7.5 (m, 3H); MS[M-CF3COO]+: 483.

EXAMPLE 42

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(methylphenylamino)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 20 mg, 19%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 6H), 2.9 (s, 3H), 3.1 (m, 1H), 3.2-3.45 (m, 8H), 3.95 (m, 1H), 5.2 (m, 1H), 6.65 (t, 1H), 6.75 (d, 2H), 7.0 (m, 2H), 7, 2 (m, 4H), 7.5 (m, 3H); MS [M-CF3COO]+: 497.

EXAMPLE 43

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenylsulfanylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 800 mg, 83%. 1H-NMR (DMSO-d6): δ 1.6-1.9 (m, 6H), 2.3 (m, 1H), 2.95 (t, 2H), 3.05 (m, 1H), 3.2-3.5 (m, 6H), 3.9 (m, 1H), 5.2 (m, 1H), 7.0 (m, 2H), 7.15 (m, 2H), 7.2 (m, 1H), 7.35 (m, 4H), 7.5 (m, 2H); MS [M-Br]+: 500.

EXAMPLE 44

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 490 mg, 90%. 1H-NMR (DMSO-d6): δ 1.7 (m, 2H), 1.95 (m, 2H), 2.1 (m, 2H), 2.3 (m, 1H), 3.2 (m, 1H), 3.45 (m, 6H), 4.0 (m, 3H), 5.15 (m, 1H), 6.9 (m, 3H), 7.0 (m, 2H), 7.2 (m, 2H), 7.3 (t, 2H), 7.5 (m, 3H); MS [M-Br]+: 484; mp 227° C.

EXAMPLE 45

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-otolyloxypropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b The yield of final step was 19 mg, 18%. 1H-NMR (DMSO-d6): δ 1.7-2.0 (m, 4H), 2.1-2.2 (m, 5H), 2.3 (m, 1H), 3.15-3.5 (m, 7H), 3.9-4.05 (m, 3H), 5.05 (m, 1H), 6.85 (t, 1H), 6.9 (d, 1H), 7.0 (m, 2H), 7.15 (m, 4H), 7.5 (m, 3H); MS [M-CF3COO]+: 498.

EXAMPLE 46

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(2,4,6-trimethylphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 22 mg, 20%. 1H-NMR (DMSO-d6): δ 1.7 (m, 2H), 1.95 (m, 2H), 2.1 (m, 2H), 2.2 (s, 9H), 2.35 (m, 1H), 3.2-3.5 (m, 7H), 3.7 (t, 2H), 3.95 (m, 1H), 5.25 (m, 1H), 6.8 (s, 2H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 526.

EXAMPLE 47

1-[3-(2-tert-Butyl-6-methylphenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 16%. 1H-NMR (DMSO-d6): δ 1.3 (s, 9H), 2.7 (m, 2H), 2.9 (m, 2H), 2.1 (m, 2H), 2.2 (s, 3H), 2.3 (m, 1H), 3.2-3.5 (m, 7H), 3.8 (t, 2H), 5 3.95 (m, 1H), 5.2 (m, 1H), 6.9-7.15 (m, 7H), 7.5 (m, 3H); MS [M-CF3COO]+: 554.

EXAMPLE 48

1-[3-(Biphenyl-4-yloxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]-octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 22 mg, 19%. 1H-NMR (DMSO-d6): δ 1.7 (m, 2H), 1.9 (m, 2H), 2.15 (m, 2H), 2.3 (m, 1H), 3.2-3.5 (m, 7H), 3.95 (m, 1H), 4.1 (t, 2H), 5.25 (m, 1H), 7.0 (m, 4H), 7.2 (m, 2H), 7.3 (t, 1H), 7.45 (t, 2H), 7.5 (m, 3H), 7.6 (m, 4H); MS [M-CF3COO]+: 560.

EXAMPLE 49

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(5,6,7,8-tetrahydronaphthalen-2-yloxy)-propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 23 mg, 21%. 1H-NMR (DMSO-d6): δ 1.7 (m, 6H), 1.9-2.1 (m, 4H), 2.3 (m, 1H), 2.65 (m, 4H), 3.15-3.5 (m, 7H), 3.95 (m, 2H), 5.25 (m, 1H), 6.65 (m, 2H), 6.95 (d, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 538.

EXAMPLE 50 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3(naphthalen-2-yloxy) propyl]-1-azoniabicyclo[2.2.2]octane; 30 Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 17 mg, 15%. 1H-NMR (DMSO-d6): δ 1.7-2.0 (m, 4H), 2.1 (m, 1H), 2.35 (m, 1H), 3.15-3.35 (m, 7H), 3.95 (m, 1H), 4.17 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.15 (m, 3H), 7.35 (m, 2H), 7.5 (m, 4H), 7.85 (m, 3H); MS [M-CF3COO]+: 534.

EXAMPLE 51

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(naphthalen-1-yloxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound has been described in method-b-.

EXAMPLE 52

1-[3-(2-Chlorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 20 mg, 18%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 6H), 2.35 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.95 (m, 1H), 4.15 (t, 2H), 5.25 (m, 2H), 7.0 (m, 3H), 7.2 (m, 3H), 7.35 (t, 1H), 7.45 (d, 1H), 7.55 (m, 3H); MS [M-CF3COO]+: 519.

EXAMPLE 53

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Chloride

The title compound was synthesised according to methods c and a. The yield of final step was 180 mg, 59%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.25 (m, 1H), 3.2 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 2H), 4.0 (t, 2H), 5.25 (m, 1H), 7.0 (m, 4H), 7.15 (m, 4H), 7.55 (m, 3H); MS [M-Cl]+: 502; mp 160° C.

EXAMPLE 54

1-[3-(2,4-Difluorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 13%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 4H), 2.15 (m, 2H), 2.35 (m, 1H), 3.2 (m, 1H), 3.25-3.35 (m, 6H), 3.95 (m, 1H), 4.1 (t, 2H), 5.15 (m, 1H),! 7.05 (m, 3H), 7.2 (d, 2H), 7.25-7.35 (m, 2H), 7.55 (m, 3H); MS [M-CF3COO]+: 520.

EXAMPLE 55

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-trifluoromethyl phenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.1 (m, 6H), 2.35 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.95 (m, 1H), 4.15 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.25-7.35 (m, 3H), 7.5-7.6 (m, 4H); MS [M-CF3COO]+: 552.

EXAMPLE 56

1-[3-(3-Cyanophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.1 (m, 6H), 2.35 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.95 (m, 1H), 4.15 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7, 18 (m, 2H), 7.3 (d, 1H), 7.45 (m, 2H), 7.55 (m, 4H); MS [M-CF3COO]+: 509.

EXAMPLE 57

1-[3-(4-Cyanophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 180 mg, 53%. 1H-NMR (DMSO-d6): δ 1.65-2.2 (m, 6H), 2.3 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.95 (m, 1H), 4.15 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.1 (d, 2H), 7.15 (m, 2H), 7.5 (m, 2H), 7.8 (d, 2H); MS [M-Br]+: 509; mp 158° C.

EXAMPLE 58

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-methoxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 18%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.15 (m, 1H), 3.2 (m, 1H), 3.3-3.5 (m, 6H), 3.75 (s, 3H), 3.95 (m, 1H), 4.0 (t, 2H), 5.25 (m, 1H), 6.55 (m, 3H), 7.0 (m, 2H), 7.2 (m, 3H), 7.55 (m, 3H); MS [M-CF3COO]+: 514.

EXAMPLE 59

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(4-methoxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 13%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.35 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.7 (s, 3H), 3.9-4.0 (m, 3H), 5.25 (m, 1H), 6.9 (s, 4H), 7.0 (m, 2H), 7.15 (m, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 514.

EXAMPLE 60

1-[3-(Benzo[1,3]dioxol-5-yloxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo [2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 7H), 2.3 (m, 1H), 3.15 (m, 1H), 3.25-3.5 (m, 6H), 3.9-4.0 (m, 3H), 5.25 (m, 1H), 5.95 (s, 2H), 6.4 (d, 1H), 6.65 (s, 1H), 6.85 (d, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 528.

EXAMPLE 61

1-[3-(2-Carbamoylphenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 16%.1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 4H), 2.2 (m, 2H), 2.3 (m, 1H), 3.15 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 1H), 4.15 (t, 2H), 5.25 (m, 1H), 7.0-7.2 (m, 6H), 7.4-7.6 (m, 6H), 7.7 (d, 1H); MS [M-CF3COO]+: 527.

EXAMPLE 62

1-[3-(3-Dimethylaminophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.3 (m, 1H), 2.85 (s, 6H), 3.1-3.5 (m, 7H), 3.85-4.0 (m, 3H), 5.25 (m, 1H), 6.2 (m, 1H), 6.25 (d, 1H), 6.35 (d, 1H), 7.0 (m, 2H), 7.1 (t, 1H), 7.2 (m, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 527.

EXAMPLE 63

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(4-nitrophenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 22 mg, 20%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 4H), 2.2 (m, 2H), 2.3 (m, 1H), 3.2 (m, 1H), 3.3 3.5 (m, 6H), 3.95 (m, 1H), 4.2 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.15 (m, 4H), 7.5 (m, 3H), 8.15 (d, 2H); MS [M-CF3COO]+: 529.

EXAMPLE 64

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-nitrophenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 16%. 1H-NMR (DMSO-d6): δ 1.65-2.2 (m, 6H), 2.3 (m, 1H), 3.15-3.55 (m, 7H), 3.95 (m, 1H), 4.2 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.45 (dd, 1H), 7.55 (m, 3H), 7.6 (t, 1H), 7.75 (s, 1H), 7.85 (d, 1H); MS [M-CF3COO]+: 529.

EXAMPLE 65

1-[3-(4-Acetylaminophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.0 (s, 3H), 2.3 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.9-4.0 (m, 3H), 5.25 (m, 1H), 6.85 (d, 2H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (m, 5H), 9.8 (s, 1H); MS [M-CF3COO]+: 541.

EXAMPLE 66

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-methoxycarbonylphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 16%. 1H-NMR (DMSO-d6): δ 1.65-2.2 (m, 6H), 2.3 (m, 1H), 3.2 (m, 1H), 3.3-3.5 (m, 6H), 3.85 (s, 3H), 3.95 (m, 1H), 4.1 (t, 2H), 5.25 (m, 1H), 7.0 (m, 2H), 7.15 (m, 2H), 7.25 (dd, 1H), 7.45-7.6 (m, 6H); MS [M-CF3COO]+: 542.

EXAMPLE 67

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-{3-[4-(3-hydroxypropyl)phenoxy]propyl}-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 13%. 1H-NMR (DMSO-d6): δ 1.6-2.15 (m, 8H), 2.3 (m, 1H), 2.55 (t, 2H), 3.2 (m, 1H), 3.25-3.55 (m, 9H), 3.85-4.0 (m, 3H), 4.45 (t, OH), 5.25 (m, 1H), 7.85 (d, 2H), 7.0 (m, 2H), 7.1 (d, 2H), 7.15 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 542.

EXAMPLE 68

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(2-hydroxymethylphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.7-2.2 (m, 6H), 2.35 (m, 1H), 3.1-3.5 (m, 7H), 3.9-4.05 (m, 3H), 4.5 (m, 2H), 5.0 (t, OH), 5.15 (m, 1H), 6.9-7.05 (m, 4H), 7.2 (m, 2H), 7.4 (d, 1H), 7.5 (m, 3H); MS [M-CF3COO]+: 514.

EXAMPLE 69

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-hydroxymethylphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.7-2.2 (m, 6H), 2.35 (m, 1H), 3.15-3.5 (m, 7H), 3.9 (m, 1H), 4.05 (t, 2H), 4.45 (d, 2H), 5, 25 (m, 2H), 6.8 (d, 1H), 6.9 (m, 2H), 7.2 (m, 2H), 7.25 (t, 1H), 7.5 (m, 3H); MS [M-CF3COO]+: 514.

EXAMPLE 70

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(4-hydroxymethylphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 17 mg, 16%. 1H-NMR (DMSO-d6): δ 1.65-2.2 (m, 6H), 2.3 (m, 1H), 3.15-3.55 (m, 7H), 3.9-4.05 (m, 3H), 4.4 (d, 2H), 5.1 (t, OH), 5.25 (t, 1H), 6.9 (d, 2H), 7.0 (m, 2H), 7.2 (m, 2H), 7.25 (d, 2H), 7.5 (m, 3H); MS [M-CF3COO]+: 514.

