System and method for an adaptive TCP SYN cookie with time validation
Provided is a method and system for TCP SYN cookie validation. The method includes receiving a session SYN packet by a TCP session setup module of a host server, generating a transition cookie including a time value representing the actual time, sending a session SYN/ACK packet, including the transition cookie, in response to the received session SYN packet, receiving a session ACK packet, and determining whether a candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
Latest A10 NETWORKS, INC. Patents:
This application is a continuation reissue application of U.S. Pat. No. 7,675,854 and claims benefit under 35 U.S.C. 120 as a continuation of application Ser. No. 13/413,191 filed on Mar. 6, 2012, which is an application for reissue of U.S. Pat. No. 7,675,854, originally issued on Mar. 9, 2010.
BACKGROUND OF THE INVENTIONWhen a TCP (Transmission Control Protocol) connection starts, a destination host receives a SYN (synchronize/start) packet from a source host and sends back a SYN ACK (synchronize acknowledge). The destination host normally then waits to receiver an ACK (acknowledge) of the SYN ACK before the connection is established. This is referred to as the TCP “three-way handshake.”
While waiting for the ACK to the SYN ACK, a connection queue of finite size on the destination host keeps track of connections waiting to be completed. This queue typically empties quickly since the ACK is expected to arrive a few milliseconds after the SYN ACK is sent.
A TCP SYN flood attack is a well known denial of service attack that exploits the TCP three-way handshake design by having an attacking source host generate TCP SYN packets with random source addresses toward a victim host. The victim destination host sends a SYN ACK back to the random source address and adds an entry to the connection queue, or otherwise allocates server resources. Since the SYN ACK is destined for an incorrect or non-existent host, the last part of the “three-way handshake” is never completed and the entry remains in the connection queue until a timer expires, typically, for example, for about one minute. By generating phony TCP SYN packets from random IP addresses at a rapid rate, it is possible to fill up the connection queue and deny TCP services (such as e-mail, file transfer, or WWW) to legitimate users. In most instances, there is no easy way to trace the originator of the attack because the IP address of the source is forged. The external manifestations of the problem may include inability to get e-mail, inability to accept connections to WWW or FTP services, or a large number of TCP connections on your host in the state SYN_RCVD.
A malicious client sending high volume of TCP SYN packets without sending the subsequent ACK packets can deplete server resources and severely impact the server's ability to serve its legitimate clients.
Newer operating systems or platforms implement various solutions to minimize the impact of TCP SYN flood attacks. The solutions include better resource management, and the use of a “SYN cookie”.
In an exemplary solution, instead of allocating server resource at the time of receiving a TCP SYN packet, the server sends back a SYN/ACK packet with a specially constructed sequence number known as a SYN cookie. When the server then receives an ACK packet in response to the SYN/ACK packet, the server recovers a SYN cookie from the ACK packet, and validates the recovered SYN cookie before further allocating server resources.
The effectiveness of a solution using a SYN cookie depends on the method with which the SYN cookie is constructed. However, existing solutions using a SYN cookie typically employ a hash function to construct the SYN cookie, which can lead to a high percentage of false validations of the SYN cookie, resulting in less than satisfactory protection again TCP SYN flood attack.
Therefore, there is a need for a better system and method for constructing and validating SYN cookies.
SUMMARY OF THE INVENTIONAn aspect of the present invention provides a system for TCP SYN cookie validation. The system includes a host server including a processor and memory. The processor is configured for receiving a session SYN packet, generating a transition cookie, the transition cookie comprising a time value representing the actual time, sending a session SYN/ACK packet, including the transition cookie, in response to the received session SYN packet, receiving a session ACK packet, and determining whether a candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
One aspect of the invention includes the system above in which the processor is further configured for regarding the received session ACK packet as valid if the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
In another aspect of the invention, the predetermined time interval is in the range of one to six seconds.
In one aspect of the invention, the predetermined time interval is three seconds.
In another aspect of the invention, the step of generating the transition cookie includes the use of data obtained from the session SYN packet.
In one aspect of the invention, the data obtained from the session SYN packet comprises the source IP address of an IP header associated with the session SYN packet.
In another aspect of the invention, the data obtained from the session SYN packet comprises the sequence number of a TCP header associated with the session SYN packet.
In another aspect of the invention, the data obtained from the session SYN packet comprises a source port associated with the session SYN packet.
In another aspect of the invention, the data obtained from the session SYN packet comprises a destination port associated with the session SYN packet.
Another aspect of the present invention provides a method for TCP SYN cookie validation. The method includes receiving a session SYN packet by a TCP session setup module, generating a transition cookie by the TCP session setup module, the transition cookie comprising a time value representing the actual time, sending a session SYN/ACK packet, including the transition cookie, in response to the received session SYN packet, receiving a session ACK packet, and determining whether a candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
In an aspect of the invention, the method further includes indicating the received session ACK packet comprises a valid candidate transition cookie if the time value of the candidate transition cookie is within a predetermined time interval of the time the session ACK packet is received.
In another aspect of the invention, the step of generating the transition cookie includes the use of data obtained from the session SYN packet.
In the following description, for purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one having ordinary skill in the art, that the invention may be practiced without these specific details. In some instances, well-known features may be omitted or simplified so as not to obscure the present invention. Furthermore, reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in an embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
Transmission Control Protocol (“TCP”) is one of the main protocols in TCP/IP networks. Whereas the Internet Protocol (“IP”) deals only with packets, TCP enables two hosts to establish a connection and exchange streams of data. TCP guarantees delivery of data and also guarantees that packets will be delivered in the same order in which they were sent.
The terms “host server” and “client server” referred to in the descriptions of various embodiments of the invention herein described are intended to generally describe a typical system arrangement in which the embodiments operate. The “host server” generally refers to any computer system interconnected to a TCP/IP network, including but not limited to the Internet, the computer system comprising at a minimum a processor, computer memory, and computer software. The computer system is configured to allow the host server to participate in TCP protocol communications over its connected TCP/IP network. Although the “host server” may be a single personal computer having its own IP address and in communication with the TCP/IP network, it may also be a multi-processor server or server bank. The “client server” is similar to the “host server”, although it is understood that the “client server” may, in fact, be a single personal computer attached to the TCP/IP network. The only difference between the client and the host server for the purposes of the present invention is that the host server receives the SYN from the client server, sends a SYN ACK to the client server, and waits for the ACK from the client server.
The TCP sessions setup module 104 may itself be embedded in one or more other host server modules (not shown). The TCP session setup module may alternatively comprise a hardware or firmware component. For example, the software which handles the TCP handshake 108 on behalf of the host server 102 may be programmed onto a externally programmable read-only memory (“EPROM”) (not shown), and the EPROM may then be integrated into the host server. In another example, the ASIC or FPGA is integrated into the host server.
A TCP/IP segment includes a TCP header and an IP header as described in IETF RFC 793 “Transmission Control Protocol” section 3.1 “Header Format”, incorporated herein by reference. A TCP header optionally includes a sack-permitted option as described in IETF RFC 2018 “TCP Selective Acknowledgement Options” section 2 “Sack-Permitted Option”, incorporated herein by reference. A session SYN packet 210 is a TCP/IP segment with the SYN control bit in the TCP Header set to “1”. A session SYN/ACK packet 220 is a TCP/IP segment with the SYN control bit and the ACK control bit in the TCP header set to “1”. A Session ACK Packet 230 is a TCP/IP segment with the ACK control bit in the TCP header set to “1”.
Referring to
After the TCP session setup module 104 has sent out the session SYN/ACK packet 220, it waits for receipt of a responding session ACK packet 230. In an embodiment, when a session SYN/ACK packet 230 is received, the TCP session setup module 104 generates a 32-bit candidate transition cookie 270 such that the sum of candidate transition cookie 270 and a value of “1” equal the acknowledgement number of the TCP header in the session ACK packet 230. For example, if the acknowledgement number is “41B4362A” in hexadecimal format the candidate transition cookie 270 is “41B43629” in hexadecimal format; the sum of “41B43629” and a value of “1” equals “41B4362A”. In another example, if the acknowledgement number is “00A30000” in hexadecimal format the candidate transition cookie 270 is “00A2FFFF” in hexadecimal format; the sum of “00A2FFFF” and a value of “1” equals “00A30000”. In another example, if the acknowledgement number is “00000000” in hexadecimal format the Candidate Transition Cookie 270 is “FFFFFFFF” in hexadecimal format; the sum of “FFFFFFFF” and a value of “1” equals “00000000”, with the most significant bit carried beyond the 32-bit boundary. The TCP session setup module 104 may thus validate the candidate transition cookie 270 in this manner. If the TCP session setup module 104 determines that the candidate transition cookie 270 is thus valid, the session ACK packet 230 is also valid. In this case, the TCP session setup module 104 obtains data from the validated session ACK packet 230 and sends the data and information generated during the validation of candidate transition cookie 270 to a computing module (not shown) for further processing.
