High resolution thin multi-aperture imaging systems
A multi-aperture imaging system comprising a first camera with a first sensor that captures a first image and a second camera with a second sensor that captures a second image, the two cameras having either identical or different FOVs. The first sensor may have a standard color filter array (CFA) covering one sensor section and a non-standard color CFA covering another. The second sensor may have either Clear or standard CFA covered sections. Either image may be chosen to be a primary or an auxiliary image, based on a zoom factor. An output image with a point of view determined by the primary image is obtained by registering the auxiliary image to the primary image.
Latest Corephotonics Ltd. Patents:
This application is a Continuation application of U.S. patent application Ser. No. 14/386,823 (now allowed), which was a National Phase application from PCT patent application PCT/IB2013/060356 which claimed priority from U.S. Provisional Patent Application No. 61/730,570 having the same title and filed Nov. 28, 2012, the latter incorporated herein by reference in its entirety.
This broadening reissue application is a continuation of U.S. patent application Ser. No. 16/383,618, filed Apr. 14, 2019, which is a reissue application of U.S. patent application Ser. No. 15/375,090, filed Dec. 11, 2016, now U.S. Pat. No. 9,876,952, which is a continuation of U.S. patent application Ser. No. 14/386,823, filed Apr. 22, 2014, now U.S. Pat. No. 9,538,152, which was a National Phase application from PCT application PCT/IB2013/060356 which claimed priority from U.S. Provisional Patent Application No. 61/730,570 having the same title and filed Nov. 28, 2012, the latter incorporated herein by reference in its entirety. The following three co-pending applications are also continuation reissue applications of U.S. patent application Ser. No. 16/383,618, filed Apr. 14, 2019; U.S. patent application Ser. No. 16/384,140, filed Apr. 15, 2019, U.S. patent application Ser. No. 16/384,197, filed Apr. 15, 2019, and U.S. patent application Ser. No. 16/419,604, filed May 22, 2019.
FIELDEmbodiments disclosed herein relate in general to multi-aperture imaging (“MAI”) systems (where “multi” refers to two or more apertures) and more specifically to thin MAI systems with high color resolution and/or optical zoom.
BACKGROUNDSmall digital cameras integrated into mobile (cell) phones, personal digital assistants and music players are becoming ubiquitous. Each year, mobile phone manufacturers add more imaging features to their handsets, causing these mobile imaging devices to converge towards feature sets and image quality that customers expect from stand-alone digital still cameras. Concurrently, the size of these handsets is shrinking, making it necessary to reduce the total size of the camera accordingly while adding more imaging features. Optical Zoom is a primary feature of many digital still cameras but one that mobile phone cameras usually lack, mainly due to camera height constraints in mobile imaging devices, cost and mechanical reliability.
Mechanical zoom solutions are common in digital still cameras but are typically too thick for most camera phones. Furthermore, the F/# (“F number) in such systems typically increases with the zoom factor (ZF) resulting in poor light sensitivity and higher noise (especially in low-light scenarios). In mobile cameras, this also results in resolution compromise, due to the small pixel size of their image sensors and the diffraction limit optics associated with the F/#.
One way of implementing zoom in mobile cameras is by over-sampling the image and cropping and interpolating it in accordance with the desired ZF. While this method is mechanically reliable, it results in thick optics and in an expensive image sensor due to the large number of pixels associated therewith. As an example, if one is interested in implementing a 12 Megapixel camera with X3 ZF, one needs a sensor of 108 Megapixels.
Another way of implementing zoom, as well as increasing the output resolution, is by using a dual-aperture imaging (“DAI”) system. In its basic form, a DAI system includes two optical apertures which may be formed by one or two optical modules, and one or two image sensors (e.g., CMOS or CCD) that grab the optical image or images and convert the data into the electronic domain, where the image can be processed and stored.
The design of a thin MAI system with improved resolution requires a careful choice of parameters coupled with advanced signal processing algorithms to support the output of a high quality image. Known MAI systems, in particular ones with short optical paths, often trade-off functionalities and properties, for example zoom and color resolution, or image resolution and quality for camera module height. Therefore, there is a need for, and it would be advantageous to have thin MAI systems that produce an image with high resolution (and specifically high color resolution) together with zoom functionality.
Moreover, known signal processing algorithms used together with existing MAI systems often further degrade the output image quality by introducing artifacts when combining information from different apertures. A primary source of these artifacts is the image registration process, which has to find correspondences between the different images that are often captured by different sensors with different color filter arrays (CFAs). There is therefore a need for, and it would be advantageous to have an image registration algorithm that is more robust to the type of CFA used by the cameras and which can produce better correspondence between images captured by a multi-aperture system.
SUMMARYEmbodiments disclosed herein teach the use of multi-aperture imaging systems to implement thin cameras (with short optical paths of less than about 9 mm) and/or to realize optical zoom systems in such thin cameras. Embodiments disclosed herein further teach new color filter arrays that optimize the color information which may be achieved in a multi-aperture imaging system with or without zoom. In various embodiments, a MAI system disclosed herein includes at least two sensors or a single sensor divided into at least two areas. Hereinafter, the description refers to “two sensors”, with the understanding that they may represent sections of a single physical sensor (imager chip). Exemplarily, in a dual-aperture imaging system, a left sensor (or left side of a single sensor) captures an image coming from a first aperture while a right sensor (or right side of a single sensor) captures an image coming from a second aperture. In various embodiments disclosed herein, one sensor is a “Wide” sensor while another sensor is a “Tele” sensor, see e.g.