EXAMPLE 71

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(2-hydroxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 24 mg, 19%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.35 (m, 1H), 3.2 (m, 1H), 3.25-3.55 (m, 6H), 3.95 (m, 1H), 4.0 (t, 2H), 5.25 (m, 1H), 6.7-6.85 (m, 3H), 6.95 (d, 1H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (m, 3H), 8.85 (s, OH); MS [M-CF3COO]+: 500.

EXAMPLE 72

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(4-hydroxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.65-2.1 (m, 6H), 2.3 (m, 1H), 3.2 (m, 1H), 3.25-3.5 (m, 6H), 3.95 (m, 3H), 5.25 (m, 1H), 6.7 (d, 2H), 6.75 (d, 2H), 7.0 (m, 2H), 7.2 (m, 2H), 7.5 (t, 3H), 9.0 (s, OH); MS [M-CF3COO]+: 500.

EXAMPLE 73

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(3-hydroxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.65-2.15 (m, 6H), 2.3 (m, 1H), 3.2 (m, 1H), 3.3-3.55 (m, 6H), 3.9-4.0 (m, 3H), 5.25 (m, 1H), 6.9-6.0 (m, 3H), 7.0-7.1 (m, 3H), 7.2 (m, 2H), 7.5 (m, 3H), 9.45 (s, OH); MS [M-CF3COO]+: 500.

EXAMPLE 74

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-pyrrol-1-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 21 mg, 22%. 1H-NMR (DMSO-d6): δ 1.65-1.8 (m, 2H), 1.8-2.0 (m, 2H), 2.0-2.15 (m, 2H), 2.3 (m, 1H), 3.05-3.2 (m, 3H), 3.2-3.5 (m, 4H), 3.8-3.95 (m, 3H), 5.2 (m, 1H), 6.05 (t, 2H), 6.75 (t, 2H), 7.0 (t, 2H), 7.15 (d, 2H), 7.55 (m, 3H);MS [M-CF3COO]+: 457.

EXAMPLE 75

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(4-oxo-4-thien-2-ylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 17%. 1H-NMR (DMSO-d6): δ 1.7-1.85 (m, 2H), 1.9-2.1 (m, 4H), 2.3 (m, 1H), 3.1 (t, 2H), 3.15-3.55 (m, 7H), 3.95 (m, 1H), 5.25 (m, 1H), 7.0 (t, 2H), 7.4 (d, 2H), 7.25 (t, 1H), 7.55 (m, 3H), 7.95 (d, 1H), 8.05 (d, 1H); MS [M-CF3COO]+: 502.

EXAMPLE 76

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(1-methyl[1H]-imidazol-2-ylsulfanyl)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 26 mg, 25%. 1H-NMR (DMSO-d6): δ 1.7 (m, 2H), 1.85-2.05 (m, 4H), 2.3 (m, 1H), 3.25-3.5 (m, 7H), 3.6 (s, 3H), 3.9 (m, 1H), 4.2 (t, 2H), 5.2 (m, 1H), 7.0 (m, 3H), 7.15 (m, 2H), 7.3 (m, 1H), 7.5 (m, 3H); MS [M-CF3COO]+: 504.

EXAMPLE 77

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 430 mg, 54%. 1H-NMR (DMSO-d6): δ 1.6-1.8 (m, 2H), 2.3 (m, 1H), 3.15-3.3 (m, 4H), 3.35-3.55 (m, 5H), 3.95 (m, 1H), 5.25 (m, 1H), 7,0 (m, 4H), 7,15 (m, 2H), 7.4-7.5 (m, 4H); MS [M-Br]+: 460; mp 206° C.

EXAMPLE 78

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 600 mg, 77%. 1H-NMR (DMSO-d6): δ 1.6-1.8 (m, 2H), 1.85-2.1 (m, 4H), 2.3 (m, 1H), 2.8 (t, 2H), 3.1-3.5 (m, 7H), 3.9 (m, 1H), 5.2 (m, 1H), 6.9-7.05 (m, 4H), 7.15 (m, 2H), 7.4 (d, 1H), 7.5 (m, 3H); MS [M-Br]+: 474; mp 138° C.

EXAMPLE 79

1-[3-(Benzothiazol-2-yloxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesized according to methods c and b. The yield of final step was 23 mg, 21%. 1H-NMR (DMSO-d6): δ 1.65-2.1 (m, 6H), 2.3 (m, 1H), 3.15 (m, 1H), 3.25-3.5 (m, 6H), 3.85 (m, 1H), 4.0 (t, 2H), 5.2 (m, 1H), 7.0 (t, 2H), 7.15 (m, 2H), 7.25 (m, 1H), 7.45 (m, 5H), 7.7 (d, 1H); MS [M-CF3COO]+: 541.

EXAMPLE 80

1-(3-Benzyloxypropyl)-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.65 (m, 2H), 1.9 (m, 4H), 2.3 (m, 1H), 3.1-3.4 (m, 7H), 3.5 (t, 2H), 3.9 (m, 1H), 3.9 (s, 2H), 5.2 (m, 1H), 7.0 (m, 2H), 7.15 (m, 2H), 7.35 (m, 5H), 7.5 (m, 3H); MS [M-CF3COO]+: 498.

EXAMPLE 81

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[6-(4-phenylbutoxy)hexyl]-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 560 mg, 60%. 1H-NMR (CDCl3): δ 1.2-1.75 (m, 16H), 1.8-2.1 (m, 4H), 2.4 (m, 1H), 2.6 (t, 2H), 3.3-3.75 (m, 11H), 4.2 (m, 1H), 5.3 (m, 1H), 6.0 (bs, OH), 6.95 (m, 2H), 7.15-7.3 (m, 9H); MS [M-Br]+: 582.

EXAMPLE 82

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(4-phenoxybutyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 240 mg, 30%. 1H-NMR (DMSO-d6/CDCl3): δ 1.8-1.95 (m, 6H), 2.1 (m, 2H), 2.45 (m, 1H), 3.18 (m, 1H), 3.5-3.8 (m, 6H), 4.0 (t, 2H), 4.15 (m, 1H) 5.15 (m, 1H), 6.7 (s, OH), 6.9 (m, 5H), 7.15 (d, 1H), 7.25 (m, 5H); MS [M-Br]+: 498; mp 161° C.

EXAMPLE 83

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 380 mg, 50%. 1H-NMR (DMSO-d6): δ 1-85 (m, 2H), 2.05 (m, 2H), 2.4 (m, 1H), 3.6-4.1 (m, 7H), 4.35 (m, 3H), 5.25 (m, 1H), 6.0 (bs, OH), 6.9 (m, 4H), 7.0 (t, 1H), 7.1 (dd, 2H), 7.2 (dd, 2H), 7.3 (t, 2H); MS [M-Br]+: 470; mp 48° C.

EXAMPLE 84

1-(2-Benzyloxyethyl)-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 17 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 4H), 2.3 (m, 1H), 3.2-3.55 (m, 7H), 3.85 (m, 2H), 4.5 (s, 2H), 5.25 (m, 1H), 7.0 (t, 2H), 7.15 (t, 2H), 7.3-7.4 (m, 4H), 7.5 (m, 3H); MS [M-CF3COO]+: 484.

EXAMPLE 85

3(S)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 600 mg, 54%. 1H-NMR (DMSO-d6/CDCl3): δ 1.85-2.3 (m, 6H), 2.5 (m, 1H), 3.3 (m, 1H), 3.4 (d, 1H), 3.5-3.7 (m, 5H), 4.05 (t, 2H), 4.2 (m, 1H), 5.25 (m, 1H), 6.85 (d, 2H), 7.0 (m, 3H), 7.15 (m, 2H), 7.2 (d, 1H), 7.3 (m, 4H); MS [M-Br]+: 484; mp 230° C.

EXAMPLE 86

4-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods f and a. The yield of final step was 290 mg, 60%. 1H-NMR (DMSO-d6): δ 2.15 (m, 2H), 2.35 (m, 6H), 3.35 (m, 2H), 3.65 (m, 6H), 4.05 (t, 2H), 6.9-7.05 (m, 5H), 7.1 (m, 2H), 7.3 (m, 3H), 7.55 (m, 2H); MS [M-Br]+: 484; mp 1681C.

EXAMPLE 87

4-(2-Hydroxy-2,2-dithien-2-yl-acetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods f and a. The yield of final step was 260 mg, 57%. 1H-NMR (DMSO-d6): δ 2.35 (m, 6H), 3.0 (m, 2H), 3.4 (m, 2H), 3.75 (m, 6H), 7.0 (m, 2H), 7.3-7.5 (m, 6H), 7.55 (m, 2H); MS [M-Br]+: 454; mp 1951C.

EXAMPLE 88

1-(3-phenoxypropyl)-3(R)-(2,2-dithien-2-ylpropionyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 390 mg, 92%. 1H-NMR (DMSO-d6): δ 1.65-2.20 (m, 6H), 2.10 (s, 3H), 2.30 (bs, 1H), 3.10 (m, 1H), 3.30-3.60 (m, 6H), 3.95-4.10 (m, 3H), 5.20 (m, 1H), 6.90-7.05 (m, 5H), 7.05-7.10 (m, 2H), 7.25-7.35 (m, 2H), 7.50 (m, 2H); MS [M-Br]+: 482; mp 170° C.

EXAMPLE 89

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 300 mg, 76%. 1H-NMR (DMSO-d6): δ 1.6 (m, 1H), 1.75 (m, 1H), 1.8-2.0 (m, 2H), 2.0-2.2 (m, 2H), 2.3 (m, 1H), 3.15 (m, 1H), 3.3-3.6 (m, 6H), 3.9 (m, 1H), 4.05 (t, 2H), 5.2 (m, 1H), 6.75 (s, OH), 6.95 (m, 3H), 7.15 (m, 2H), 7.3 (t, 2H), 7.4-7.5 (m, 4H); MS [M-Br]+: 484; mp 2191C.

EXAMPLE 90

3(R)-(2-Hydroxy-2,2-dithienyl-3-ylacetoxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 300 mg, 77%. 1H-NMR (DMSO-d6): δ 1.5-1.6 (m, 1H), 1.6-1.75 (m, 1H), 1.8-2.1 (m, 4H), 2.25 (m, 1H), 2.8 (t, 2H), 3.05-3.5 (m, 7H), 3.8-3.95 (m, 1H), 5,15 (m, 1H), 6.75 (s, OH), 6.9-7.0 (m, 2H), 7.1 (m, 2H), 7.35-7.55 (m, 5H); MS [M-Br]+: 474; mp 1921C.

EXAMPLE 91

3(R)-(2-Hydroxy-2,2-dithien-3-yl-acetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 63 mg, 48%. 1H-NMR (DMSO-d6): δ 1.5-1.7 (m, 1H), 1.7-1.85 (m, 1H), 1.9-2.1 (m, 2H), 2.3 (m, 1H), 2.9-3.1 (m, 2H), 3.15-3.6 (m, 7H), 3.9-4.0 (m, 1H), 5.2 (m, 1H), 6.8 (s, OH), 7.1 (m, 2H), 7.25-7,35 (m, 5H), 7.4 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 454.

EXAMPLE 92

3(R)-(2-Hydroxy-2,2-dithien-3-yl-acetoxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 75 mg, 55%. 1H-NMR (DMSO-d6): δ 1.5-2.0 (m, 6H), 2.25 (m, 1H), 2.5-2.6 (m, 2H), 3.05-3.6 (m, 8H), 3.8-3.9 (m,1H), 5.15 (m,1H), 6.75 (s, OH), 7.1 (d, 2H), 7.2-7,35 (m, 5H), 7.4 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 468.

EXAMPLE 93

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 68 mg, 48%. 1H-NMR (DMSO-d6): δ 1.5-1.8 (m, 6H), 1.8-2.0 (m, 2H), 2.25 (m, 1H), 2.6 (m, 2H), 3.05 (m,1H), 3.15-3.45 (m, 6H), 3.85 (m, 1H), 5.15 (m, 1H), 6.75 (s, OH), 7.1 (d, 2H), 7.2 (m, 2H), 7,3 (m, 3H), 7.4 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 482.