In order to generate and validate transition cookies 250, 270, the TCP session setup module 104 may include a transition cookie generator 245 and a transition cookie validator 275, respectively. Alternatively, the generation and validation may be performed directly by the TCP session setup module 104. In the descriptions herein, references to the TCP and transition cookie validator 275 are understood to include any of the alternative embodiments of these components.
A transition cookie generator 245 includes the functionality of generating a transition cookie based on the data obtained from a session SYN 210 packet received by the TCP session setup module 104.
A transition cookie validator 275 includes the functionality of validating a candidate transition cookie 270 generated based on data obtained from a session ACK packet 230 received by the TCP session setup module 104.
In exemplary operation, a transition cookie generator 245 is software or firmware that generates a transition cookie 250 based on data obtained from a session SYN packet 210 received by the TCP session setup module 104. An exemplary method for generating a transition cookie 250 by a transition cookie generator 245 includes multiple steps as illustrated in
The transition cookie data element 330 is preferably a 32-bit data element, generated by the transition cookie generator 245 based on the selective ACK 321, the MSS index 324 and the 32-bit current time of day indicated by clock 305. Selective ACK 321 is a 1-bit data element which is set to a value of “1” by transition cookie generator 245 if a TCP header in a received session SYN packet 210 includes an optional sack-permitted option, or to “0” if a TCP header in a received session SYN packet 210 does not include an optional sack-permitted option.
Maximum Segment Size (“MSS”) 322 is the maximum number of bytes that TCP will allow in an TCP/IP packet, such as session SYN packet 210, session SYN/ACK packet 220, and session ACK packet 230, and is normally represented by an integer value in a TCP packet header. If a TCP header in a received session SYN packet 210 includes a maximum segment size option, the transition cookie generator 245 sets the MSS 322 to equal the maximum segment size option data of the maximum segment size option. Otherwise, if the TCP header in a received session SYN packet 210 does not include a maximum segment size option, the transition cookie generator 245 sets the MSS 322 to a default value, for example, such as integer “536”. The MSS index 324 is a 4-bit data element set by the transition cookie generator 245 based on the MSS 322. The transition cookie generator 245 preferably includes an MSS table 307, which maps an MSS 322 to an MSS index 324. The transition cookie generator 245 maps a MSS 322 with the MSS table 307 to set the value of MSS index 324. For example, MSS 322 has an integer value of “1460”. After the mapping, MSS index 324 has a value of “4” as represented in hexadecimal format. In an alternative embodiment, means other than an MSS table 307 may be employed to determine the MSS index 324 value, such as the use of a mapping algorithm.
In generating a transition cookie data element 330, the transition cookie generator 245 sets a transition cookie data element 330 to equal the 32-bit current time of day indicated by clock 305. For example, the 32-bit current time of day may be “A68079E8” as represented in hexadecimal format, so the transition cookie data element 330 has a value of “A68079E8”.
Next, the transition cookie generator 245 replaces the least significant 4 bits (bit 0-3) of transition cookie data element 330 with the MSS index 324, and replaces bit 4 of a transition cookie data element 330 with selective ACK 321. For example, if a transition cookie data element 330 has been set to a value of “A68079E8”, selective ACK 321 has a value of “1”, and MSS index 324 has a value of “4” as represented in hexadecimal format, after the replacements, transition cookie data element 330 has a value of “A68079F4” in hexadecimal format.
Next, since the transition cookie secret key 360 is a 128-bit data element, the transition cookie generator 245 may use a hash function to generate the transition cookie secret key 360 from the first data item 340. Further, the transition cookie generator 245 may use a secret key offset 301, which may be a 6-bit integer value, to select a 6-bit non-negative integer from first data item 340 starting at the bit indicated by secret key offset 301. For example, if the secret key offset 301 has a value of “12” and the first data item 340 has a hexadecimal value of “C0A801869A275B84129900F0”, the transition cookie generator 245 selects a 6-bit non-negative integer from the first data item 340 starting at bit 12 (bit 12-17). The selected non-negative integer is of this example is thus “16”. The transition cookie generator 245 then uses the selected non-negative integer to select 64 bits of data from the first data item 340, starting at the bit indicated by the selected non-negative integer, to generate the second data item 350, which has 64 bits.
For example, if the selected non-negative integer is “8” and the first data item 340 has a hexadecimal value of “C0A801869A275B84129900F0”, the transition cookie generator 245 selects 64 bits (bit 8-71) of the first data item 340 to generate a second data item 350, having a hexadecimal value of “869A275B84129900”. In another example, if the selected non-negative integer is “52”, and the transition cookie generator 245 selects 64 bits (bit 52-95 and bit 0-19) of the first data item 340 in a wrap-around fashion, bits 52-95 have a hexadecimal value of “C0A801869A2”, and bit 0-19 have a hexadecimal value of “900F0”, so the generated second data item 350 has a hexadecimal value of “900F0C0A801869A2”. The transition cookie generator 245 then generates a transition cookie secret key 360 by storing the second data item 350 in the least significant 64 bits (bit 0-63) of the transition cookie secret key 360 and setting the most significant 64 bits (bit 64-127) to “0”. For example, if the second data item 350 has a hexadecimal value of “869A275B84129900”, the transition cookie secret key 360 has a hexadecimal value of “0000000000000000869A275B84129900”.
Next, the transition cookie generator 245 performs an unsigned binary addition on an encrypted data element 370 and the sequence number 318, and stores the result in the transition cookie 250. For example, if the encrypted data element 370 has a value of “0025BC83” in hexadecimal format, and the sequence number 318 has a value of “0743BD55” in hexadecimal format, the result of the addition is hexadecimal “076979D8”. After the addition, the transition cookie 250 has a value of “076979D8” in hexadecimal. In another example, if the encrypted data element 370 has a value of “BE43D096” in hexadecimal format, and the sequence number 318 has a value of “9A275B84” in hexadecimal format, the result of the addition, and the value of transition cookie 250 is hexadecimal “1586B2C1A”, with the most significant bit carried beyond the 32-bit boundary.
In another embodiment, a transition cookie generator 245 may use different steps to generate a transition cookie secret key 360. For example, a secret key offset 301 may be an integer of a different bit length, such as a 4-bit integer value, a 3-bit integer value, or a 5-bit integer value. Also, a transition cookie generator 245 may use a secret key offset 301 to select a non-negative integer value of a different bit length from a first data item 340. For example, a transition cookie generator 245 may select a 4-bit non-negative integer value, a 7-bit non-negative integer value, or a 5-bit non-negative value from a first data item 340.
In other embodiments, a transition cookie generator 245 may store a second data item 350 in the least significant 64 bits (bit 0-63) of a transition cookie secret key 360 or store second data item 350 in the most significant 64 bits (bit 64-127) of a transition cookie secret key 360.
A transition cookie generator 245 may also perform an exclusive-or operation on the most significant 48 bits (bit 0-47) of a first data item 340 and the least significant 48 bits (bit 48-95) of a first data element 340 to form a 48-bit temporary data element (not shown). Similarly, in another embodiment, a transition cookie generator 245 may perform an exclusive-or operation on the 48 even bits (bit 0, 2, 4, . . . 90, 92, 94) and the 48 odd bits (bit 1, 3, 5, . . . 93, 95, 97) to form a 48 bit temporary data element. In yet another embodiment, a transition cookie generator 245 may store a 48-bit temporary data element in the least significant 48 bits (bit 0-47) and the most significant 48 bits (bit 80-127) of a transition cookie secret key 360, and set bit 48-79 to “0”, or store a 48-bit temporary data element in the least significant 48 bits (bit 0-47) of a transition cookie secret key 360, and set the most significant 80 bits (bit 48-127) of a transition cookie secret key 360 to “0”.
In other embodiments of the invention, a transition cookie generator 245 may use an encryption algorithm to generate a transition cookie secret key 360 from the first data item 340.
