Non-overlap data transmission method for liquid crystal display and related transmission circuit
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
Latest NOVATEK Microelectronics Corp. Patents:
- Voltage meter for measuring signal inside integrated circuit
- Driver circuit driving display panel in two modes
- Compute-in-memory macro device and electronic device
- Driving system having multiple driver circuits for cooperatively driving display panel and driver circuit thereof
- DISPLAY DEVICE AND MURA COMPENSATION METHOD THEREOF
1. Field of the Invention
The present disclosure relates to a non-overlap data transmission method for liquid crystal device and related transmission circuit, and more particularly, to transmission method for non-overlap data and related transmission circuit.
2. Description of the Prior Art
In the prior art, a display chip can process image data from the left side and the right side. Due to requirements for some particular panel design, however, the output image data from a transmission port and an image processing unit might not be symmetric. Some parts of the image data from left side and the right side are overlapped. Or when the display device is performing particular image process, for example, Zigzag application, color process, edge enhancement or multi-port transmission, the image processing chip at the front end has to send the overlapped image data to the display chip.
SUMMARY OF THE INVENTIONIt is therefore an objective of the present invention to provide a non-overlap data transmission method for a liquid crystal display.
The present disclosure provides a non-overlap data transmission method for a liquid crystal display (LCD). The non-overlap data transmission method includes obtaining an entire fame image data; dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and mutually sending image data of the image data segments through the display processing units.
The present disclosure further provides a transmission circuit for a liquid crystal device (LCD). The transmission circuit includes a plurality of transmission ports and a plurality of display processing units. The plurality of transmission ports are used for obtaining an obtaining an entire fame image data and dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments. The plurality of display processing units are used for receiving the image data segments and mutually sending image data of the image data segments through, wherein each of the display processing units individually receives one of the image data segments.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Take two transmission ports as an example, please refer to
Please refer to
Please refer to
The operations of the transmission circuit 10 can be synthesized into a process 70, as shown in
Step 700: Start.
Step 702: Obtain the entire fame image data IMG.
Step 704: Divide the entire frame image data IMG into image data segments img_1, img_2, . . . , img_n and individually send the image data segments img_1, img_2, . . . , img_n to the display processing units 120 at the same time, wherein each of the image data segments img_, img_2, . . . img_n is sent to one of the display processing units 120 and image data of each image data segment does not overlap with image data of the other image data segments.
Step 706: Mutually send image data of the image data segments img_1, img_2, . . . , img_n through the display processing units.
Step 708: End.
The detailed description of the process 70 can be found above, and thus omitted herein.
To sum up, the examples of the present disclosure divide the entire frame image data IMG into the multiple image data segments and send the image data segments to the display processing units at the same time. By using the display processing units to mutually send the image data segments to each other, the examples of the present disclosure can execute particular image process, such as Zigzag application, color process, edge enhancement and multi-port transmission, when the overlapped image data is not support.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims
1. A non-overlap data transmission method for a liquid crystal display (LCD) comprising:
- obtaining an entire frame image data;
- dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and
- mutually sending image data of the image data segments through the display processing units;
- wherein the step of mutually sending the image data of the image data segments through the display processing units comprises: a first display processing unit of the display processing units sending image data of a first image data segment of the image data segments to a second display processing unit of the display processing units; and the second display processing unit of the display processing units sending image data of a second image data segment of the image data segments to the first display processing unit of the display processing unit units.
2. The method of claim 1, wherein the image data of the first image data segment is a first boundary image data adjacent to the second image data segment and the image data of the second image data segment is a second boundary image data adjacent to the first image data segment.
3. The method of claim 1, wherein the image data of the first image data segment is the last pixel of the first image data segment and the image data of the second image data segment is the first pixel of the second image data segment when the entire frame image data is transmitting from the left to the right.
4. The method of claim 1, wherein the image data of the first image data segment is the first pixel of the first image data segment and the image data of the second image data segment is the last pixel of the second image data segment when the entire frame image data is transmitting from the right to the left.
5. A transmission circuit for a liquid crystal device (LCD) comprising:
- a plurality of transmission ports for obtaining an entire frame image data and dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units at the same time, wherein each of the image data segments is configured to be sent to one of the display processing units and image data of each image data segment does not overlap with image data of the other image data segments; and
- a plurality of display processing units for receiving the image data segments and mutually sending image data of the image data segments, wherein each of the display processing units is configured to individually receives receive one of the image data segments;
- wherein a first display processing unit of the display processing units sends is configured to send image data of a first image data segment of the image data segments to a second display processing unit of the display processing units and the second display processing unit of the display processing units sends is configured to send image data of a second image data segment of the image data segments to the first display processing unit of the display processing unit units.
6. The transmission circuit of claim 5, wherein the image data of the first image data segment is a first boundary image data adjacent to the second image data segment and the image data of the second image data segment is a second boundary image data adjacent to the first image data segment.
7. The transmission circuit of claim 5, wherein the image data of the first image data segment is the last pixel of the first image data segment and the image data of the second image data segment is the first pixel of the second image data segment when the entire frame image data is transmitting from the left to the right.
8. The transmission circuit of claim 5, wherein the image data of the first image data segment is the first pixel of the first image data segment and the image data of the second image data segment is the last pixel of the second image data segment when the entire frame image data is transmitting from the right to the left.
9. A data transmission method for a display, comprising:
- obtaining a frame image data;
- dividing the frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units, wherein each of the image data segments is sent to one of the display processing units;
- sending a first signal from a first display processing unit of the display processing units to a second display processing unit of the display processing units, wherein the first signal is obtained according to at least a part of image data of a first image data segment of the image data segments by the first display processing unit; and
- sending a second signal from the second display processing unit of the display processing units to the first display processing unit of the display processing units, wherein the second signal is obtained according to at least a part of image data of a second image data segment of the image data segments by the second display processing unit.