EXAMPLE 94

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 65 mg, 49%. 1H-NMR (DMSO-d6): δ 1.5-1.65 (m, 1H), 1.65-1.78 (m, 1H), 1.85-2.05 (m, 2H), 2.3 (m, 1H), 3.1-3.6 (m, 9H), 3.95 (m, 1H), 5,2 (m, 1H), 6.75 (s, OH), 7.0 (m, 2H), 7.15 (m, 2H), 7.45 (m, 3H), 7,5 (m, 2H); MS [M-CF3COO]+: 460.

EXAMPLE 95

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(4-phenoxybutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 63 mg, 43%. 1H-NMR (DMSO-d6): δ 1.5-2.0 (m, 8H), 2.3 (m, 1H), 3.1 (m, 1H), 3.2-3.5 (m, 6H), 3.85 (m, 1H), 4.0 (m, 2H), 5.2 (m, 1H), 6.75 (s, OH), 6.95 (m, 3H), 7.1 (d, 2H), 7.2 (m, 2H), 7,3 (t, 2H), 7.45 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 498.

EXAMPLE 96

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 72 mg, 52%. 1H-NMR (DMSO-d6): δ 1.55-1.65 (m, 1H), 1.7-1.8 (m, 1H), 1.85-2.05 (m, 2H), 2.3 (m, 1H), 3.2-3.6 (m, 5H), 3.7 (m, 2H), 4.05 (m, 1H), 4.4 (m, 2H), 5.2 (m, 1H), 6.75 (s, OH), 6.95-7.05 (m, 3H), 7.1 (d, 2H), 7.3-7.5 (m, 6H); MS [M-CF3COO]+: 470.

EXAMPLE 97

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-3-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 79 mg, 54%. 1H-NMR (DMSO-d6): δ 1.55-1.65 (m, 1H), 1.7-1.8 (m, 1H), 1.85-2.0 (m, 2H), 2.05-2.2 (m, 2H), 2.3 (m, 1H), 3.1-3.2 (m, 1H), 3.25-3.55 (m, 6H), 3.85-3.95 (m, 1H), 4.0 (t, 2H), 5.2 (m, 1H), 6.75 (s, OH), 6.95 (m, 2H), 7.15 (m, 4H), 7.4 (m, 2H), 7.5 (m, 2H); MS [M-CF3COO]+: 502.

EXAMPLE 98

3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 24 mg, 17%. 1H-NMR (DMSO-d6): δ 1.8-2.05 (m, 4H), 2.3 (m, 1H), 3.15 (m, 1H), 3.3-3.5 (m, 4H), 3.9 (m, 1H), 4.05 (m 2H), 5.25 (m, 1H), 6.35 (m,1H), 6.75 (s, OH), 6.85 (t, 1H), 7.1 (m, 2H), 7.3-7.5 (m, 5H), 7.55 (m, 4H); MS [M-CF3COO]+: 502.

EXAMPLE 99

1-(3-phenylallyl)-3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 400 mg, 93%. 1H-NMR (DMSO-d6): δ 1.35-1.50 (m, 1H), 1.60-1.75 (m, 1H), 10 1.75-1.95 (m, 2H), 2.10 (m, 1H), 2.85 (m, 1H), 3.10 (d, 1H), 3.20-3.50 (m, 3H), 3.85 (m,1H), 4.0 (dd, 2H), 5.05 (m,1H), 6.40 (dd, 1H), 6.80-6.90 (d, 1H), 6.85 (s, OH), 7.20-7.50 (m, 7H), 7.60 (m, 4H), 7.80 (m, 2H); MS [M-Br]+: 452; mp 146° C.

EXAMPLE 100

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-(3-phenoxy-propyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 690 mg, 83%. 1H-NMR (DMSO-d6): δ 1.47 (m, 1H), 1.68 (m, 1H), 1.87 (m, 2H), 2.1 (m, 3H), 2.89 (m, 1H), 3.15 (d, 1H), 3.4 (m, 5H), 3.9 (m, 1H), 4.0 (m, 2H), 5.04 (m,1H), 6.85 (s, OH), 6.97 (m, 3H), 7.35 (m, 4H), 7.45 (m, 2H), 7.65 (m, 2H), 7.85 (m, 2H); MS [M-Br]+: 470; mp 108° C.

EXAMPLE 101

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 170 mg, 74%. 1H-NMR (DMSO-d6): δ 1.45 (m, 1H), 1.65 (m, 1H), 1.85 (m, 2H), 2.1 (m, 1H), 2.9 (m, 3H), 3.15 (m, 1H), 3.3-3.5 (m, 5H), 3.85 (m,1H), 5.05 (m,1H), 6.85 (s, OH), 7.2-7.4 (m, 7H), 7.45 (t, 2H), 7.55 (d, 1H), 7.65 (d, 1H), 7.85 (d, 2H); MS

[M-Br]+: 440; mp 118° C.

EXAMPLE 102

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 460 mg, 96%. 1H-NMR (DMSO-d6): δ 1.42 (m, 1H), 1.66 (m, 1H), 1.80-1.88 (m, 2H), 2.08 (m, 1H), 2.93 (m, 1H), 3.25-3.60 (m, 4H), 3.65 (m, 2H), 3.95 (m, 1H), 4.35 (m 2H), 5.02 (m,1H), 6.85 (s, 1H, OH), 6.97 (d, 2H), 7.04 (t, 1H), 7.20-7.45 (m, 6H), 7.55-7.60 (t, 2H), 7.80 (d, 2H); MS [M-Br]+: 456; mp 140° C.

EXAMPLE 103

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-(4-oxo-4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 15 mg, 15%. 1H-NMR (DMSO-d6): δ 1.45 (m, 1H), 1.65 (m, 1H), 1.7-2.0 (m, 4H), 2.1 (m, 1H), 2.75 (m, 1H), 3.0-3.2 (m 4H), 3.25-3.4 (m, 4H), 3.85 (m,1H), 5.05 (m, 1H), 6.85 (s, OH), 7.35 (t, 2H), 7.45 (t, 2H), 7.55-7.7 (m, 5H), 7.85 (d, 2H), 8.0 (d, 2H); MS [M-CF3COO]+: 482.

EXAMPLE 104

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(9-hydroxy-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Chloride

The title compound was synthesised according to methods c and a. The yield of final step was 440 mg, 94%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 2H), 1.7-1.95 (m, 2H), 2.0-2.1 (m, 3H), 2.8 (m, 1H), 3.1 (d, 1H), 3.2-3.4 (m, 5H), 3.8 (m, 1H), 4.0 (t, 2H), 5.0 (m, 1H), 6.85 (s, OH), 6.95 (m, 2H), 7.15 (t, 2H), 7.35 (t, 2H), 7.45 (t, 2H), 7.55 (d, 1H), 7.65 (d, 1H), 7.85 (d, 2H); MS [M-Br]+: 488; mp 142° C.

EXAMPLE 105

1-[3-(2,4-Difluorophenoxy)propyl]-3(R)-(9-hydroxy-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 13%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.6-1.9 (m, 3H), 2.1 (m, 3H), 2.8 (m, 1H), 3.1 (d, 1H), 3.2-3.4 (m, 5H), 3.85 (m, 1H), 4.05 (t, 2H), 5.0 (m, 1H), 6.85 (s, OH), 7.05 (t, 1H), 7.15-7.4 (m, 4H), 7.45 (t, 2H), 7.55 (d, 1H), 7.65 (d, 1H), 7.85 (d, 2H); MS [M-CF3COO]+: 506.

EXAMPLE 106

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-(3-phenylaminopropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 15%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.6 (m, 1H), 1.8 (m, 4H), 2.05 (m, 1H), 2.7 (m, 1H), 3, 0 (m, 3H), 3.2-3.4 (m, 6H), 3.8 (m, 1H), 5.0 (m, 1H), 5.6 (t, NH), 6.55 (m, 3H), 6.85 (s, OH), 7.1 (t, 2H), 7.35 (dd, 2H), 7.45 (dd, 2H), 7.55 (dd, 2H), 7.8 (d, 2H); MS [M-CF3COO]+: 469.

EXAMPLE 107

3(R)-(9-Hydroxy-9[H]-fluorene-9-carbonyloxy)-1-[3-(4-hydroxyphenoxy)propyl]-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 15 mg, 15%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.6 (m, 1H), 1.7-1.9 (m, 2H), 1.95-2.05 (m, 2H), 2.1 (m, 1H), 2.8 (m, 1H), 3.1 (d, 1H) 3.25-3.4 (m, 5H), 3.8-3.9 (m, 3H), 5.0 (m, 1H), 6.7 (d, 2H), 6.75 (d, 2H), 6.85 (s, OH), 7.35 (t, 2H), 7.45 (t, 2H), 7.55 (d, 1H), 7.65 (d, 1H), 7.85 (d, 2H), 9.0 (s, OH); MS [M-CF3COO]+: 486.

EXAMPLE 108

1-(2-Benzyloxyethyl)-3(R)-(9-hydroxy-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 470 mg, 96%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.7-1.9 (m, 2H), 2.1 (m, 1H), 2.9 (m, 1H), 3.15-3.5 (m, 6H), 3.75 (m, 2H), 3.85 (m, 1H), 4.5 (s, 2H), 5.0 (m, 1H), 6.85 (s, OH), 7.3-7.5 (m, 9H), 7.55 (m, 2H), 7.8 (d, 2H); MS [M-Br]+: 470; mp 86° C.

EXAMPLE 109

3(R)-(9-Hydroxy-9H-fluorene-9-carbonyloxy)-1-(3-thienyl-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 180 mg, 70%. 1H-NMR (DMSO-d6): δ 1.37 (m, 1H), 1.62 (m, 1H), 1.75-1.95 (m, 4H), 2.06 (m, 1H), 2.72 (m, 1H), 2.80 (m, 2H), 3.02-3.06 (m, 1H), 3.15-3.20 (m, 2H), 3.25-3.40 (m, 3H), 3.80 (m, 1H), 5.0 (m, 1H), 6.85 (s, 1H, OH), 6.95-7.0 (m, 2H), 7.25-7.50 (m, 5H), 7.55-7.65 (m, 2H), 7.85 (d, 2H); MS [M-Br]+: 460; mp 140° C.

EXAMPLE 110

3(R)— (9-Hydroxy-9H-fluorene-9-carbonyloxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 80 mg, 40%. 1H-NMR (DMSO-d6): δ 1.35 (m, 1H), 1.6 (m, 1H), 1.7-1.90 (m, 2H), 2.05 (m, 1H), 2.5 (m, 2H), 2.7 (m, 1H), 3.0 (m, 1H), 3.15 (m, 2H), 3.2-3.4 (m, 3H), 3.75 (m, 1H), 5.0 (m, 1H), 6.85 (s, OH), 7.20-7.50 (m, 9H), 7.55 (dd, 2H), 7.85 (d, 2H); MS [M-CF3COO]+: 454.

EXAMPLE 111

3(R)-(9-Hydroxy-9H-fluorene-9-carbonyloxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 74 mg, 35%. 1H-NMR (DMSO-d6): δ 1.35 (m, 1H), 1.45-1.65 (m, 5H), 1.7-1.90 (m, 2H), 2.05 (m, 1H), 2.55-2.75 (m, 3H), 3.0 (m, 1H), 3.15-3.45 (m, 5H), 3.75 (m, 1H), 5.0 (m, 1H), 6.85 (s, OH), 7.20 (m, 3H), 7.25-7.35 (m, 4H), 7.45-7.5 (m, 2H), 7.55-7.6 (dd, 2H), 7.85 (d, 2H); MS [M-CF3COO]+: 468.

EXAMPLE 112

3(R)-(9-Hydroxy-9H-fluorene-9-carbonyloxy-1-(2-thienyl-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 79 mg, 39%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.8-1.95 (m, 2H), 2.1 (m, 1H), 2.9 (m, 1H), 3.1-3.25 (m, 4H), 3.15-3.45 (m, 5H), 3.85 (m, 1H), 5.05 (m, 1H), 6.85 (s, OH), 7.0 (m, 2H), 7.35 (t, 2H), 7.45-7.5 (m, 3H), 7.55 (d, 1H), 7.65 (d, 1H), 7.85 (d, 2H); MS[M-CF3COO]+: 446.

EXAMPLE 113

3(R)-(9-Hydroxy-9H-fluorene-9-carbonyloxy)-1-(4-phenoxybutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 72 mg, 33%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.55-1.9 (m, 7H), 2.05 (m, 1H), 2.7 (m, 1H), 3.0 (m, 1H), 3.15-3.5 (m, 7H), 3.8 (m, 1H), 4.0 (m, 2H), 5.05 (m, 1H), 6.85 (s, OH), 6.95 (m, 3H), 7.25-7.35 (m, 4H), 7.4-7.45 (m, 2H), 7.6 (dd, 2H), 7.85 (d, 2H); MS [M-CF3COO]+: 484.