In another embodiment, a transition cookie generator 245 includes a secret key and an encryption algorithm, and uses a first data element 340 as a plaintext input, and a secret key as an encryption key input to the encryption algorithm to generate a 128-bit ciphertext output. Next, a transition cookie generator 245 generates a transition cookie secret key 360 as a 128-bit ciphertext output. Alternatively, the ciphertext output may be a 96-bit data element, and a transition cookie generator 245 stores a 96-bit ciphertext output in the least significant 96 bits (bit 0-95) of a transition cookie secret key 360, and sets the most significant 32 bits (bit 96-127) to “0”. In another alternative, a transition cookie generator 245 stores the least significant 32 bits (bit 0-31) of a 96-bit ciphertext output in the most significant 32 bits (bit 96-127) of a transition cookie secret key 360.
As seen in
The candidate sequence number 428 may be a 32-bit data element generated by a transition cookie validator 275 such that the sum of candidate sequence number 428 and a value of “1” equals the sequence number 418.
The candidate encrypted data element 470 is generated by the transition cookie validator 275 such that the result of performing an unsigned binary addition of the candidate encrypted data element 470 and the candidate sequence number 428 equals the candidate transition cookie 270.
Next, the 128-bit candidate transition cookie secret key 460 is generated from a first data item 440 by a transition cookie validator 275 using a hash function. In an embodiment, a transition cookie validator 275 uses a 6-bit secret key offset 401 to select a 6-bit non-negative integer from a first data item 440 starting at a bit indicated by secret key offset 401. For example, if the secret key offset 401 has a value of “12” and the first data item 440 is “C0A801869A275B84129900F0”, the transition cookie validator 275 selects a 6-bit non-negative integer from the first data item 440 starting at bit 12 (bits 12-17), selecting the non-negative integer “16”. The transition cookie validator 275 then generates a 64-bit second data item 350 by using the selected non-negative integer to select 64 bits of data from the first data item 440, starting at the bit indicated by the selected non-negative integer.
For example, if the selected non-negative integer is “8” and the first data item 440 has a hexadecimal value of “C0A801869A275B84129900F0”, the transition cookie validator 275 selects 64 bits (bit 8-71) of the first data item 440 to generate a second data item 450 having a hexadecimal value of “869A275B84129900”. In another example, if the first data item 440 has a hexadecimal value of “C0A801869A275B84129900F0”, and the selected non-negative integer is “52”, the transition cookie validator 275 selects 64 bits (bit 52-95 and bit 0-19) in a wrap-around fashion. Bits 52-95 have a hexadecimal value of “C0A801869A2”, and bits 0-19 have a hexadecimal value of “900F0”, so the generated second data item 450 has a hexadecimal value of “900F0C0A801869A2”.
Next, the transition cookie validator 275 generates a candidate transition cookie secret key 460 by storing the second data item 450 in the least significant 64 bits (bit 0-63) of the candidate transition cookie secret key 460 and setting the most significant 64 bits (bit 64-127) to “0”. For example, if the second data item 450 has a hexadecinmal value of “869A275B84129900”, the candidate transition cookie secret key 460 has a hexadecimal value of “0000000000000000869A275B84129900”.
In an embodiment, a transition cookie validator 275 applies a cryptographic method 408 on a candidate transition cookie secret key 460 and a candidate encrypted data element 470. An exemplary cryptographic method 408 is an RC5 algorithm described in IETF RFC 2040 “The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS Algorithms” section 1 “Overview”, and sections 2-8 with detailed explanations, incorporated herein by reference. The RC5 algorithm takes a 32-bit ciphertext input and a 128-bit decryption key to generate a 32-bit plaintext output. A transition cookie validator 275 uses a candidate encrypted data element 470 as a ciphertext input to the RC5 algorithm, and a candidate transition cookie secret key 460 as a decryption key input to the RC5 algorithm, to generate a 32-bit candidate transition cookie data element 430 as the plaintext output of the RC5 decryption algorithm.
Next, a transition cookie validator 275 sets a 32-bit adjusted candidate transition cookie data element 431 to equal the candidate transition cookie data element 430, and then sets the least significant 5 bits (bit 0-4) of the adjusted candidate transition cookie data element 431 to “0”. For example, if the adjusted candidate transition cookie data element 431 has a hexadecimal value of “89DB468F”, after setting the least significant 5 bits to “0”, the adjusted candidate transition cookie data element 431 has a hexadecimal value of “89DB4680”.
The transition cookie validator 275 may then determine if the candidate transition cookie data element 430 is valid by determining if the adjusted candidate transition cookie data element 431 is within a time margin of 3 seconds of the modified current time 409. In an embodiment, in order to determine if the adjusted candidate transition cookie data element 431 is within a time margin of 3 seconds of the modified current time 409, the transition cookie stores the modified current time 409 in the least significant 32 bits (bit 0-31) of a first 33-bit time data element, sets the most significant bit (bit 32) to “0”, and adds 6 seconds to the first 33-bit time data element. Adding 6 seconds is to add 6,000,000 micro seconds as represented by “5B8D80” in hexadecimal format. For example, if before the addition, the first 33-bit time data element has a hexadecimal value of “0FFFFFAE2”, After the addition of “5B8D80”, the first 33-bit time data element has a hexadecimal value of “1005B8862”. The transition cookie validator 275 stores the adjusted candidate transition cookie data element 431 in the least significant 32 bits (bit 0-31) of a second 33-bit time data element, sets the most significant bit (bit 32) to “0”, and adds 3 seconds to the second 33-bit time data element. Adding 3 seconds is to add 3,000,000 micro seconds as represented by hexadecimal “2DC6C0”. The transition cookie validator 275 stores the modified current time 409 in the least significant 32 bits (bit 0-31) of a third 33-bit time data element, and sets the most significant bit (bit 32) to “0”. If the second 33-bit time data element is smaller than the first 33-bit time data element and the second 33-bit time data element is larger than the third 33-bit time data element, the transition cookie validator 275 determines that the adjusted candidate transition cookie data element 431 is within 3 seconds of the modified current time 409, and thus that the candidate transition cookie data element 430 is valid.
There are many different encryption algorithms that use encryption keys of different bit lengths, such as, for example, 56-bit, 64-bit, 96-bit, 128-bit. These may generate ciphertext outputs of different bit lengths, for example, 96-bit, 64-bit, 128-bit, or 32-bit. Persons of ordinary skill in the cipher arts will be able to apply different methods, for example a hash function, to generate the transition cookie secret key 360 from the ciphertext output.
A transition cookie validator 275 may also use different steps to generate a candidate transition cookie secret key 460. The steps used by a transition cookie validator 275 to generate a candidate transition cookie secret key 460 are similar to the steps used by a transition cookie generator 245 to generate a transition cookie secret key 360.
Alternative embodiments of the invention may employ a different algorithm for the cryptographic methods 308, 408. In one example, the different algorithm is an RC2 algorithm described in IETF RFC 2268 “A Description of the RC2(r) Encryption Algorithm” section 1 “Introduction” and section 2-4 with detailed explanation, incorporated herein by reference. In another example, the different algorithm is a Blowfish algorithm. In one other example, the different algorithm is a Data Encryption Standards (“DES”) algorithm based on Federal Information Processing Standards Publication “Data Encryption Standard (DES) FIPS PUB 46-3”, which is incorporated herein by reference in its entirety. Other algorithms are also usable.
Also, a transition cookie validator 275 may use different time margins of modified current time 409 to determine if the candidate transition cookie data element is valid. Different time margins include but are not limited to 1 second, 4 seconds, 6 seconds, 2 seconds, or 11 seconds.
In an embodiment, the method of generating a transition cookie includes MD5 signature option information in the TCP options field. When this method is used, the method of validating a candidate transition cookie 270 correspondingly includes the MD5 signature option information in the TCP options field.
In another embodiment, transition cookie generator 245 may include a plurality of transition cookie generation methods for generating transition cookie 250. For example, the secret key offset 301 may have a different value, such as an integer value of different bit length, such as 4-bit, or 8-bit. In other examples, the selected non-negative integer from first data item 340 may be of different bit length, such as 8-bit, or 10-bit, the cryptographic method 308 may be a different algorithm than RC5, or the generating of transition cookie data element 330 may include MD5 signature option information in the TCP options field of session SYN packet 210. A transition cookie generation method may include steps different from the steps in the exemplary method illustrated in
In an embodiment, the transition cookie generator 245 may selects method to generate transition cookie 250 based on random data.