10. The method of claim 9, wherein an image data of each image data segment does not overlap with the image data of the other image data segments.
11. The method of claim 9, wherein the part of the image data of the first image data segment comprises a first boundary image data adjacent to the second image data segment.
12. The method of claim 9, wherein the part of the image data of the second image data segment comprises a second boundary image data adjacent to the first image data segment.
13. The method of claim 9, wherein the part of the image data of the first image data segment comprises a last pixel data of the first image data segment.
14. The method of claim 9, wherein the part of the image data of the second image data segment comprises a first pixel data of the second image data segment.
15. The method of claim 9, wherein the part of the image data of the first image data segment comprises a first pixel of the first image data segment.
16. The method of claim 9, wherein the part of the image data of the second image data segment comprises a last pixel data of the second image data segment.
17. A transmission circuit for a display, comprising:
- a plurality of transmission ports for obtaining a frame image data and dividing the entire frame image data into a plurality of image data segments and individually sending the image data segments to a plurality of display processing units, wherein each of the image data segments is sent to one of the display processing units; and
- a plurality of display processing units for receiving the image data segments, wherein each of the display processing units individually receives one of the image data segments;
- wherein a first display processing unit of the display processing units is configured to obtain a first signal according to at least a part of image data of a first image data segment of the image data segments and send the first signal to a second display processing unit of the display processing units;
- wherein the second display processing unit of the display processing units is configured to obtain a second signal according to at least a part of image data of a second image data segment of the image data segments and send the second signal to the first display processing unit of the display processing unit.
18. The transmission circuit of claim 17, wherein an image data of each image data segment does not overlap with the image data of the other image data segments.
19. The transmission circuit of claim 17, wherein the part of the image data of the first image data segment comprises a first boundary image data adjacent to the second image data segment.
20. The transmission circuit of claim 17, wherein the part of the image data of the second image data segment comprises a second boundary image data adjacent to the first image data segment.
21. The transmission circuit of claim 17, wherein the part of the image data of the first image data segment comprises a last pixel data of the first image data segment.
22. The transmission circuit of claim 17, wherein the part of the image data of the second image data segment comprises a first pixel data of the second image data segment.
23. The transmission circuit of claim 17, wherein the part of the image data of the first image data segment comprises a first pixel of the first image data segment.
24. The transmission circuit of claim 17, wherein the part of the image data of the second image data segment comprises a last pixel data of the second image data segment.
25. A data transmission method for a display, comprising:
- obtaining a frame image data;
- obtaining a plurality of image data segments according to the frame image data;
- individually sending the image data segments to a plurality of display processing units, wherein each of the image data segments is sent to one of the display processing units and;
- communicating by a first display processing unit of the display processing units with a second display processing unit of the display processing units based on at least a part of image data of a first image data segment of the image data segments; and
- communicating by the second display processing unit of the display processing units with the first display processing unit of the display processing units based on at least a part of image data of a second image data segment of the image data segments.
26. A transmission circuit for a display comprising:
- a plurality of transmission ports for individually sending a plurality of image data segments to a plurality of display processing units, wherein each of the image data segments is configured to be sent to one of the display processing units; and
- a plurality of display processing units for receiving the image data segments, wherein each of the display processing units is configured to individually receive one of the image data segments;
- wherein a first display processing unit of the display processing units is configured to communicate with a second display processing unit of the display processing units based on at least a part of image data of a first image data segment of the image data segments; and
- wherein the second display processing unit of the display processing units is configured to communicate with the first display processing unit of the display processing units based on at least a part of image data of a second image data segment of the image data segments.
4816816 | March 28, 1989 | Usui |
6140667 | October 31, 2000 | Yamazaki |
6246386 | June 12, 2001 | Perner |
6710839 | March 23, 2004 | Komeno |
6724444 | April 20, 2004 | Ashizawa |
6927831 | August 9, 2005 | Hagiwara |
7046324 | May 16, 2006 | Ohta |
7462897 | December 9, 2008 | Endo |
7575965 | August 18, 2009 | Kuwabara |
7847904 | December 7, 2010 | Kimura |
8344378 | January 1, 2013 | Nakajima |
8816912 | August 26, 2014 | Rajgopal |
9317110 | April 19, 2016 | Lutnick |
9477307 | October 25, 2016 | Chizeck |
9754520 | September 5, 2017 | Kwon |
9830872 | November 28, 2017 | Kim |
20030058395 | March 27, 2003 | Hagiwara |
20030063248 | April 3, 2003 | Komeno |
20060238487 | October 26, 2006 | Shih |
20080180384 | July 31, 2008 | Aoki |
20080186272 | August 7, 2008 | Huang |
20080273002 | November 6, 2008 | Kim |
20110037784 | February 17, 2011 | Shiomi |
20110037785 | February 17, 2011 | Shiomi |
20110200254 | August 18, 2011 | Taniguchi |
20110229106 | September 22, 2011 | Cho |
20120069062 | March 22, 2012 | Ishihara |
20120194564 | August 2, 2012 | White |
20120274659 | November 1, 2012 | Asanuma et al. |
1703732 | November 2005 | CN |
103201764 | July 2013 | CN |
201246169 | November 2012 | TW |
Type: Grant
Filed: May 23, 2018
Date of Patent: Dec 1, 2020
Assignee: NOVATEK Microelectronics Corp. (Hsin-Chu)
Inventors: Chih-Yung Hsu (Hsinchu County), Kai-I Dai (Taoyuan), Jie-Jung Huang (Miaoli County)
Primary Examiner: John M Hotaling
Application Number: 15/986,833
International Classification: G09G 3/36 (20060101); G09G 3/20 (20060101);