EXAMPLE 114

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 200 mg, 76%. 1H-NMR (DMSO-d6): δ 1.54 (m, 1H), 1.70-1.86 (m, 3H), 1.76 (s, 3H), 2.13 (m, 1H), 3.06 (m, 1H), 3.20-3.50 (m, 4H), 3.86 (m, 1H), 4.05 (dd, 2H), 5.02 (m, 1H), 6.43 (dd, 1H), 6.86 (d, 1H), 7.26-7.46 (m, 7H), 7.58-7.65 (m, 3H), 7.70-7.72 (m, 1H), 7.87-7.90 (m, 2H); MS [M-Br]+: 450; mp 234° C.

EXAMPLE 115

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 210 mg, 66%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.60-2.0 (m, 3H), 1.76 (s, 3H), 2.12 (m, 1H), 3.10-3.25 (m, 1H), 3.40-3.80 (m, 6H), 4.0 (m, 1H), 4.41 (m, 2H), 4.98 (m, 1H), 6.98-7.05 (m, 3H), 7.27-7.46 (m, 6H), 7.63-7.71 (m, 2H), 7.87-7.90 (m, 2H); MS [M-Br]+: 454; mp 202° C.

EXAMPLE 116

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 210 mg, 61%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.60-2.0 (m, 3H), 1.78 (s, 3H), 2.0-2.20 (m, 3H), 3.0-3.10 (m, 1H), 3.25-3.53 (m, 6H), 3.86 (m, 1H), 4.03 (m, 2H), 4.98 (m, 1H), 6.95-7.0 (m, 3H), 7.30-7.48 (m, 6H), 7.65-7.92 m, 4H); MS [M-Br]+: 468; mp 204° C.

EXAMPLE 117

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 18 mg, 19%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 3H), 1.75 (s, 3H), 2.15 (m, 1H), 2.9-3.1 (m, 4H), 3.25-3.55 (m, 5H), 3.85 (m, 1H), 5.05 (m, 1H), 7.25-7.55 (m, 9H), 7.65 (d, 1H), 7.75 (d, 1H), 7.95 (d, 2H); MS [M-CF3COO]+: 438.

EXAMPLE 118

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(4-oxo-4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 19%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-2.05 (m, 5H), 1.75 (s, 3H), 2.1 (m, 1H) 3.0 (m, 1H), 3.1-3.5 (m, 8H), 3.85 (m, 1H), 7.35-7.5 (m, 4H), 7.55 (t, 2H), 7.65 (t, 2H), 7.7 (d, 1H), 7.9 (d, 2H), 8.0 (d, 2H); MS [M-CF3COO]+: 480.

EXAMPLE 119

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(9-methyl-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 23 mg, 23%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 3H), 1.75 (s, 3H), 2.05-2.15 (m, 3H), 3.0 (m, 1H), 3.25-3.5 (m, 6H), 3.85 (m, 1H), 4.0 (t, 2H), 5.0 (m, 1H), 6.95 (m, 2H), 7.15 (t, 2H), 7.35-7.5 (m, 4H), 7.65 (d, 1H), 7.75 (d, 1H), 7.9 (d, 2H); MS [M-CF3COO]+: 486.

EXAMPLE 120

1-[3-(2,4-Difluorophenoxy)propyl]-3(R)-(9-methyl-9H-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 20 mg, 19%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 3H), 1.75 (s, 3H), 2.05-2.2 (m, 3H), 3.0 (m, 1H), 3.25-3.55 (m, 6H), 3.85 (m, 1H), 4.1 (t, 2H), 5.0 (m, 1H), 7.05 (t, 1H), 7.2-7.5 (m, 6H), 7.65 (d, 1H), 7.75/d, 1H), 7.9 (d, 2H); MS [M-CF3COO]+: 504.

EXAMPLE 121

3(R)-(9-Methyl-9[H]-fluorene-9-carbonyloxy)-1-(3-phenylaminopropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 19%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 5H), 1.75 (s, 3H), 2.1 (m, 1H), 2.95 (m, 1H), 3.05 (m, 2H), 3.15-3.45 (m, 6H), 3.8 (m, 1H), 5.0 (m, 1H), 5.65 (t, NH), 6.6 (m, 3H), 7.1 (t, 2H), 7.35-7.55 (m, 4H), 7.65 (d, 1H), 7.75 (d, 1H), 7.9 (d, 2H); MS [M-CF3COO]+: 467.

EXAMPLE 122

1-[3-(4-Hydroxyphenoxy)propyl]-3(R)-(9-methyl-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 22 mg, 22%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.9 (m, 3H), 1.75 (s, 3H), 2.0-2.15 (m, 3H), 3.0 (m, 1H), 3.25-3.5 (m, 6H), 3.8-3.95 (m, 3H), 5.0 (m, 1H), 6.7 (d, 1H), 6.75 (d, 1H), 7.35-7.45 (m, 4H), 7.65 (d, 1H), 7.75 (d, 1H), 7.9 (d, 2H), 9.0 (s, OH); MS [M-CF3COO]+: 484.

EXAMPLE 123

1-(2-Benzyloxyethyl)-3(R)-(9-methyl-9[H]-fluorene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 17 mg, 17%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 4H), 1.75 (s, 3H), 2.15 (m, 1H), 3.1 (m, 1H), 3.3-3.55 (m, 6H), 3.8-3.95 (m, 3H), 4.5 (s, 2H), 5.0 (m, 1H), 7.3-7.5 (m, 9H), 7.6-7.7 (m, 2H), 7.9 (d, 2H); MS [M-CF3COO]+: 468.

EXAMPLE 124

3(R)-(9,10-Dihydroanthracene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 420 mg, 89%. 1H-NMR (DMSO-d6): δ 1.55 (m, 1H), 1.65-1.95 (m, 3H), 2.15 (m, 1H), 2.95 (m, 2H), 3.15 (m, 1H), 3.25-3.60 (m, 6H), 3.85 (m, 1H), 3.95-4.15 (dd, 2H, J1=1.8 Hz, J2=4.2 Hz), 5.02 (m, 1H), 5.25 (s, 1H), 7.25-7.43 (m, 11H), 7.48-7.55 (m, 2H); MS [M-Br]+: 438; mp 216° C.

EXAMPLE 125

3(R)-(9,10-Dihydroanthracene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 450 mg, 82%. 1H-NMR (DMSO-d6): δ 1.56 (m, 1H), 1.65-1.95 (m, 3H), 2.05-2.15 (m, 3H), 3.10 (m, 1H), 3.20-3.50 (m, 6H), 3.80 (m, 1H), 3.94-4.14 (m, 4H), 5.0 (m, 1H), 5.22 (s, 1H), 6.94-7.0 (m, 3H), 7.25-7.35 (m, 6H), 7.40 (m, 2H), 7.54-7.47 (m, 2H); MS [M-Br]+: 468; mp 157° C.

EXAMPLE 126

1-(4-Phenylbutyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 83 mg, 21%. 1H-NMR (DMSO-d6): δ 1.50-2.0 (m, 8H), 2.15 (m, 1H), 2.65 (m, 2H), 3.05-3.65 (m, 7H), 3.80 (m, 1H), 5.0 (m, 1H), 5.30 (s, 1H), 7.10-7.45 (m, 11H), 7.45-7.60 (m, 2H); MS [M-Br]+: 468; mp 95° C.

EXAMPLE 127

1-(2-Phenoxyethyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 300 mg, 73%. 1H-NMR (DMSO-d6): δ 1.70-2.0 (m, 4H), 2.2 (m, 1H), 3.20-3.80 (m, 7H), 4.0 (m, 1H), 4.40 (m, 2H), 5.05 (m, 1H), 5.30 (s, 1H), 7.0-7.10 (m, 7H), 7.30-7.45 (m, 4H), 7.45-7.55 (m, 2H); MS [M-Br]+: 456; mp 200° C.

EXAMPLE 128

1-(3-Phenoxypropyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 350 mg, 83%. 1H-NMR (DMSO-d6): δ 1.70-2.0 (m, 4H), 2.0-2.25 (m, 3H), 3.15-3.65 (m, 7H), 3.85-3.95 (m, 1H), 3.95-4.10 (m, 2H), 5.0 (m, 1H), 5.30 (s, 1H), 6.90-7.0 (m, 3H), 7.10-7.25 (m, 4H), 7.25-7.40 (m, 4H), 7.40-7.60 (m, 2H); MS [M-Br]+: 470; mp 184° C.

EXAMPLE 129

1-Phenethyl-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo [2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 100 mg, 44%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 4H), 2.1 (m, 1H), 2.9-3.05 (m, 2H), 3.15-3.6 (m, 7H), 3.85 (m, 1H), 5.05 (m, 1H), 5.3 (s, 1H)), 7.15-7.55 (m, 13H); MS [M-Br]+: 440.

EXAMPLE 130

1-(4-Oxo-4-phenylbutyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.65-2.05 (m, 6H), 2.1 (m, 1H), 3.1-3.55 (m, 9H), 3.8 (m, 1H), 5.05 (m, 1H), 5.25 (s, 1H), 7.1-7.3 (m, 4H), 7.35 (t, 2H), 7.45-7.6 (m, 4H), 7.7 (d, 1H), 8.0 (d, 1H); MS [M-CF3COO]+: 482.

EXAMPLE 131

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane, Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 18 mg, 18%. 1H-NMR (DMSO-d6): δ 1.7-2.1 (m, 6H), 2.15 (m, 1H), 3.1-3.5 (m, 7H), 3.8 (m, 1H), 4.0 (t, 2H), 5.0 (m, 1H), 5.3 (s, 1H), 6.95 (m, 2H), 7.1-7.3 (m, 6H), 7.4 (t, 2H), 7.5 (dd, 2H); MS [M-CF3COO]+: 488.

EXAMPLE 132

1-[3-(2,4-Difluorophenoxy)propyl]-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 14 mg, 14%. 1H-NMR (DMSO-d6): δ 1.65-1.95 (m, 4H), 2.05-2.2 (m, 3H), 3.1-3.55 (m, 7H), 3.8 (m, 1H), 4.05 (t, 2H), 5.0 (m, 1H), 5.3 (s, 1H), 7.05 (t, 1H), 7.1-7.55 (m, 10H); MS [M-CF3COO]+: 506.

EXAMPLE 133

1-(3-Phenylaminopropyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 17 mg, 17%. 1H-NMR (DMSO-d6): δ 1.65-2.0 (m, 6H), 2.15 (m, 1H), 3.0-3.5 (m, 9H), 1.75 (m, 1H), 5.0 (m, 1H), 5.3 (s, 1H), 6.65 (t, NH), 6.55 (m, 3H), 0.05-7.3 (m, 6H), 7.35-7.55 (m, 4H); MS [M-CF3COO]+: 469.

EXAMPLE 134

1-[3-(4-Hydroxyphenoxy)propyl]-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 21 mg, 20%. 1H-NMR (DMSO-d6): δ 1.7-2.1 (m, 6H), 2.15 (m, 1H), 3.1-3.5 (m, 7H), 3.7-3.95 (m, 3H), 5.0 (m, 1H), 5.3 (s, 1H), 6.7 (d, 2H), 6.75 (d, 2H), 7.1-7.3 (m, 4H), 7.35-7.55 (m, 4H), 9.0 (s, OH); MS [M-CF3COO]+: 486.

EXAMPLE 135

1-(2-Benzyloxyethyl)-3(R)-(9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods d and b. The yield of final step was 16 mg, 16%. 1H-NMR (DMSO-d6): δ 1.65-1.95 (m, 4H), 2.1 (m, 1H), 3.1-3.9 (m, 10H), 4.5 (s, 2H), 5.0 (m, 1H), 5.3 (s, 1H), 7.15 (m, 4H), 7.3-7.5 (m, 7H), 7.55 (t, 2H); MS [M-CF3COO]+: 470.