The random data may include time. In one embodiment, transition cookie generator 245 selects a method based on the time of day. Alternatively, the transition cookie generator 245 may select a method after a time period, such as 10 seconds, 30 seconds, 2 minutes or 3 hours.
In another embodiment, the random data may include a source IP address in session SYN packet 210, or a destination IP address in session SYN packet 210.
The random data may include the network interface at which a TCP session setup module 104 receives a session SYN packet 210, or a Virtual Local Area Network (VLAN) information associated with a session SYN packet 210.
In one embodiment, transition cookie validator 275 includes a plurality of transition cookie validation methods for validating candidate transition cookie 270. A transition cookie validation method may include steps different from the steps in the exemplary method illustrated in
In these embodiments it is understood to be preferred that the transition cookie validator 275 selects a complementary method to the method selected by transition cookie generator 245.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims
1. A system for TCP SYN cookie validation at a host server comprising:
- a session SYN packet receiver for receiving a session SYN packet;
- a transition cookie generator operating to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time, wherein the transition cookie generator generates the transition cookie secret key based on data obtained from the received session SYN packet, the data obtained from the SYN packet including at least one of a source IP address of an IP header, a destination port, a source port, and a sequence number of a TCP header in the received session SYN packet, wherein the transition cookie generator concatenates the obtained data from the session SYN packet to generate a first data item of the generator and the transition cookie generator uses a first hash function to generate the transition cookie secret key from the first data item of the generator;
- a session SYN/ACK packet sender for sending the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver for receiving a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, for determining whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received, wherein the transition cookie validator generates a candidate transition cookie secret key based on data obtained from the received session ACK packet, the data obtained from the ACK packet including at least one of a source IP address of the IP header, a destination port, and a source port, wherein the transition cookie validator concatenates the obtained data from the session ACK packet to generate a first data item of the validator and the transition cookie validator uses the first or another hash function to generate the candidate transition cookie secret key from the first data item of the validator,
- wherein at least one of:
- the transition cookie generator uses a secret key offset to select one or more bits of data from the first data item of the generator in order to generate a second data item of the generator, and
- the transition cookie validator uses a candidate secret key offset to select one or more bits of data from the first data item of the validator in order to generate a second data item of the validator.
2. The system according to claim 1, in which the transition cookie validator determines that the received session ACK packet is valid if the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
3. The system according to claim 1, in which the predetermined time interval is in the range of one to six seconds.
4. The system according to claim 1, in which the predetermined time interval is three seconds.
5. The system according to claim 1, in which the generating of the transition cookie includes the use of random data.
6. The system according to claim 1, in which the generating of the transition cookie includes the use of data obtained from the session SYN packet.
7. A system for TCP SYN cookie validation at a host server comprising:
- a session SYN packet receiver for receiving a session SYN packet;
- a transition cookie generator operating to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time, wherein the transition cookie generator generates the transition cookie by (i) generating an encrypted data element of the generator by applying a cryptographic method on the transition cookie secret key and a transition cookie data element, (ii) performing an unsigned binary addition on the encrypted data element of the generator and a sequence number of a TCP header in the received session SYN packet, and (iii) storing the result in the transition cookie;
- a session SYN/ACK packet sender for sending the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver for receiving a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, for determining whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
8. The system according to claim 7, wherein the transition cookie data element comprises data based on at least one of: a selective ACK, an MSS index, and a 32-bit current time of day indicated by a clock.
9. A system for TCP SYN cookie validation at a host server comprising:
- a session SYN packet receiver for receiving a session SYN packet;
- a transition cookie generator operating to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time;
- a session SYN/ACK packet sender for sending the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver for receiving a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, for determining whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received, wherein the transition cookie validator generates:
- a candidate sequence number such that a sequence number of a TCP header in the received session ACK packet equals the sum of the candidate sequence number and a value of 1,
- a candidate encrypted data element such that the result of performing an unsigned binary addition of the candidate encrypted data element and a candidate sequence number equals the candidate transition cookie, and
- a candidate transition cookie data element by applying a cryptographic method on a candidate transition cookie secret key and the candidate encrypted data element.
10. The system according to claim 9, wherein the transition cookie validator validates the candidate transition cookie data element by adjusting the candidate transition cookie data element to generate, and determining if the adjusted candidate transition cookie data element is within a predetermined time margin of a modified current time.
11. A system for TCP SYN cookie validation at a host server, the system comprising: wherein:
- at least one processor and a memory storing:
- a session SYN packet receiver, wherein when the session SYN packet receiver is executed by the at least one processor, the session SYN packet receiver causing the at least one processor to receive a session SYN packet;
- a transition cookie generator, the transition cookie generator being executed by the at least one processor to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time;
- a session SYN/ACK packet sender, the session SYN/ACK packet sender being executed by the at least one processor to send the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver, the session ACK packet receiver being executed by the at least one processor to receive a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, the transition cookie validator being executed by the at least one processor to determine whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received; and
- the transition cookie generator is executed by the at least one processor to generate the transition cookie secret key based on data obtained from the received session SYN packet;
- the transition cookie validator is executed by the at least one processor to generate a candidate transition cookie secret key based on data obtained from the received session ACK packet;
- the transition cookie generator is executed by the at least one processor to concatenate the obtained data from the session SYN packet to generate a first data item of the generator;
- the transition cookie validator is executed by the at least one processor to concatenate the obtained data from the session ACK packet to generate a first data item of the validator;
- the transition cookie generator is executed by the at least one processor to use a secret key offset to select one or more bits of data from the first data item of the generator in order to generate a second data item of the generator, and
- the transition cookie validator is executed by the at least one processor to use a candidate secret key offset to select one or more bits of data from the first data item of the validator in order to generate a second data item of the validator.
12. The system according to claim 11, wherein:
- when the transition cookie secret key is generated based on data obtained from the received session SYN packet, the obtained data includes at least one of: a source IP address of an IP header, a destination port, a source port, and a sequence number of a TCP header in the received session SYN packet, and
- when the candidate transition cookie secret key is generated based on data obtained from the received session ACK packet, the obtained data includes at least one of:
- a source IP address of the IP header, a destination port, and a source port.
13. The system according to claim 11, wherein at least one of:
- the transition cookie generator is executed by the at least one processor to use a first hash function to generate the transition cookie secret key from the first data item of the generator, and
- when the transition cookie validator is executed by the at least one processor to use the first or another hash function to generate the candidate transition cookie secret key from the first data item of the validator.
14. The system according to claim 11, in which the transition cookie validator is executed by the at least one processor to determine that the received session ACK packet is valid if the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
15. The system according to claim 11, in which the predetermined time interval is in the range of one to six seconds.
16. The system according to claim 11, in which the predetermined time interval is three seconds.
17. The system according to claim 11, in which the generating of the transition cookie includes the use of random data.
18. The system according to claim 11, in which the generating of the transition cookie includes the use of data obtained from the session SYN packet.
19. A system for TCP SYN cookie validation at a host server, the system comprising:
- at least one processor and a memory storing:
- a session SYN packet receiver, wherein the session SYN packet receiver is executed by the at least one processor to receive a session SYN packet;
- a transition cookie generator, wherein the transition cookie generator is executed by the at least one processor to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time;
- a session SYN/ACK packet sender, wherein the session SYN/ACK packet sender is executed by the at least one processor to send the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver, wherein when the session ACK packet receiver is executed by the at least one processor to receive a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, wherein the transition cookie validator is executed by the at least one processor to determine whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received; and wherein:
- the transition cookie generator is executed by the at least one processor to generate the transition cookie by (i) generating an encrypted data element of the generator by applying a cryptographic method on the transition cookie secret key and a transition cookie data element, (ii) performing an unsigned binary addition on the encrypted data element of the generator and a sequence number of a TCP header in the received session SYN packet, and (iii) storing the result in the transition cookie.
20. The system according to claim 19, wherein the transition cookie data element comprises data based on at least one of: a selective ACK, an MSS index, and a 32-bit current time of day indicated by a clock.
21. The system according to claim 19, in which the transition cookie validator is executed by the at least one processor to determine that the received session ACK packet is valid if the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
22. The system according to claim 19, in which the predetermined time interval is in the range of one to six seconds.
23. The system according to claim 19, in which the predetermined time interval is three seconds.
24. The system according to claim 19, in which the generating of the transition cookie includes the use of random data.
25. The system according to claim 19, in which the generating of the transition cookie includes the use of data obtained from the session SYN packet.