EXAMPLE 136

3(R)-(9-Hydroxy-9[H]-xanthene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 340 mg, 71%. 1H-NMR (DMSO-d6): δ 1.30 (m, 1H), 1.65 (m, 1H), 1.70-1.95 (m, 2H), 1.95-2.10 (m, 3H), 2.70 (m, 1H), 2.90 (m, 1H), 3.2-3.5 (m, 5H), 3.80 (m, 1H), 4.0 (t, 2H), 5.05 (m, 1H), 6.90-7.0 (m, 3H), 7.20-7.35 (m, 7H), 7.40-7.46 (m, 2H), 7.65-7.70 (m, 2H); MS [M-Br]+: 486; mp 219° C.

EXAMPLE 137

3(R)-(9-Hydroxy-9[H]-xanthene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 290 mg, 64%. 1H-NMR (DMSO-d6): δ 1.32 (m, 1H), 1.65 (m, 1H), 1.70-1.95 (m, 2H), 2.1 (m, 1H), 2.75-2.90 (m, 3H), 3.05 (m, 1H), 3.30-3.50 (m, 5H), 3.82 (m, 1H), 5.05 (m, 1H), 7.20-7.40 (m, 10H), 7.40-7.50 (m, 2H), 7.65-7.70 (m, 2H); MS [M-Br]+: 456; mp 221° C.

EXAMPLE 138

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 310 mg, 97%. 1H-NMR (DMSO-d6): δ 1.30 (m, 1H), 1.62 (m, 1H), 1.70-1.90 (m, 4H), 2.05 (m, 1H), 2.60 (m, 1H), 2.75-2.85 (m, 4H), 3.15 (m, 2H), 3.25-3.40 (m, 2H), 3.75 (m, 1H), 5.0 (m, 1H), 6.93 (m, 1H), 7.0 (m, 1H), 7.14-7.26 (m, 5H), 7.36-7.45 (m, 3H), 7.63-7.67 (m, 2H); MS [M-Br]+: 476; mp 111° C.

EXAMPLE 139

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 85 mg, 41%. 1H-NMR (DMSO-d6): δ 1.30 (m, 1H), 1.65 (m, 1H), 1.70-1.95 (m, 2H), 2.05 (m, 1H), 2.5-2.6 (m, 2H), 2.80 (m, 1H), 3.05-3.75 (m, 7H), 5.05 (m, 1H), 7.1-7.45 (m, 12H), 7.65-7.70 (m, 2H); MS [M-CF3COO]+: 470.

EXAMPLE 140

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 84 mg, 38%. 1H-NMR (DMSO-d6): δ 1.30 (m, 1H), 1.4-1.85 (m, 7H), 2.05 (m, 1H), 2.5-2.6 (m, 2H), 2.80 (m, 1H), 3.05-3.4 (m, 6H), 3.7 (m, 1H), 5.05 (m, 1H), 7.15-7.35 (m, 10H), 7.4 (m, 1H), 7.65 (m, 2H); MS [M-CF3COO]+: 484.

EXAMPLE 141

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 81 mg, 39%. 1H-NMR (DMSO-d6): δ 1.30 (m, 1H), 1.6 (m, 1H), 1.7-1.9 (m, 2H), 2.05 (m, 1H), 2.75 (m, 1H), 3.0 (m, 1H), 3.1-3.2 (m, 2H), 3.3-3.6 (m, 5H), 3.8 (m, 1H), 5.05 (m, 1H), 6.95-7.0 (m, 2H), 7.15-7.3 (m, 5H), 7.45 (m, 3H), 7.65 (m, 2H); MS [M-CF3COO]+: 462.

EXAMPLE 142

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(4-phenoxybutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 83 mg, 37%. 1H-NMR (DMSO-d6): δ 1.3 (m, 1H), 1.5-1.9 (m, 7H), 2.05 (m, 1H), 2.6 (m, 1H), 2,8 (m, 1H), 3.1-3.45 (m, 7H), 3.75 (m, 1H), 4.0 (m, 2H), 5.05 (m,1H), 6.95-7.0 (m, 3H), 7.15-7.45 (m, 9H), 7.65 (m, 2H); MS [M-CF3COO]+: 500.

EXAMPLE 143

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 102 mg, 48%. 1H-NMR (DMSO-d6): δ 1.3 (m, 1H), 1.55-1.95 (m, 3H), 2.05 (m, 1H), 2,8 (m, 1H), 3.1 (m, 1H), 3.35-3.65 (m, 5H), 3.9 (m, 1H), 4.35 (m, 2H), 5.05 (m, 1H), 6.95 (d, 2H), 7.0-7.1 (m, 2H), 7.2 (m, 4H), 7.3-7.45 (m, 4H), 7.6 (t, 2H); MS [M-CF3COO]+: 472.

EXEMPLE 144

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(9-hydroxy-9H-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 99 mg, 44%. 1H-NMR (DMSO-d6): δ 1.3 (m, 1H), 1.6 (m, 1H), 1.7-2.0 (m, 4H), 2.05 (m, 1H), 2.7 (m, 1H), 2.9 (m, 1H), 3.2-3.5 (m, 5H), 3.75-3.85 (m,1H), 3.95 (m, 2H), 5.0 (m,1H), 6.95 (m, 2H), 7.1-7.3 (m, 7H), 7.45 (t, 2H), 7.65 (t, 2H); MS [M-CF3COO]+: 504.

EXEMPLE 145

3(R)-(9-Hydroxy-9H-xanthene-9-carbonyloxy)-1-(3-phenylallyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 25 mg, 12%. 1H-NMR (DMSO-d6): δ 1.25-1.30 (m, 1H), 1.55-1.95 (m, 3H), 2.10 (m, 1H), 2.65-2.75 (m, 1H), 2.9 (m, 1H), 3.25-3.50 (m, 2H), 3.75-3.8 (m,1H), 3.95 (m, 2H), 4.2 (d, 1H), 5.0 (m, 1H), 6.35 (m, 1H), 6.80 (d, 1H), 7.05-7.50 (m, 8H), 7.60 (m, 4H); MS [M-CF3COO]+: 468.

EXAMPLE 146

3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods c and a. The yield of final step was 110 mg. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.75-1.95 (m, 2H), 1.9 (s, 3H), 2.05-2.15 (m, 3H), 1.8 (m, 1H), 3.15 (m, 2H), 3.25-3.5 (m, 5H), 3.85 (m, 1H), 4.0 (t, 2H), 5.05 (m, 1H), 6.95-7.0 (m, 3H), 7.15-7.2 (m, 4H), 7.3-7.4 (m, 4H), 7.45 (d, 1H), 7.55 (d, 1H); MS [M-Br]+: 484; mp 195° C.

EXAMPLE 147

3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 20%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.8-1.95 (m, 2H), 1.9 (s, 3H), 2.15 (m, 1H), 2.8-2.95 (m, 3H), 3.15 (d, 1H), 3.3-3.5 (m, 5H), 4.9 (m, 1H), 5.1 (m, 1H), 7.15 (m, 4H), 7.25-7.4 (m, 7H), 7.45 (d, 1H), 7.55 (d, 1H); MS [M-CF3COO]+: 454.

EXAMPLE 148

3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-(2-phenoxyethyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 24 mg, 24%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.8-1.95 (m, 2H), 1.9 (s, 3H), 2.15 (m, 1H), 2.95 (m, 1H), 3.25 (m, 1H), 3.4-3.65 (m, 5H), 3.85 (m, 1H), 4.35 (t, 2H), 5.05 (m, 1H), 6.95 (d, 2H), 7.05 (t, 2H), 7.15 (m, 3H), 7.25-7.45 (m, 6H); MS [M-CF3COO]+: 470.

EXAMPLE 149

3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-(4-oxo-4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 19%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.75-1.95 (m, 7H), 2.15 (m, 1H), 2.8 (m, 1H), 3.05-3.25 (m, 4H), 3.3-3.5 (m, 4H), 3.85 (m, 1H), 5.05 (m, 1H), 7.15 (m, 4H), 7.35 (t, 2H), 7.45-7.6 (m, 4H), 7.7 (t, 1H), 8.0 (d, 2H); MS [M-CF3COO]+: 496.

EXAMPLE 150

1-[3-(4-Fluorophenoxy)propyl]-3(R)-(9-methyl-9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 25 mg, 24%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.75-1.95 (m, 2H), 1.9 (s, 3H), 1-95-2.1 (m, 2H), 2.15 (m, 1H), 2.8 (m, 1H), 3.1 (d, 1H), 3.25-3.5 (m, 5H), 3.8 (m, 1H), 4.0 (t, 2H), 5.05 (m, 1H), 6.95 (m, 2H), 7.15 (m, 6H), 7.35 (t, 2H), 7.5 (dd, 2H); MS [M-CF3COO]+: 502.

EXAMPLE 151

1-[3-(2,4-Difluorophenoxy)propyl]-3(R)-(9-methyl-9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.75-1.95 (m, 2H), 1.9 (s, 3H), 2.0-2.15 (m, 3H), 2.8 (m, 1H), 3.1 (d, 1H), 7.05 (t, 1H), 7.1-7.4 (m, 8H), 7.5 (dd, 2H); MS [M-CF3COO]+: 520.

EXAMPLE 152

3(R)-(9-Methyl-9[H]-xanthene-9-carbonyloxy)-1-(3-phenylaminopropyl)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 16 mg, 15%. 1H-NMR (DMSO-d6): δ 1.35 (m, 1H), 1.6 (m, 1H), 1.7-1.9 (m, 4H), 1.9 (s, 3H), 2.1 (m, 1H), 2.7 (m, 1H), 2.95-3.05 (m, 3H), 3.1-3.4 (m, 6H), 3.75 (m, 1H), 5.0 (m, 1H), 5.6 (m, 1H), 6.55 (m, 3H), 7.05-7.15 (m, 6H), 7.3 (m, 2H), 7.45 (t, 2H); MS [M-CF3COO]+: 483.

EXAMPLE 153

1-[3-(4-Hydroxyphenoxy)propyl]-3(R)-(9-methyl-9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 19 mg, 18%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 2.75-2.05 (m, 4H), 1.9 (s, 3H), 2.15 (m, 1H), 2.8 (m, 1H), 3.1 (d, 1H), 3.25-3.5 (m, 5H), 3.8-3.95 (m, 3H), 5.05 (m, 1H), 6.65-6.8 (m, 4H), 7.2 (m, 4H), 7.35 (t, 2H), 7.5 (m, 2H), 9.0 (s, OH); MS [M-CF3COO]+: 500.

EXAMPLE 154

1-(2-Benzyloxyethyl)-3(R)-(9-methyl-9[H]-xanthene-9-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Trifluoroacetate

The title compound was synthesised according to methods c and b. The yield of final step was 14 mg, 14%. 1H-NMR (DMSO-d6): δ 1.4 (m, 1H), 1.65 (m, 1H), 1.75-1.95 (m, 2H), 1.9 (s, 3H), 2.1 (m, 1H), 2.9 (m, 1H), 3.2-3.5 (m, 6H), 3.75-3.95 (m, 3H), 4.5 (s, 2H), 5.05 (m, 1H), 7.15 (m, 4H), 7.3-7.5 (m, 9H); MS [M-CF3COO]+: 484.

EXAMPLE 155

1-(3-Phenoxypropyl)-3(R)-(9[H]-thioxanthene-9-carbonyloxy)-1-azonia-bicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 323 mg, 50%. 1H-NMR (DMSO-d6): δ 1.35 (m, 1H), 1.65 (m, 1H), 1.70-1.95 (m, 2H), 2.0-2.2 (m, 3H), 2.75-2.90 (m, 1H), 3,12 (m, 1H), 3.25-3.50 (m, 5H), 3.80 (m, 1H), 4.0 (t, 2H), 5.0 (m, 1H), 5.6 (s, 1H), 6.94-7.0 (m, 3H), 7.22-7.41 (m, 6H), 7.45-7.64 (m, 4H); MS [M-Br]+: 486; mp 157° C.

EXAMPLE 156

1-(3-phenylallyl)-3(R)-(10,11-Dihydro-5H-dibenzo[a,d]cycloheptene-5-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 250 mg, 94%. 1H-NMR (CDCl3): δ 1.50-1.60 (m, 1H), 1.60-1.80 (m, 1H), 1.90 (m, 2H), 2.30 (m, 1H), 2.65-2.80 (m, 2H), 2.90-3.20 (m, 3H), 3.50 (d, 1H), 3.60-3.90 (m, 3H), 4.20 (m, 1H), 4.35-4.60 (doble dd, 2H), 5.10 (m, 1H), 5.15 (s, 1H), 6.05 (dd, 1H), 6.90-7.0 (m, 2H), 7.0-7.5 (m, 11H); MS [M-Br]+: 464; mp 132° C.