26. A system for TCP SYN cookie validation at a host server, the system comprising:
- at least one processor and a memory storing:
- a session SYN packet receiver, wherein the session SYN packet receiver is executed by the at least one processor to receive a session SYN packet;
- a transition cookie generator, wherein the transition cookie generator is executed by the at least one processor to generate a transition cookie with the use of a transition cookie secret key, the transition cookie comprising a time value representing the actual time;
- a session SYN/ACK packet sender, wherein the session SYN/ACK packet sender is executed by the at least one processor to send the transition cookie in response to the received session SYN packet;
- a session ACK packet receiver, wherein the session ACK packet receiver is executed by the at least one processor to receive a session ACK packet, the session ACK packet including a candidate transition cookie; and
- a transition cookie validator, wherein the transition cookie validator is executed by the at least one processor to determine whether the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received; and to generate: a candidate sequence number such that a sequence number of a TCP header in the received session ACK packet equals the sum of the candidate sequence number and a value of 1, a candidate encrypted data element such that the result of performing an unsigned binary addition of the candidate encrypted data element and a candidate sequence number equals the candidate transition cookie, and a candidate transition cookie data element by (i) applying a cryptographic method on a candidate transition cookie secret key and the candidate encrypted data element.
27. The system according to claim 26, wherein the transition cookie validator is executed by the at least one processor to validate the candidate transition cookie data element by adjusting the candidate transition cookie data element to generate, and determining if the adjusted candidate transition cookie data element is within a predetermined time margin of a modified current time.
28. The system according to claim 26, in which when the transition cookie validator is executed by the at least one processor to determine that the received session ACK packet is valid if the candidate transition cookie in the received session ACK packet comprises a time value representing a time within a predetermined time interval from the time the session ACK packet is received.
5218602 | June 8, 1993 | Grant et al. |
5774660 | June 30, 1998 | Brendel et al. |
5862339 | January 19, 1999 | Bonnaure et al. |
5875185 | February 23, 1999 | Wang et al. |
5935207 | August 10, 1999 | Logue et al. |
5958053 | September 28, 1999 | Denker |
5995981 | November 30, 1999 | Wikstrom |
6003069 | December 14, 1999 | Cavill |
6047268 | April 4, 2000 | Bartoli et al. |
6075783 | June 13, 2000 | Voit |
6131163 | October 10, 2000 | Wiegel |
6219706 | April 17, 2001 | Fan et al. |
6259705 | July 10, 2001 | Takahashi et al. |
6321338 | November 20, 2001 | Porras et al. |
6374300 | April 16, 2002 | Masters |
6456617 | September 24, 2002 | Oda et al. |
6459682 | October 1, 2002 | Ellesson et al. |
6483600 | November 19, 2002 | Schuster et al. |
6535516 | March 18, 2003 | Leu et al. |
6578066 | June 10, 2003 | Logan et al. |
6587866 | July 1, 2003 | Modi et al. |
6600738 | July 29, 2003 | Alperovich et al. |
6658114 | December 2, 2003 | Farn et al. |
6748414 | June 8, 2004 | Bournas |
6772205 | August 3, 2004 | Lavian et al. |
6772334 | August 3, 2004 | Glawitsch |
6779017 | August 17, 2004 | Lamberton et al. |
6779033 | August 17, 2004 | Watson et al. |
6804224 | October 12, 2004 | Schuster et al. |
6952728 | October 4, 2005 | Alles et al. |
7010605 | March 7, 2006 | Dharmarajan |
7013482 | March 14, 2006 | Krumel |
7058718 | June 6, 2006 | Fontes et al. |
7069438 | June 27, 2006 | Balabine et al. |
7076555 | July 11, 2006 | Orman et al. |
7143087 | November 28, 2006 | Fairweather |
7167927 | January 23, 2007 | Philbrick et al. |
7181524 | February 20, 2007 | Lele |
7218722 | May 15, 2007 | Turner et al. |
7228359 | June 5, 2007 | Monteiro |
7234161 | June 19, 2007 | Maufer et al. |
7236457 | June 26, 2007 | Joe |
7254133 | August 7, 2007 | Govindarajan et al. |
7269850 | September 11, 2007 | Govindarajan et al. |
7277963 | October 2, 2007 | Dolson et al. |
7301899 | November 27, 2007 | Goldstone |
7308499 | December 11, 2007 | Chavez |
7310686 | December 18, 2007 | Uysal |
7328267 | February 5, 2008 | Bashyam et al. |
7334232 | February 19, 2008 | Jacobs et al. |
7337241 | February 26, 2008 | Boucher et al. |
7343399 | March 11, 2008 | Hayball et al. |
7349970 | March 25, 2008 | Clement et al. |
7370353 | May 6, 2008 | Yang |
7373500 | May 13, 2008 | Ramelson et al. |
7391725 | June 24, 2008 | Huitema et al. |
7398317 | July 8, 2008 | Chen et al. |
7423977 | September 9, 2008 | Joshi |
7430755 | September 30, 2008 | Hughes et al. |
7463648 | December 9, 2008 | Eppstein et al. |
7467202 | December 16, 2008 | Savchuk |
7472190 | December 30, 2008 | Robinson |
7492766 | February 17, 2009 | Cabeca et al. |
7506360 | March 17, 2009 | Wilkinson et al. |
7509369 | March 24, 2009 | Tormasov |
7512980 | March 31, 2009 | Copeland et al. |
7533409 | May 12, 2009 | Keane et al. |
7552323 | June 23, 2009 | Shay |
7584262 | September 1, 2009 | Wang et al. |
7584301 | September 1, 2009 | Joshi |
7590736 | September 15, 2009 | Hydrie et al. |
7610622 | October 27, 2009 | Touitou |
7613193 | November 3, 2009 | Swami et al. |
7613822 | November 3, 2009 | Joy et al. |
7673072 | March 2, 2010 | Boucher et al. |
7675854 | March 9, 2010 | Chen et al. |
7703102 | April 20, 2010 | Eppstein et al. |
7707295 | April 27, 2010 | Szeto et al. |
7711790 | May 4, 2010 | Barrett et al. |
7733866 | June 8, 2010 | Mishra |
7747748 | June 29, 2010 | Allen |
7765328 | July 27, 2010 | Bryers et al. |
7792113 | September 7, 2010 | Foschiano et al. |
7808994 | October 5, 2010 | Vinokour et al. |
7826487 | November 2, 2010 | Mukerji et al. |
7881215 | February 1, 2011 | Daigle et al. |
7948952 | May 24, 2011 | Hurtta et al. |
7965727 | June 21, 2011 | Sakata et al. |
7970934 | June 28, 2011 | Patel |
7979694 | July 12, 2011 | Touitou |
7983258 | July 19, 2011 | Ruben et al. |
7990847 | August 2, 2011 | Leroy et al. |
7991859 | August 2, 2011 | Miller et al. |
7992201 | August 2, 2011 | Aldridge et al. |
8019870 | September 13, 2011 | Eppstein et al. |
8032634 | October 4, 2011 | Eppstein et al. |
8081640 | December 20, 2011 | Ozawa et al. |
8090866 | January 3, 2012 | Bashyam et al. |
8099492 | January 17, 2012 | Dahlin et al. |
8116312 | February 14, 2012 | Riddoch et al. |
8122116 | February 21, 2012 | Matsunaga et al. |
8151019 | April 3, 2012 | Le et al. |
8179809 | May 15, 2012 | Eppstein et al. |
8185651 | May 22, 2012 | Moran et al. |
8191106 | May 29, 2012 | Choyi et al. |
8224971 | July 17, 2012 | Miller et al. |
8261339 | September 4, 2012 | Aldridge et al. |
8266235 | September 11, 2012 | Jalan et al. |
8296434 | October 23, 2012 | Miller et al. |
8312507 | November 13, 2012 | Chen et al. |
8379515 | February 19, 2013 | Mukerji |
8499093 | July 30, 2013 | Grosser et al. |
8539075 | September 17, 2013 | Bali et al. |
8554929 | October 8, 2013 | Szeto et al. |
8559437 | October 15, 2013 | Mishra |
8560693 | October 15, 2013 | Wang et al. |
8584199 | November 12, 2013 | Chen et al. |
8595791 | November 26, 2013 | Chen et al. |
RE44701 | January 14, 2014 | Chen et al. |
8675488 | March 18, 2014 | Sidebottom et al. |
8681610 | March 25, 2014 | Mukerji |
8750164 | June 10, 2014 | Casado et al. |
8782221 | July 15, 2014 | Han |
8813180 | August 19, 2014 | Chen et al. |
8826372 | September 2, 2014 | Chen et al. |
8879427 | November 4, 2014 | Krumel |
8885463 | November 11, 2014 | Medved et al. |
8897154 | November 25, 2014 | Jalan et al. |
8965957 | February 24, 2015 | Barros |
8977749 | March 10, 2015 | Han |
8990262 | March 24, 2015 | Chen et al. |
9094364 | July 28, 2015 | Jalan et al. |
9106561 | August 11, 2015 | Jalan et al. |
9137301 | September 15, 2015 | Dunlap et al. |
9154577 | October 6, 2015 | Jalan et al. |
9154584 | October 6, 2015 | Han |
9215275 | December 15, 2015 | Kannan et al. |
9219751 | December 22, 2015 | Chen et al. |
9253152 | February 2, 2016 | Chen et al. |
9270705 | February 23, 2016 | Chen et al. |
9270774 | February 23, 2016 | Jalan et al. |
9338225 | May 10, 2016 | Jalan et al. |
9350744 | May 24, 2016 | Chen et al. |
9356910 | May 31, 2016 | Chen et al. |
9386088 | July 5, 2016 | Zheng et al. |
9531846 | December 27, 2016 | Han et al. |
20010042200 | November 15, 2001 | Lamberton |
20010049741 | December 6, 2001 | Skene et al. |
20020026515 | February 28, 2002 | Michielsens et al. |
20020032777 | March 14, 2002 | Kawata et al. |
20020032799 | March 14, 2002 | Wiedeman et al. |
20020078164 | June 20, 2002 | Reinschmidt |
20020091844 | July 11, 2002 | Craft et al. |
20020103916 | August 1, 2002 | Chen et al. |
20020133491 | September 19, 2002 | Sim et al. |
20020138618 | September 26, 2002 | Szabo |
20020141386 | October 3, 2002 | Minert et al. |
20020143991 | October 3, 2002 | Chow et al. |
20020178259 | November 28, 2002 | Doyle et al. |
20020188678 | December 12, 2002 | Edecker et al. |
20020191575 | December 19, 2002 | Kalavade et al. |
20020194335 | December 19, 2002 | Maynard |
20020194350 | December 19, 2002 | Lu et al. |
20030009591 | January 9, 2003 | Hayball et al. |
20030014544 | January 16, 2003 | Pettey |
20030023711 | January 30, 2003 | Parmar et al. |
20030023873 | January 30, 2003 | Ben-Itzhak |
20030035409 | February 20, 2003 | Wang et al. |
20030035420 | February 20, 2003 | Niu |
20030061506 | March 27, 2003 | Cooper et al. |
20030091028 | May 15, 2003 | Chang et al. |
20030131245 | July 10, 2003 | Linderman |
20030135625 | July 17, 2003 | Fontes et al. |
20030195962 | October 16, 2003 | Kikuchi et al. |
20040010545 | January 15, 2004 | Pandya |
20040062246 | April 1, 2004 | Boucher et al. |
20040073703 | April 15, 2004 | Boucher et al. |
20040078419 | April 22, 2004 | Ferrari et al. |
20040078480 | April 22, 2004 | Boucher et al. |
20040103315 | May 27, 2004 | Cooper et al. |
20040111516 | June 10, 2004 | Cain |
20040128312 | July 1, 2004 | Shalabi et al. |
20040139057 | July 15, 2004 | Hirata et al. |
20040139108 | July 15, 2004 | Tang et al. |
20040141005 | July 22, 2004 | Banatwala et al. |
20040143599 | July 22, 2004 | Shalabi et al. |
20040187032 | September 23, 2004 | Gels et al. |
20040199616 | October 7, 2004 | Karhu |
20040199646 | October 7, 2004 | Susai et al. |
20040202182 | October 14, 2004 | Lund et al. |
20040210623 | October 21, 2004 | Hydrie et al. |
20040210663 | October 21, 2004 | Phillips et al. |
20040213158 | October 28, 2004 | Collett et al. |
20040250059 | December 9, 2004 | Ramelson et al. |
20040268358 | December 30, 2004 | Darling et al. |
20050005207 | January 6, 2005 | Herneque |
20050009520 | January 13, 2005 | Herrero et al. |
20050021848 | January 27, 2005 | Jorgenson |
20050027862 | February 3, 2005 | Nguyen et al. |
20050036501 | February 17, 2005 | Chung et al. |
20050036511 | February 17, 2005 | Baratakke et al. |
20050039033 | February 17, 2005 | Meyers et al. |
20050044270 | February 24, 2005 | Grove et al. |
20050074013 | April 7, 2005 | Hershey et al. |
20050080890 | April 14, 2005 | Yang et al. |
20050102400 | May 12, 2005 | Nakahara et al. |
20050125276 | June 9, 2005 | Rusu |
20050163073 | July 28, 2005 | Heller et al. |
20050198335 | September 8, 2005 | Brown et al. |
20050213586 | September 29, 2005 | Cyganski et al. |
20050240989 | October 27, 2005 | Kim et al. |
20050249225 | November 10, 2005 | Singhal |
20050259586 | November 24, 2005 | Hafid et al. |
20050281190 | December 22, 2005 | McGee et al. |
20060023721 | February 2, 2006 | Miyake et al. |
20060036610 | February 16, 2006 | Wang |
20060036733 | February 16, 2006 | Fujimoto et al. |
20060041745 | February 23, 2006 | Parnes |
20060064478 | March 23, 2006 | Sirkin |
20060069774 | March 30, 2006 | Chen et al. |
20060069804 | March 30, 2006 | Miyake et al. |
20060077926 | April 13, 2006 | Rune |
20060092950 | May 4, 2006 | Arregoces et al. |
20060098645 | May 11, 2006 | Walkin |
20060112170 | May 25, 2006 | Sirkin |
20060164978 | July 27, 2006 | Werner et al. |
20060168319 | July 27, 2006 | Trossen |
20060187901 | August 24, 2006 | Cortes et al. |
20060190997 | August 24, 2006 | Mahajani et al. |
20060209789 | September 21, 2006 | Gupta et al. |
20060230129 | October 12, 2006 | Swami |
20060233100 | October 19, 2006 | Luft et al. |
20060251057 | November 9, 2006 | Kwon et al. |
20060277303 | December 7, 2006 | Hegde et al. |
20060280121 | December 14, 2006 | Matoba |
20070019543 | January 25, 2007 | Wei et al. |
20070022479 | January 25, 2007 | Sikdar et al. |
20070076653 | April 5, 2007 | Park et al. |
20070086382 | April 19, 2007 | Narayanan et al. |
20070094396 | April 26, 2007 | Takano et al. |
20070118881 | May 24, 2007 | Mitchell et al. |
20070124502 | May 31, 2007 | Li |
20070156919 | July 5, 2007 | Potti et al. |
20070165622 | July 19, 2007 | O'Rourke et al. |
20070180119 | August 2, 2007 | Khivesara et al. |
20070185998 | August 9, 2007 | Touitou et al. |
20070195792 | August 23, 2007 | Chen et al. |
20070230337 | October 4, 2007 | Igarashi et al. |
20070242738 | October 18, 2007 | Park et al. |
20070243879 | October 18, 2007 | Park et al. |
20070245090 | October 18, 2007 | King et al. |
20070248009 | October 25, 2007 | Petersen |
20070259673 | November 8, 2007 | Willars et al. |
20070283429 | December 6, 2007 | Chen et al. |
20070286077 | December 13, 2007 | Wu |
20070288247 | December 13, 2007 | Mackay |
20070294209 | December 20, 2007 | Strub et al. |
20080016161 | January 17, 2008 | Tsirtsis et al. |
20080031263 | February 7, 2008 | Ervin et al. |
20080076432 | March 27, 2008 | Senarath et al. |
20080101396 | May 1, 2008 | Miyata |
20080109452 | May 8, 2008 | Patterson |
20080109870 | May 8, 2008 | Sherlock et al. |
20080120129 | May 22, 2008 | Seubert et al. |