EXAMPLE 157

1-(3-phenoxypropyl)-3(R)-(10,11-Dihydro-5H-dibenzo[a,d]cycloheptene-5-carbonyloxy)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 290 mg, 94%. 1H-NMR (CDCl3): δ 1.45-1.60 (m, 1H), 1.65-1.80 (m, 1H), 1.80-2.0 (m, 2H), 2.0-2.20 (m, 3H), 2.80-3.0 (m, 3H), 3.15-3.30 (m, 2H), 3.30-3.45 (d, 1H), 3.45-3.80 (m, 5H), 3.85-4.0 (m, 2H), 4.20 (m, 1H), 5.10 (m, 1H), 5.20 (s, 1H), 6.80-6.90 (d, 2H), 6.90-7.0 (t, 1H), 7.10-7.30 (m, 8H), 7.40 (m, 2H); MS [M-Br]+: 482; mp 182° C.

EXAMPLE 158

3(R)-(5[H]-Dibenzo[a,d]cycloheptene-5-carbonyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 180 mg, 56%. 1H-NMR (DMSO-d6): δ 1.2 (m, 1H), 1.6 (m, 1H), 1.7-1.9 (m, 2H), 1.95 (m, 1H), 2.1 (m, 2H), 2.8 (m, 1H), 2.95 (d, 1H), 3.25-3.45 (m, 5H), 3.8 (m, 1H), 4.05 (t, 2H), 4.9 (m, 1H), 5.45 (s, 1H), 6.9-7.1 (m, 5H), 7.3-7.5 (m, 9H), 7.55 (d, 2H); MS [M-Br]+: 480; mp 1111C.

EXAMPLE 159

3(R)-(5[H]-Dibenzo[a,d]cycloheptene-5-carbonyloxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; Bromide

The title compound was synthesised according to methods d and a. The yield of final step was 210 mg, 68%. 1H-NMR (DMSO-d6): δ 1.2 (m, 1H), 1.7-1.9 (m, 2H), 2.0 (m, 1H), 2.85-3.1 (m, 4H), 3.3-3.5 (m, 5H), 3.85 (m, 1H), 4.95 (m, 1H), 5.45 (s, 1H), 7.05 (m, 2H), 7.25-7.5 (m, 11H), 7.55 (m, 2H); MS [M-Br]+: 450; mp 2481C.

The Examples 160 to 164 illustrate pharmaceutical compositions according to the present invention and procedure for their preparation.

EXAMPLE 160

Preparation of a pharmaceutical composition: tablets Formulation: Compound of the present invention 5.0 mg Lactose 113.6 mg Microcrystalline cellulose 28.4 mg Light silicic anhydride 1.5 mg Magnesium stearate 1.5 mg

Using a mixer machine, 15 g of the compound of the present invention was mixed with 340.8 g of lactose and 85.2 g of microcrystalline cellulose. The mixture was subjected to compression moulding using a roller compactor to give a flake-like compressed material. The flake-like compressed material was pulverized using a hammer mill, and the pulverized material was screened through a 20 mesh screen. A 4.5 g portion of light silicic anhydride and 4.5 g of magnesium stearate were added to the screened material and mixed. The mixer product was subjected to a tablets making machine equipped with a die/punch system of 7.5 mm in diameter, thereby obtaining 3,000 tablets each having 150 mg in weight.

EXAMPLE 161

Preparation of a pharmaceutical composition: tablets coated Formulation: Compound of the present invention 5.0 mg Lactose 95.2 mg Corn starch 40.8 mg Polyvinylpyrrolidone K25 7.5 mg Magnesium stearate 1.5 mg Hydroxypropylcellulose 2.3 mg Polyethylene glycol 6000 0.4 mg Titanium dioxide 1.1 mg Purified talc 0.7 mg

Using a fluidized bed granulating machine, 15 g of the compound of the present invention was mixed with 285.6 g of lactose and 122.4 g of corn starch. Separately, 22.5 g of polyinylpyrrolidone was dissolved in 127.5 g of water to prepare a binding solution. Using a fluidized bed granulating machine, the binding solution was sprayed on the above mixture to give granulates. A 4.5 g portion of magnesium stearate was added to the obtained granulates and mixed. The obtained mixture was subjected to a tablet making machine equipped with a die/punch biconcave system of 6.5 mm in diameter, thereby obtaining 3,000 tablets, each having 150 mg in weight.

Separately, a coating solution was prepared by suspending 6.9 g of hydroxypropylmethylcellulose 2910, 1.2 g of polyethylene glycol 6000, 3.3 g of titanium dioxide and 2.1 g of purified talc in 72.6 g of water. Using a High Coated, the 3,000 tablets prepared above were coated with the coating solution to give film-coated tablets, each having 154.5 mg in weight.

EXAMPLE 162

Preparation of a pharmaceutical composition: liquid inhalant Formulation: Compound of the present invention 400 Φg Physiological saline 1 ml

A 40 mg portion of the compound of the present invention was dissolved in 90 ml of physiological saline, and the solution was adjusted to a total volume of 100 ml with the same saline solution, dispensed in 1 ml portions into 1 ml capacity ampoule and then sterilized at 1151 for 30 minutes to give liquid inhalant.

EXAMPLE 163

Preparation of a pharmaceutical composition: powder inhalant Formulation: Compound of the present invention 200 Φg Lactose 4,000 Φg

A 20 g portion of the compound of the present invention was uniformly mixed with 400 g of lactose, and a 200 mg portion of the mixture was packed in a powder inhaler for exclusive use to produce a powder inhalant.

EXAMPLE 164

Preparation of a pharmaceutical composition: inhalation aerosol. Formulation: Compound of the present invention 200 Φg Dehydrated (Absolute) ethyl alcohol USP 8,400 Φg 1,1,1,2-Tetrafluoroethane (HFC-134A) 46,810 Φg

The active ingredient concentrate is prepared by dissolving 0.0480 g of the compound of the present invention in 2.0160 g of ethyl alcohol. The concentrate is added to an appropriate filling apparatus. The active ingredient concentrate is dispensed into aerosol container, the headspace of the container is purged with Nitrogen or HFC-134A vapor (purging ingredients should not contain more than 1 ppm oxygen) and is sealed with valve. 11.2344 g of HFC-134A propellant is then pressure filled into the sealed container.

Claims

1. A compound according to formula (I) wherein:

© is a phenyl ring, a C4 to C9 heteroaromatic group containing one or more heteroatoms or a naphthalenyl, 5,6,7,8-tetrahydronaphthalenyl or biphenyl group;
R1, R2 and R3 each independently represent a hydrogen atom or halogen atom, or a hydroxy group, or a phenyl, —OR4, —SR4, —NR4R5, —NHCOR4, —CONR4R5, —CN, —NO2, —COOR4 or —CF3 group, or a straight or branched lower C1 to C4 alkyl group which may optionally be substituted, for example, with a hydroxy or alkoxy group, wherein R4 and R5 each independently represent a hydrogen atom, straight or branched lower C1 to C4 alkyl group or together form an alicyclic ring; or R1 and R2 together form an aromatic, alicyclic or heterocyclic ring,
n is an integer from 0 to 4;
A represents a —CH2—, —CH═CR6—, —CR6═CH—, —CR6R7—, —CO—, —O—, —S—, —S(O)—, SO2 or —NR6— group, wherein R6 and R7 each independently represent a hydrogen atom, straight or branched lower C1 to C4 alkyl group or R6 and R7 together form an alicyclic ring;
m is an integer from 0 to 8; provided that when m=0, A is not —CH2—;
p is an integer from 1 to 2 and the substitution in the azoniabicyclic ring may be in the 2, 3 or 4 position including all possible configurations of the asymmetric carbons;
B represents a group of formula i):
 wherein R10 represents a hydrogen atom, a hydroxy or methyl group; and R8 and R9 each independently represent
 wherein R11 represents a hydrogen or halogen atom or a straight or branched lower C1 to C4 alkyl group; and
X X− represents a pharmaceutically acceptable anion of a mono or polyvalent acid.

2. A compound according to claim 1, wherein any alkyl group present as R1 to R7 or R11 contains from 1 to 4 carbon atoms.

3. A compound according to claim 1 wherein p=2.

4. A compound according to claim 1 wherein © represents a phenyl, pyrrolyl, thienyl, furyl, biphenyl, naphthalenyl, 5,6,7,8-tetrahydronaphthalenyl, benzo[1,3]dioxolyl, imidazolyl or benzothiazolyl group.

5. A compound according to claim 4, wherein © represents a phenyl, pyrrolyl or thienyl group.

6. A compound according to claim 1 wherein R1, R2 and R3 each independently represent a hydrogen or halogen atom or a hydroxy, methyl, tert-butyl, —CH2OH, 3-hydroxypropyl, —OMe, —NMe2, —NHCOMe, —CONH2, —CN, —NO2 —NO2, —COOMe or —CF3 group.

7. A compound according to claim 6 wherein R1, R2 and R3 each independently represent a hydrogen or halogen atom or a hydroxy group.

8. A compound according to claim 7, wherein the halogen atom is fluorine.

9. A compound according to claim 1 wherein A represents a —CH2—, —CH═CH—, —CO—, —NH—, —NMe—, —O— or —S— group; n is 0 or 1; and m is an integer from 1 to 6.

10. A compound according to claim 9, wherein A represents a —CH2—, 13 CH═CH— or —O— group and m is 1, 2 or 3.

11. A compound according to claim 1 wherein the azoniabicyclo group is substituted on the nitrogen atom with a 3-phenoxypropyl, 2-phenoxyethyl, 3-phenylallyl, phenethyl, 3-phenylpropyl, 4-phenylbutyl, 3-(2-hydroxyphenoxy)propyl, 3-(4-fluorophenoxy)propyl, 2-benzyloxyethyl, 3-pyrrol-1-ylpropyl, 2-thien-2-ylethyl or 3-thien-2-ylpropyl group.

12. A compound according to claim 1 wherein B represents a group of formula (i) and R8 and R9 each independently represent a phenyl, 2-thienyl, 3-thienyl, 2-furyl, or 3-furyl group and R11 represents a hydrogen atom.

13. A compound according to claim 1 wherein X X− represents a bromide, chloride or trifluoroacetate anion.

14. A compound according to claim 1 wherein the azoniabicyclo group is substituted in the 3-position.

15. A compound according to claim 14, wherein the substituent in the 3 position has (R) configuration.

16. A compound according to claim 15, wherein R8 is different from R9 in group i), and the asymmetric carbon to which R8 and R9 are bonded has the (R) configuration.

17. A compound according to claim 15, wherein R8 is different from R9 in group i), and the asymmetric carbon to which R8 and R9 are bonded has the (S) configuration.

18. A compound according to claim 1 which is a single stereoisomer.

19. A compound according to claim 1 which is 3(R)-Diphenylacetoxy-1-(3-phenoxy-propyl)-1azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2,2-diphenyl-acetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2,2-Diphenylpropionyloxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2-phenyl-2-thien-2-yl-acetoxy)-1-(3-phenoxypropyl)-1-azonia-bicyclo [2.2.2]octane; bromide, 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3-phenylallyl)-1-azoniabicyclo [2.2.2]octane; bromide, 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(2-phenoxyethyl)-1-azoniabicyclo [2.2.2]octane; bromide, 3(R)-(2-Furan-2-yl-2-hydroxy-2-phenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo [2.2.2]octane; bromide, 3(R)-(2,2-Dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2,2-di-thien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2,2-di-thien-2-ylacetoxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; bromide 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(4-phenylbutyl)-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azonia-bicyclo[2.2.2]octane; bromide, 1-[3-(4-Fluorophenoxy)propyl]-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo [2.2.2]octane; chloride, 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-[3-(2-hydroxyphenoxy)propyl]-1-azoniabicyclo [2.2.2]octane; Trifluoroacetate, 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-pyrrol-1-ylpropyl)-1-azonia-bicyclo[2.2.2]octane; trifluoroacetate, 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(2-thien-2-ylethyl)-1-azoniabicyclo[2.2.2]octane; bromide, 3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-thien-2-ylpropyl)-1-azoniabicyclo[2.2.2]octane; bromide, 1-(2-Benzyloxyethyl)-3(R)-(2-hydroxy-2,2-dithien-2-ylacetoxy)-1-azoniabicyclo[2.2.2]octane; trifluoroacetate, or 3(R)-(2-Hydroxy-2,2-dithien-3-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide.

20. A compound according to claim 1 characterised in that it has an IC50 value for muscarinic M3 receptors (Hm3) of less than 35 nM.

21. A process for the preparation of a compound of formula (I) which comprises reacting an alkylating agent of formula (II) with a compound of formula (III) wherein, in each of formulae I, II and III, R1, R2 R3, ©, A, X, B, n, m and p are as defined in any one of claims 1 to 12 or 13 to 19.

22. A process according to claim 21 characterised in that the resulting reaction mixture is purified by solid phase extraction.

23. A pharmaceutical composition comprising a compound according to claim 1 in admixture with a pharmaceutically acceptable carrier or diluent.

24. A method for treating respiratory, urinary and/or gastrointestinal disease which method comprises administering to a human or animal patient in need of such treatment an effective amount of a compound according to any one of claims claim 1 to 12, 13 to 20 or of a pharmaceutical composition according to claim 23.

25. A method for treating COPD, chronic bronchitis, asthma and/or ehinitis rhinitis which method comprises administering to a human or animal patient in need of such treatment an effective amount of a compound according to any one of claims claim 1 to 12, 13 to 20 or of a pharmaceutical composition according to claim 23.

26. A compound chosen from

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; X−
or
3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; X−,
wherein X− represents a pharmaceutically acceptable anion of a mono or polyvalent acid.

27. A compound chosen from

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; X−
or
3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; X−,
wherein X− represents chloride, bromide, iodide, sulfate, nitrate, phosphate, acetate, trifluoroacetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate, methanesulfonate, or p-toluenesulfonate.

28. A compound according to claim 27, wherein X− represents chloride, bromide, iodide, sulfate, nitrate, acetate, trifluoroacetate, maleate, oxalate, or succinate.