20080134332 | June 5, 2008 | Keohane et al. |
20080162679 | July 3, 2008 | Maher et al. |
20080225722 | September 18, 2008 | Khemani et al. |
20080228781 | September 18, 2008 | Chen et al. |
20080250099 | October 9, 2008 | Shen et al. |
20080253390 | October 16, 2008 | Das et al. |
20080263209 | October 23, 2008 | Pisharody et al. |
20080271130 | October 30, 2008 | Ramamoorthy |
20080282254 | November 13, 2008 | Blander et al. |
20080291911 | November 27, 2008 | Lee et al. |
20080298303 | December 4, 2008 | Tsirtsis |
20090024722 | January 22, 2009 | Sethuraman et al. |
20090031415 | January 29, 2009 | Aldridge et al. |
20090049198 | February 19, 2009 | Blinn et al. |
20090070470 | March 12, 2009 | Bauman et al. |
20090077651 | March 19, 2009 | Poeluev |
20090092124 | April 9, 2009 | Singhal et al. |
20090106830 | April 23, 2009 | Maher |
20090138606 | May 28, 2009 | Moran et al. |
20090138945 | May 28, 2009 | Savchuk |
20090141634 | June 4, 2009 | Rothstein et al. |
20090164614 | June 25, 2009 | Christian et al. |
20090172093 | July 2, 2009 | Matsubara |
20090213858 | August 27, 2009 | Dolganow et al. |
20090222583 | September 3, 2009 | Josefsberg et al. |
20090227228 | September 10, 2009 | Hu et al. |
20090228547 | September 10, 2009 | Miyaoka et al. |
20090262741 | October 22, 2009 | Jungck et al. |
20090271472 | October 29, 2009 | Scheifler et al. |
20090285196 | November 19, 2009 | Lee et al. |
20090313379 | December 17, 2009 | Rydnell et al. |
20100008229 | January 14, 2010 | Bi et al. |
20100023621 | January 28, 2010 | Ezolt et al. |
20100036952 | February 11, 2010 | Hazlewood et al. |
20100042869 | February 18, 2010 | Szabo et al. |
20100054139 | March 4, 2010 | Chun et al. |
20100061319 | March 11, 2010 | Aso et al. |
20100064008 | March 11, 2010 | Yan et al. |
20100082787 | April 1, 2010 | Kommula et al. |
20100083076 | April 1, 2010 | Ushiyama |
20100094985 | April 15, 2010 | Abu-Samaha et al. |
20100095018 | April 15, 2010 | Khemani et al. |
20100098417 | April 22, 2010 | Tse-Au |
20100106833 | April 29, 2010 | Banerjee et al. |
20100106854 | April 29, 2010 | Kim et al. |
20100128606 | May 27, 2010 | Patel et al. |
20100162378 | June 24, 2010 | Jayawardena et al. |
20100205310 | August 12, 2010 | Altshuler et al. |
20100210265 | August 19, 2010 | Borzsei et al. |
20100217793 | August 26, 2010 | Preiss |
20100217819 | August 26, 2010 | Chen et al. |
20100223630 | September 2, 2010 | Degenkolb et al. |
20100228819 | September 9, 2010 | Wei |
20100235507 | September 16, 2010 | Szeto et al. |
20100235522 | September 16, 2010 | Chen et al. |
20100235880 | September 16, 2010 | Chen et al. |
20100238828 | September 23, 2010 | Russell |
20100265824 | October 21, 2010 | Chao et al. |
20100268814 | October 21, 2010 | Cross et al. |
20100293296 | November 18, 2010 | Hsu et al. |
20100312740 | December 9, 2010 | Clemm et al. |
20100318631 | December 16, 2010 | Shukla |
20100322252 | December 23, 2010 | Suganthi et al. |
20100330971 | December 30, 2010 | Selitser et al. |
20100333101 | December 30, 2010 | Pope et al. |
20110007652 | January 13, 2011 | Bai |
20110019550 | January 27, 2011 | Bryers et al. |
20110023071 | January 27, 2011 | Li et al. |
20110029599 | February 3, 2011 | Pulleyn et al. |
20110032941 | February 10, 2011 | Quach et al. |
20110040826 | February 17, 2011 | Chadzelek et al. |
20110047294 | February 24, 2011 | Singh et al. |
20110060831 | March 10, 2011 | Ishii et al. |
20110083174 | April 7, 2011 | Aldridge et al. |
20110093522 | April 21, 2011 | Chen et al. |
20110099403 | April 28, 2011 | Miyata et al. |
20110099623 | April 28, 2011 | Garrard et al. |
20110110294 | May 12, 2011 | Valluri et al. |
20110145324 | June 16, 2011 | Reinart et al. |
20110149879 | June 23, 2011 | Noriega et al. |
20110153834 | June 23, 2011 | Bharrat |
20110178985 | July 21, 2011 | San Martin Arribas et al. |
20110185073 | July 28, 2011 | Jagadeeswaran et al. |
20110191773 | August 4, 2011 | Pavel et al. |
20110196971 | August 11, 2011 | Reguraman et al. |
20110276695 | November 10, 2011 | Maldaner |
20110276982 | November 10, 2011 | Nakayama et al. |
20110289496 | November 24, 2011 | Steer |
20110292939 | December 1, 2011 | Subramaian et al. |
20110302256 | December 8, 2011 | Sureshehandra et al. |
20110307541 | December 15, 2011 | Walsh et al. |
20120008495 | January 12, 2012 | Shen et al. |
20120023231 | January 26, 2012 | Ueno |
20120026897 | February 2, 2012 | Guichard et al. |
20120030341 | February 2, 2012 | Jensen et al. |
20120066371 | March 15, 2012 | Patel et al. |
20120084419 | April 5, 2012 | Kannan et al. |
20120084460 | April 5, 2012 | McGinnity et al. |
20120106355 | May 3, 2012 | Ludwig |
20120117382 | May 10, 2012 | Larson et al. |
20120117571 | May 10, 2012 | Davis et al. |
20120144014 | June 7, 2012 | Natham et al. |
20120144015 | June 7, 2012 | Jalan et al. |
20120151353 | June 14, 2012 | Joanny |
20120170548 | July 5, 2012 | Rajagopalan et al. |
20120173759 | July 5, 2012 | Agarwal et al. |
20120179770 | July 12, 2012 | Jalan et al. |
20120191839 | July 26, 2012 | Maynard |
20120215910 | August 23, 2012 | Wada |
20120239792 | September 20, 2012 | Banerjee et al. |
20120240185 | September 20, 2012 | Kapoor et al. |
20120290727 | November 15, 2012 | Tivig |
20120297046 | November 22, 2012 | Raja et al. |
20120311116 | December 6, 2012 | Jalan et al. |
20130046876 | February 21, 2013 | Narayana et al. |
20130058335 | March 7, 2013 | Koponen et al. |
20130074177 | March 21, 2013 | Varadhan et al. |
20130083725 | April 4, 2013 | Mallya et al. |
20130100958 | April 25, 2013 | Jalan et al. |
20130124713 | May 16, 2013 | Feinberg et al. |
20130135996 | May 30, 2013 | Torres et al. |
20130136139 | May 30, 2013 | Zheng et al. |
20130148500 | June 13, 2013 | Sonoda et al. |
20130166762 | June 27, 2013 | Jalan et al. |
20130173795 | July 4, 2013 | McPherson |
20130176854 | July 11, 2013 | Chisu et al. |
20130191486 | July 25, 2013 | Someya et al. |
20130198385 | August 1, 2013 | Han et al. |
20130250765 | September 26, 2013 | Ehsan et al. |
20130258846 | October 3, 2013 | Damola |
20130282791 | October 24, 2013 | Kruglick |
20140012972 | January 9, 2014 | Han |
20140089500 | March 27, 2014 | Sankar et al. |
20140164617 | June 12, 2014 | Jalan et al. |
20140169168 | June 19, 2014 | Jalan et al. |
20140207845 | July 24, 2014 | Han et al. |
20140258465 | September 11, 2014 | Li |
20140258536 | September 11, 2014 | Chiong |
20140269728 | September 18, 2014 | Jalan et al. |
20140286313 | September 25, 2014 | Fu et al. |
20140298091 | October 2, 2014 | Carlen et al. |
20140330982 | November 6, 2014 | Jalan et al. |
20140334485 | November 13, 2014 | Jain et al. |
20140359052 | December 4, 2014 | Joachimpillai et al. |
20150026794 | January 22, 2015 | Zuk et al. |
20150039671 | February 5, 2015 | Jalan et al. |
20150156223 | June 4, 2015 | Xu et al. |
20150215436 | July 30, 2015 | Kancherla |
20150237173 | August 20, 2015 | Virkki et al. |
20150244566 | August 27, 2015 | Puimedon |
20150281087 | October 1, 2015 | Jalan et al. |
20150281104 | October 1, 2015 | Golshan et al. |
20150296058 | October 15, 2015 | Jalan et al. |
20150312092 | October 29, 2015 | Golshan et al. |
20150312268 | October 29, 2015 | Ray |
20150333988 | November 19, 2015 | Jalan et al. |
20150350048 | December 3, 2015 | Sampat et al. |
20150350379 | December 3, 2015 | Jalan et al. |
20160014052 | January 14, 2016 | Han |
20160014126 | January 14, 2016 | Jalan et al. |
20160036778 | February 4, 2016 | Chen et al. |
20160042014 | February 11, 2016 | Jalan et al. |
20160043901 | February 11, 2016 | Sankar et al. |
20160044095 | February 11, 2016 | Sankar et al. |
20160050233 | February 18, 2016 | Chen et al. |
20160088074 | March 24, 2016 | Kannan et al. |
20160105395 | April 14, 2016 | Chen et al. |
20160105446 | April 14, 2016 | Chen et al. |
20160119382 | April 28, 2016 | Chen et al. |
20160156708 | June 2, 2016 | Jalan et al. |
20160173579 | June 16, 2016 | Jalan et al. |
20170048107 | February 16, 2017 | Dosovitsky et al. |
20170048356 | February 16, 2017 | Thompson et al. |
1372662 | October 2002 | CN |
1449618 | October 2003 | CN |
1473300 | February 2004 | CN |
1529460 | September 2004 | CN |
1575582 | February 2005 | CN |
1714545 | December 2005 | CN |
1725702 | January 2006 | CN |
1910869 | February 2007 | CN |
101004740 | July 2007 | CN |
101094225 | December 2007 | CN |
101163336 | April 2008 | CN |
101169785 | April 2008 | CN |
101189598 | May 2008 | CN |
101193089 | June 2008 | CN |
101247349 | August 2008 | CN |
101261644 | September 2008 | CN |
101442425 | May 2009 | CN |
101495993 | July 2009 | CN |
101682532 | March 2010 | CN |
101878663 | November 2010 | CN |
102123156 | July 2011 | CN |
102143075 | August 2011 | CN |
102546590 | July 2012 | CN |
102571742 | July 2012 | CN |
102577252 | July 2012 | CN |
102918801 | February 2013 | CN |
103533018 | January 2014 | CN |
103944954 | July 2014 | CN |
104040990 | September 2014 | CN |
104067569 | September 2014 | CN |
104106241 | October 2014 | CN |
104137491 | November 2014 | CN |
104796396 | July 2015 | CN |
102577252 | March 2016 | CN |
102918801 | May 2016 | CN |
1209876 | May 2002 | EP |
1770915 | April 2007 | EP |
1885096 | February 2008 | EP |
02296313 | March 2011 | EP |
2577910 | April 2013 | EP |
2622795 | August 2013 | EP |
2647174 | October 2013 | EP |
2760170 | July 2014 | EP |
2772026 | September 2014 | EP |
2901308 | August 2015 | EP |
2760170 | December 2015 | EP |
1182560 | November 2013 | HK |
1183569 | December 2013 | HK |
1183996 | January 2014 | HK |
1189438 | June 2014 | HK |
1198565 | May 2015 | HK |
1198848 | June 2015 | HK |
1199153 | June 2015 | HK |
1199779 | July 2015 | HK |
1200617 | August 2015 | HK |
39/2015 | September 2015 | IN |
CHE2014 | July 2016 | IN |
H09-097233 | April 1997 | JP |
1999096128 | April 1999 | JP |
H11-338836 | October 1999 | JP |
2000276432 | October 2000 | JP |
2000307634 | November 2000 | JP |
2001051859 | February 2001 | JP |
2001298449 | October 2001 | JP |
2002091936 | March 2002 | JP |
2003141068 | May 2003 | JP |
2003186776 | July 2003 | JP |
2005141441 | June 2005 | JP |
2006332825 | December 2006 | JP |
2008040718 | February 2008 | JP |
2009500731 | January 2009 | JP |
2013528330 | July 2013 | JP |
2014504484 | February 2014 | JP |
2014143686 | August 2014 | JP |
2015507380 | March 2015 | JP |
5855663 | December 2015 | JP |
5906263 | March 2016 | JP |
5913609 | April 2016 | JP |
10-0830413 | May 2008 | KR |
1020120117461 | August 2013 | KR |
101576585 | December 2015 | KR |
269763 | February 1996 | TW |
425821 | March 2001 | TW |
444478 | July 2001 | TW |
WO2001013228 | February 2001 | WO |
WO2001014990 | March 2001 | WO |
WO2001045349 | June 2001 | WO |
WO2003103237 | December 2003 | WO |
WO2004084085 | September 2004 | WO |
WO2006098033 | September 2006 | WO |
WO2008053954 | May 2008 | WO |
WO2008078593 | July 2008 | WO |
WO2011049770 | April 2011 | WO |
WO2011079381 | July 2011 | WO |
WO2011149796 | December 2011 | WO |
WO2012050747 | April 2012 | WO |
WO2012075237 | June 2012 | WO |
WO2012083264 | June 2012 | WO |
WO2012097015 | July 2012 | WO |
WO2013070391 | May 2013 | WO |
WO2013081952 | June 2013 | WO |
WO2013096019 | June 2013 | WO |
WO2013112492 | August 2013 | WO |
WO2014031046 | February 2014 | WO |
WO2014052099 | April 2014 | WO |
WO2014088741 | June 2014 | WO |
WO2014093829 | June 2014 | WO |
WO2014138483 | September 2014 | WO |
WO2014144837 | September 2014 | WO |
WO2014179753 | November 2014 | WO |
WO2015153020 | October 2015 | WO |
WO2015164026 | October 2015 | WO |
- Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999.
- Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000.
- Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009.
- Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, The Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009.
- Hunt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853 May 19, 1997.
- Noguchi, “Realizing the Highest Level “Layer 7” Switch”= Totally Managing Network Resources, Applications, and Users =, Computer & Network LAN, Jan. 1, 2000, vol. 18, No. 1, p. 109-112.
- Takahashi, “The Fundamentals of the Windows Network: Understanding the Mystery of the Windows Network from the Basics”, Network Magazine, Jul. 1, 2006, vol. 11, No. 7, p. 32-35.
- Ohnuma, “AppSwitch: 7th Layer Switch Provided with Full Setup and Report Tools”, Interop Magazine, Jun. 1, 2000, vol. 10, No. 6, p. 148-150.
- Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18.
- Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114.
- Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30.
- Gite, Vivek, “Linux Tune Network Stack (Buffers Size) To Increase Networking Performance,” accessed Apr. 13, 2016 at URL: «http://www.cyberciti.biz/faq/linux-tcp-tuning/», Jul. 8, 2009, 24 pages.
- “Tcp—TCP Protocol”, Linux Programmer's Manual, accessed Apr. 13, 2016 at URL: «https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci», Nov. 25, 2007, 11 pages.
- “Enhanced Interior Gateway Routing Protocol”, Cisco, Document ID 16406, Sep. 9, 2005 update, 43 pages.
- Crotti, Manuel et al., “Detecting HTTP Tunnels with Statistical Mechanisms”, IEEE International Conference on communications, Jun. 24-28, 2007, pp. 6162-6168.
- Haruyama, Takahiro et al., “Dial-to-Connect VPN System for Remote DLNA Communication”, IEEE Consumer Communications and Networking Conference, CCNC 2008. 5th IEEE, Jan. 10-12, 2008, pp. 1224-1225.
- Chen, Jianhua et al., “SSL/TLS-based Secure Tunnel Gateway System Design and Implementation”, IEEE International Workshop on Anti-counterfeiting, Security, Identification, Apr. 16-18, 2007, pp. 258-261.
- “EIGRP MPLS VPN PE-CE Site of Origin (SoO)”, Cisco Systems, Feb. 28, 2006, 14 pages.
Type: Grant
Filed: Jan 9, 2014
Date of Patent: Mar 12, 2019
Assignee: A10 NETWORKS, INC. (San Jose, CA)
Inventors: Lee Chen (Saratoga, CA), Ronald Wai Lun Szeto (San Francisco, CA), Shih-Tsung Hwang (San Jose, CA)
Primary Examiner: David E England
Application Number: 14/151,803
International Classification: G01R 31/08 (20060101); H04L 12/801 (20130101); H04L 29/06 (20060101);