29. A compound according to claim 27, wherein X− represents chloride, bromide, or trifluoroacetate.

30. A compound chosen from

3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane; bromide
or
3(R)-(2-Hydroxy-2,2-dithien-2-ylacetoxy)-1-phenethyl-1-azoniabicyclo[2.2.2]octane; bromide.
Referenced Cited
U.S. Patent Documents
3714357 January 1973 Gueremy et al.
4224332 September 23, 1980 Gueremy et al.
4338931 July 13, 1982 Cavazza
4579854 April 1, 1986 Iwakuma et al.
4644033 February 17, 1987 Gnanou et al.
4675326 June 23, 1987 Amitai et al.
4843074 June 27, 1989 Rzeszotarski et al.
4855290 August 8, 1989 Fisher et al.
5201308 April 13, 1993 Newhouse
5254330 October 19, 1993 Ganderton et al.
5263475 November 23, 1993 Altermatt et al.
5290539 March 1, 1994 Marecki
5290815 March 1, 1994 Johnson et al.
5435301 July 25, 1995 Herold et al.
5507281 April 16, 1996 Kuhnel et al.
5569447 October 29, 1996 Lee et al.
5575280 November 19, 1996 Gupte et al.
5610163 March 11, 1997 Banholzer et al.
5617845 April 8, 1997 Pass et al.
5654314 August 5, 1997 Banholzer et al.
5676930 October 14, 1997 Jager et al.
5685294 November 11, 1997 Gupte et al.
5885834 March 23, 1999 Epstein
5962505 October 5, 1999 Bobrove et al.
5964416 October 12, 1999 Jaeger et al.
6150415 November 21, 2000 Hammock et al.
6299861 October 9, 2001 Banholzer et al.
6299863 October 9, 2001 Aberg et al.
6402055 June 11, 2002 Jaeger et al.
6423298 July 23, 2002 McNamara et al.
6497373 December 24, 2002 Jaeger et al.
6521260 February 18, 2003 Staniforth
6521261 February 18, 2003 Sherwood et al.
6686346 February 3, 2004 Nilsson et al.
6726124 April 27, 2004 Jaeger et al.
6918547 July 19, 2005 Jaeger et al.
6986346 January 17, 2006 Hochrainer et al.
7040311 May 9, 2006 Hochrainer et al.
7078412 July 18, 2006 Fernandez Forner
7104470 September 12, 2006 Jaeger et al.
7109210 September 19, 2006 Fernandez Forner
7196098 March 27, 2007 Fernandez Forner
7214687 May 8, 2007 Fernandez Forner
RE39820 September 4, 2007 Banholzer et al.
7358260 April 15, 2008 Fernandez Forner
7750023 July 6, 2010 Fernandez Forner
7897617 March 1, 2011 Fernandez Forner
8129405 March 6, 2012 Fernandez Forner
8513279 August 20, 2013 Fernandez Forner
8802699 August 12, 2014 Fernandez Forner
9056100 June 16, 2015 Fernandez Forner
9333195 May 10, 2016 Fernandez Forner
20030085480 May 8, 2003 Yang
Foreign Patent Documents
2062854 September 1992 CA
0003445 August 1979 EP
0069715 January 1983 EP
0166294 January 1986 EP
2165159 April 1986 EP
0205247 December 1986 EP
0302699 February 1989 EP
0 418 716 March 1991 EP
0 424 021 April 1991 EP
0424790 May 1991 EP
2242134 September 1991 EP
0505321 September 1992 EP
0424790 August 1993 EP
0424021 March 1994 EP
0418716 April 1994 EP
0 747 355 December 1996 EP
0 801 067 October 1997 EP
0603229 June 1998 EP
2012964 March 1970 FR
1219606 January 1971 GB
2041763 September 1980 GB
178679 June 1982 HU
WO 87/07502 December 1987 WO
WO 91/02558 March 1991 WO
WO 91/04252 April 1991 WO
WO 91/14468 October 1991 WO
WO 92/00771 January 1992 WO
WO 92/04928 February 1992 WO
WO 92/03175 March 1992 WO
WO 92/04068 March 1992 WO
WO 92/04345 March 1992 WO
WO 92/04346 March 1992 WO
WO 92/09322 June 1992 WO
WO 94/14492 July 1994 WO
WO 95/24889 September 1995 WO
WO 96/04346 February 1996 WO
WO 96/19968 July 1996 WO
WO 96/32150 October 1996 WO
WO 97/00703 January 1997 WO
WO 97/01337 January 1997 WO
WO 97/12687 April 1997 WO
WO 97/28801 August 1997 WO
WO 97/34871 September 1997 WO
WO 98/15280 April 1998 WO
WO 99/51205 October 1999 WO
WO 01/50080 July 2001 WO
WO 01/50080 July 2001 WO
WO 2013/175013 November 2013 WO
Other references
  • Alabaster, V., “Discovery and Development of Selective M3 Antagonists for Clinical Use,” Life Sciences, 1997, 60 (13-14), 1053-1060.
  • Atrovent® (ipratropium bromide) Inhalation Solution Prescribing Information, Boehringer Ingelheim International GmbH 830885-R, Revised Oct. 1998.
  • Auerbach, D. et al., “Routine Nebuilzed Ipratropium and Albuterol Together are Better Than Either Alone in COPD*,” The Combivent Inhalation Solution Study Group, Chest, 1997 112,1514-1521.
  • Ayres, JG et al. Thorax 52(Supp 1): S1-S21 (1997).
  • Banner, K. et al., “The Effect of Selective Phosphodiesterase 3 and 4 Isoenzyme Inhibitors and Established Anti-Asthma Drugs on Inflammatory Cell Activation,” British Journal of Pharmacology, 1996, 119, 1255-1261.
  • Barnes, P. et al., “The Effect of Platelet Activating Factor on Pulmonary-Adrenoceptors,” British Journal of Pharmacology, 1987, 90, 709-715.
  • Barnes, P. et al., Eds., Asthma, vol. 2, Lippincott-Raven, Philadelphia, 1997, ISBN 0-397-51682-7, Chapter 142: Compliance by H. Mawhinney et al., pp. 2099-2113.
  • Beasley, R. et al., “Withdrawal of Fenoterol and the End of the New Zealand Asthma Mortality Epidemic,” International Archives of Allergy and Immunology, 1995, 107, 325-327.
  • Berenbaum, M., “Synergy, Additivism and Antagonism in Immunosuppression, A Critical Review,” Clinical and Experimental Immunology, 1977, 28, 1-18.
  • Berenbaum, M., “What is Synergy?,” Pharmacological Reviews, 1989, 41, 93-141 and Errata, p. 422.
  • Berkow, R. et al., Eds., The Merck Manual of Diagnosis and Therapy, Sixteenth Edition, 1992, Foreword and Chapter 34, “Airways Obstruction Asthma,” pp. 646-657.
  • Bone, R. et al., “In Chronic Obstructive Pulmonary Disease, A Combination oflpratropium and Albuterol is More Effective that Either Agent Alone: An 85-Day Multicenter Trial,” Combivent Inhalation Aerosol Study Group, Chest, 1994, 105, 1411-1419.
  • British Thoracic Society, “BTS Guidelines for the Management of Chronic Obstructive Pulmonary Disease,” The COPD Guidelines Group of the Standards of Care Committee of the BTS, Thorax, 1997, 52, Supplement 5, SI-S28.
  • Brodde, 0-E., “1- and 2-Adrenoceptors in the Human Heart: Properties, Function, and Alterations in Chronic Heart Failure,” Pharmacological Reviews, 1991, 43 (2), 203-242.
  • Bryant, D., “Nebulized Ipratropium Bromide in the Treatment of Acute Asthma,” Chest Journal, 88(1), 24-29.
  • Calverley, P.M.A., Ed., Chronic Obstructive Pulmonary Disease, Chapman and Hall, London, 1995, ISBN 0 412 46450, Chapter 16: Bronchodilators: Basic Pharmacology by P.J. Barnes, pp. 391 and 398-401.
  • Christensen et al., “1,4-Cyclohexanecarboxylates: Potent and Selective Inhibitors of Phosphodiesterase 4 for the Treatment of Asthma,” J. Med. Chem. 41:821-835 (1998).
  • Clarkson, E. et al., “Binding and Active Transport of Large Analogues of Acetylcholine by Cholinergic Synaptic Vesicles In Vitro,” Journal of Neurochemistry, 1992, 59, 695-700.
  • Costain, D. et al., “Guidelines for Management of Asthma in Adults: I-Chronic Persistent Asthma,” Br. Med. J. 301: 651-653 (1990).
  • Dent, et al., “Effectis of a Selective PDE4 Inhibitor, D-22888, on Human Airways and Eosinophils in vitro and Late Phase Allergic Pulmonary Eosinophilia in Guinea Pigs,” Pulmonary Pharma & Thera. 11:13-21 (1998).
  • Disse, B. et al., “BA 679 BR, A Novel Long-Acting Anticholinergic Bronchodilator,” Life Sciences, 1993, 52, 537-544.
  • Dompeling, E. et al., “Slowing the Deterioration of Asthma and Chronic Obstructive Pulmonary Disease Observed During Bronchodilator Therapy by Adding Inhaled Corticosteroids,” Annals of Internal Medicine, 1993, 118, 770-778.
  • Easton, P. et al., “A Comparison of the Bronchodilating Effects of a Beta-2 Andrenergic Agent (Albuterol) and an Anticholinergic Agent (Ipratropium Bromide), Given by Aerosol Alone or in a Sequence,”New England Journal of Medicine, 1986,315 (12), 735-730.
  • Eglen, R. et al, “Muscarinic Receptor Subtypes and Smooth Muscle Function,” Pharmacological Reviews, 1996, 48 (4), 531-565.
  • Eglen, RM et al., “Muscarinic Receptor Subtypes: Pharmacology and Therapeutic Potential,” DN & P, 10(8): 462-469 (Oct. 1997).
  • Emea, “Note for Guidance on Dose Response Information to Support Drug Registration,” ICH Topic E 4. 1994. CPMP/ICH/378/95.
  • Foye, et al., Principles of Medicinal Chemistry, 4th Edition, pp. 338-340 (1995).
  • Frith, P. et al., “Oxitropium Bromide, Dose-Response and Time-Response Study of a New Anticholinergic Bronchodilator Drug,” Chest, 1986, 89 (2), 249-253.
  • Gao, SH et al., Stereochemistry of the heterocyclic alcohols containing piperidine unit, Gaodeng Xuexiao Huaxue Xuebao, vol. 20: p. 232-236 (1999).
  • Global Initiative for Asthma, Global Strategy for Asthma Management and Prevention, NIH Publication No. 02-3659, Issued Jan. 1995, revised 2002.
  • Godoviko et al., “Synthesis and Muscarinolytic Activity of Quinuclidinyl Benzylate Iodoalkylates,” Pharmceutical Chemistry Journal, vol. 19, No. 9, 602-604 (1985).
  • Gross, N. et al., “Dose Response to Ipratropium as a Nebulized Solution in Patients with Chronic Obstructive Pulmonary Disease, A Three-Center Study,” American Review of Respiratory Disease, 1989, 139, 1188-1191.
  • Gross, N. et al., “Inhalation by Nebulization of Albuterol-Ipratropium Combination (Dey Combination) is Superior to Either Agent Alone in the Treatment of Chronic Obstructive Pulmonary Disease,” Respiration, 1998, 65, 354-362.
  • Gross, N. et al., “Role of the Parasympathetic System in Airway Obstruction Due to Emphysema,” New England Journal of Medicine, 1984, 16 311 (7), 421-425.
  • Hancox, RJ et al., “Randomised trial of an inhaled B2 agonist, inhaled corticosteroids and their combination in the treatment of asthma,” Thorax, 54: 482-487 (1999).
  • Hardman, J. et al., Eds., Goodman and Gilman's: The Pharmacological Basis of Therapeutics, Ninth Edition, McGraw-Hill, New York, 1996, Chapter 28: Drugs Used in the Treatment of Asthma by W. Serafin, pp. 659-682.
  • Instructions for Medicine, The Merck Manual, M., “MIR”, vol. 2, p. 693.
  • English Translation of Instructions for Medicine, The Merck Manual, M., “MIR”, 1997, vol. 2, p. 693.
  • Johnson, M., “Salmeterol,” Medicinal Research Reviews, 1995, 15 (3), 225-257.
  • Lopez-Vidiero, M. et al., “Effect of Atropine on Sputum Production,” Thorax, 1975, 30, 543-547.
  • Lund, H. et al., “Quaternization Reactions,” Acta Chemica Scandinavica, 1973, 27, 383-390.
  • Lygo, B. et al., “Asymmetric Approaches to 2-Hydroxymethylquinuclidine Derivatives,” Tetrahedron, 1999, 55, 2795-2810.
  • Maesen, F.P.V. et al., “Ba 679 Br, A New Long-Acting Antimuscarinic Bronchodilator: A Pilot Dose-Escalation Study in COPD,” European Respiratory Journal, 1993, 6, 1031-1036.
  • Martin, L. “Drugs for Asthma/COPD—A Medical Primer for Physicians,” http://www/lakesidepress.com/pulmonary/Asthma-Rx.html (updated Feb. 1999).
  • Merck Manual of Diagnosis and Therapy, Robert Berkow ed., 16th Edition, p. 646-657 (1992).
  • Mery, P-F. et al., “Muscarinic Regulation of the L-Type Calcium Current in Isolated Cardiac Myocytes,” Life Sciences, 1997, 60, (13-14), 1113-1120.
  • Nishikawa, M. et al., “Effect of Short and Long-Acting 2-Adrenoceptor Agonists on Pulmonary 2-Adrenoceptor Expression in Human Lung,” European Journal of Pharmacology, 1996,318, 123-129.
  • Nishimura, et al., “Additive effect of oxitropium bromide in combination with inhaled corticosteroids in the treatment of elderly patients with chronic asthma,” Allergology International 48: 85-88 (1999).
  • Noronha-Blob, L et al., Stereoselective antimuscarininc effects of 3-quinuclidinyl atrolactate and 3-quinuclidinyl xanthene-9-carboxylate, European Journal of Pharmacology 211:97-103 (1992).
  • Parfitt, K., Ed., Martindale: The Complete Drug Reference, Thirty-Second Edition, 1999, 745-747.
  • Rang, H et al., Eds., Pharmacology, Third Edition, 1995, Chapter 17, “The Respiratory System,” pp. 351-366.
  • Rang, HP et al., “Pharmacology,” Churchill Livingston Inc., pp. 358-361 (1995).
  • Rees, PJ “Bronchodilators in the therapy of chronic obstructive pulmonary disease,” Eur. Respir. Mon. 7:135-149 (1998).
  • Rennard, SI, (1998) “Anticholinergics and beta2-agonists: Efficacy, Safety and Combination Therapy in Chronic Obstructive Pulmonary Disease,” Chapter 9, Barnes and Bulst (Ed.) The Role of Anticholinergics in Chronic Obstructive Pulmonary Disease and Chronic Asthma, pp. 137-144, Gardiner-Caldwell Communications Limited.
  • Rzeszotarski, W. et al., “Affinity and Selectivity of the Opitcal Isomers of 3-Quinuclidinyl Benzilate and Related Muscarinic Antagonists,” Journal of Medicinal Chemistry, 1988, 31, 1463-1466.
  • Schmidt, R. “Dose-Finding Studies in Clinical Drug Development,” Eur J Clin Pharmacol, 1988. 34:15-19.
  • Serafin, W. “Drugs Used in the Treatment of Asthma,” Goodman Gilman's The Pharmacological Basis of Therapeutics, Chapter 28 , Joel G. Hardman et al eds, 9th Edition, pp. 659-682 (1996).
  • Sharma, V. et al. “Does Mammalian Heart Contain Only the M2-Muscarinic Receptor Subtype?,” Life Sciences, 1997, 60 (13-14), 1023-1029.
  • Spitzer, W. et al., “The Use of P-Agonists and the Risk of Death and Near Death from Asthma,” New England Journal of Medicine, 1992, 326, 501-506.
  • Suissa, S. et al., “Patterns of Increasing P-Agonist Use and the Risk of Fatal or Near-Fatal Asthma,” European Respiratory Journal, 1994, 7, 1602-1609.
  • Tavakkoli et al., “Drug Treatment of Asthma in the 1990s, Achievements and New Strategies,” Drugs, 57(1): 1-8 (1999).
  • Teixera et al., “Phosphodiesterase (PDE) 4 inhibitors: anti-inflammatory drugs of the future,” TiPS, 18:164 (May 1997).
  • The Merck Manual of Diagnosis and Therapy, Seventeenth Edition, 1999, Foreword and Chapter 68, “Chronic Obstructive Airway Disorders,” pp. 555-583.
  • Theolair™ Prescribing Information, 3M Phamaceuticals, 601000, May 1998, 12 pages.
  • Torphy, T. “Phosphodiesterase Isozymes, Molecular Targets for Novel Antiasthma Agents,” Am. J. Respit. Crit. Care Med., 157:351-370 (1998).
  • Traunecker, W. et al., “Pharmacological Effects of a Combination of Fenoterol Hydrobromide and Ipratropium Bromide,” Respiration, 1986, 50 (4), 244-251.
  • Walsh, D. et al., “Synthesis and Antiallergy Activity of 4-(Diarylhydroxymethyl)-1[3-(aryloxy)propyl]piperidines and Structurally Related Compounds,” Journal of Medicinal Chemistry, 1989,32, 105-118.
  • Zaagsma, J. et al. “Muscarinic Control of Airway Function,” Life Sciences, 1997, 60 (13-14), 1061-1068.
  • Etzler, F M. et al., “Particle size analysis; a comparative study of various methods”, Part. Part. Syst. Charact., vol. 12, Oct. 1995; pp. 217-224.
  • Le Souef, P, “The meaning of lung dose”, Allergy, vol. 54, Mar. 1999, pp. 93-96.
  • 6001 Chemical Abstracts, Columbus, Ohio, US. vol. 104(19). XP-002128290, p. 659. (1 page total).
  • Burtner, R. and Cusic, J. W. (1943). “Antispasmodics, II. Basic Esters of Some Polynuclear Carboxylic Acids,” J. Am. Chem. Soc. 65:1582-1585.
  • Cohen, V. I. et al. (1992). “Synthesis and Receptor Affinities of New 3-Quinuclidinyl α-Heteroaryl-α-aryl-α-Hydroxyacetates,” J. Pharm Sciences 81:326-329.
  • Davis, M. A. et al. (1963). “New Psychotropic Agents. VI. Basic Esters of 5-Hydroxydibenzo[a,d] cycloheptadiene-5-carboxylic Acid,” J. Med. Chem 6:513-516.
  • Davis. M. A. et al (1964). “Anticonvulsants. I. Dibenzo[a,d]cycloheptadiene-5-carboxamide and Related Compounds,” J. Med. Chem. 7:88-94.
  • Grob, C. A. and Brenneisen, P. (1958). “Die Synthese von 4-Brom-und 4-Hydroxy-Chinuclidin,” Helv. Chim. Acta 41:1184-1191.
  • Heacock, R.A. et al. (1958). “Materials and Methods,” The Annals of Applied Biology, Marsh R. W. and Thomas, I, eds, Cambridge at the University Press, vol. 46, pp. 356-365.
  • Konzett, H. and Rössler, R. (1940). “Versuchsanordnung zu Untersuchungnen an der Bronchialmuskulatur,” Arch. Exp. Path. Pharmacol. 195:71-74.
  • Kumazawa, T. et al. (1994). “Inhibitors of Acyl-CoA:Cholesterol Acyltransferase. 1. Synthesis and Hypocholesterolemic Activity of Dibenz[b,e]oxepin-11carboxanilides,” J. Med. Chem. 37(6): 804-810.
  • Larsson, L. et al. (1974). “The Hydrogen Bond Condition in Some Anticholinergic Esters of Glycolic Acids. I” Acta Pharm. Suec. 11(3):304-308.
  • May, E. L and Mossettig, E. (1948). “Studies in the Anthracene Series. V. A Novel Rearrangement in the Reaction of Halomethyl Ketones with Secondary Amines,” J. Am. Chem. Soc. 70: 1077-1079.
  • Meyers, A. I. et al. (1980). “Resolution of α-Substituted Mandelic Acids via Chiral Oxazolines Using Pressurized Chromatography,” J. Org. Chem. 45(14): 2912-2914.
  • Nyberg, K. et al. (1970). “Investigations of Dithienylglycolic Esters,” Acta Chem. Scand. 24:1590-1596.
  • Rigaudy, J. et al. (1959). “Cétones Derivées du Dibenzo[a,d] cycloheptadiène. La Dibenzo-2-,3-6,7 Cycloheptadiènedione-4,5,” Bull. Soc. Chim. France. 638-643.
  • Ringdahl, R. et al. (1979). “Facile Preparation of the Enantiomers of 3-Acetoxyquinuclidinol,” Acta Pharm Suec. 16:281-283.
  • Sestanj, K. (1971). “A Facile Formation of Dibenzo[a,b] cycloheptenylium Ion by Decarbonylation. Color Reactions of the Cyhemptaminde Metabolites,” Can. J. Chem. 49:664-665.
  • Ueda, I. (1975). “The Rearrangement of 10-Bromo-10, 11-Dihydrodibenzo[b,f]thiepin-11-one and Related Compounds in an Alkaline Solution,” Bulletin of the Chemical Society of Japan 48(8):2306-2309.
  • Waelbroek, M. et al. (1990). “Binding of Selective Antagonists to Four Muscarinic Receptors (M1 to M4) in Rat Forebrain,” Mol. Pharmacol. 38:267-273.
Patent History
Patent number: RE46417
Type: Grant
Filed: Feb 9, 2016
Date of Patent: May 30, 2017
Assignee: Almirall, S.A. (Barcelona)
Inventors: Dolors Fernandez Forner (Barcelona), Maria Prat Quiñones (Barcelona), Maria Antonia Buil Albero (Barcelona)
Primary Examiner: Alan Diamond
Application Number: 15/019,009
Classifications
Current U.S. Class: 424/267
International Classification: A61K 31/439 (20060101); A61K 31/46 (20060101); A61K 31/4745 (20060101); A61K 31/56 (20060101); C07D 453/02 (20060101); C07D 453/04 (20060101); A61K 31/345 (20060101); A61K 31/435 (20060101); A61P 1/00 (20060101); A61P 1/04 (20060101); A61P 13/02 (20060101); A61P 13/06 (20060101); A61K 45/06 (20060101); A61K 9/00 (20060101); A61K 47/26 (20060101); A61P 13/10 (20060101); A61P 27/16 (20060101); A61P 43/00 (20060101); A61P 1/06 (20060101); A61P 1/12 (20060101); A61P 11/00 (20060101); A61P 11/02 (20060101); A61P 11/06 (20060101); A61P 11/08 (20060101); A61P 11/14 (20060101); A61P 13/00 (20060101); C07D 453/00 (20060101);