The Tele sensor may be a Clear sensor (i.e. a sensor without color filters) or a standard CFA sensor. This arrangement of the two (or more than two) sensors and of two (or more than two) Wide and Tele “subset cameras” (or simply “subsets”) related to the two Wide and Tele subsets. Each sensor provides a separate image (referred to respectively as a Wide image and a Tele image), except for the case of a single sensor, where two images are captured (grabbed) by the single sensor (example above). In some embodiments, zoom is achieved by fusing the two images, resulting in higher color resolution that approaches that of a high quality dual-aperture zoom camera. Some thin MAI systems disclosed herein therefore provide zoom, super-resolution, high dynamic range and enhanced user experience.
In some embodiments, in order to reach optical zoom capabilities, a different magnification image of the same scene is grabbed by each subset, resulting in field of view (FOV) overlap between the two subsets. In some embodiments, the two subsets have the same zoom (i.e. same FOV). In some embodiments, the Tele subset is the higher zoom subset and the Wide subset is the lower zoom subset. Post processing is applied on the two images grabbed by the MAI system to fuse and output one fused (combined) output zoom image processed according to a user ZF input request. In some embodiments, the resolution of the fused image may be higher than the resolution of the Wide/Tele sensors. As part of the fusion procedure, up-sampling may be applied on the Wide image to scale it to the Tele image.
In an embodiment there is provided a multi-aperture imaging system comprising a first camera subset that provides a first image, the first camera subset having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard CFA, the non-standard CFA used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA; a second camera subset that provides a second image, the second camera subset having a second sensor with a second plurality of sensor pixels either Clear or covered with a standard CFA; and a processor configured to process the first and second images into a combined output image.
In some embodiments, the first and the second camera subsets have identical FOVs and the non-standard CFA may cover an overlap area that includes all the pixels of first sensor, thereby providing increased color resolution. In some such embodiments, the processor is further configured to, during the processing of the first and second images into a combined output image, register respective first and second Luma images obtained from the first and second images, the registered first and second Luma images used together with color information to form the combined output image. In an embodiment, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image, whereby the output image is formed by transferring information from the second image to the first image. In another embodiment, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, whereby the output image is formed by transferring information from the first image to the second image.
In some embodiments, the first camera subset has a first FOV, the second camera subset has a second, smaller FOV than the first FOV, and the non-standard CFA covers an overlap area on the first sensor that captures the second FOV, thereby providing both optical zoom and increased color resolution. In some such embodiments, the processor is further configured to, during the processing of the first and second images into a combined output image and based on a ZF input, register respective first and second Luma images obtained from the first and second images, the registered first and second Luma images used together with color information to form the combined output image. For a ZF input that defines an FOV greater than the second FOV, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. For a ZF input that defines an FOV smaller than or equal to the second FOV, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, and the processing includes forming the output image by transferring information from the first image to the second image.
In an embodiment there is provided a multi-aperture imaging system comprising a first camera subset that provides a first image, the first camera subset having a first sensor with a first plurality of sensor pixels covered at least in part with a standard CFA; a second camera subset that provides a second image, the second camera subset having a second sensor with a second plurality of sensor pixels either Clear or covered with a standard CFA; and a processor configured to register first and second Luma images obtained respectively from the first and second images and to process the registered first and second Luma images together with color information into a combined output image.
In some embodiments, the first and the second camera subsets have identical first and second FOVs. In some such embodiments, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. In other such embodiments, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image and the processing includes forming the output image by transferring information from the first image to the second image.
In some embodiments, the first camera subset has a first FOV, the second camera subset has a second, smaller FOV than the first FOV, and the processor is further configured to register the first and second Luma images based on a ZF input. For a ZF input that defines an FOV greater than the second FOV, the registration includes finding a corresponding pixel in the second Luma image for each pixel in the first Luma image and the processing includes forming the output image by transferring information from the second image to the first image. For a ZF input that defines an FOV smaller than or equal to the second FOV, the registration includes finding a corresponding pixel in the first Luma image for each pixel in the second Luma image, and the processing includes forming the output image by transferring information from the first image to the second image.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.
Embodiments disclosed herein relate to multi-aperture imaging systems that include at least one Wide sensor with a single CFA or with two different CFAs and at least one Tele sensor. The description continues with particular reference to dual-aperture imaging systems that include two (Wide and Tele) subsets with respective sensors. A three-aperture imaging system is described later with reference to
The Wide sensor includes an overlap area (see description of
The Tele sensor may be Clear (providing a Tele Clear image scaled relative to the Wide image) or may include a standard (Bayer or non-Bayer) CFA. It in the latter case, it is desirable to define primary and auxiliary sensors based on the applied ZF. If the ZF is such that the output FOV is larger than the Tele FOV, the primary sensor is the Wide sensor and the auxiliary sensor is the Tele sensor. If the ZF is such that the output FOV is equal to, or smaller than the Tele FOV, the primary sensor is the Tele sensor and the auxiliary sensor is the Wide sensor. The point of view defined by the output image is that of the primary sensor.
Processing Flow
In use, an image is acquired with imaging system 100 and is processed according to steps illustrated in a flowchart shown in
In step 1004, the data from the Wide and Tele images is processed together with the registration information from step 1002 to form a high quality output zoom image. In cases where the Tele sensor is a Clear only sensor, the high resolution luminance component is taken from the Tele sensor and color resolution is taken from the Wide sensor. In cases where the Tele sensor includes a CFA, both color and luminance data are taken from the Tele subset to form the high quality zoom image. In addition, color and luminance data is taken from the Wide subset.
Exemplary Process for Fusing a Zoom Image
1. Special Demosaicing
In this step, the Wide image is interpolated to reconstruct the missing pixel values. Standard demosaicing is applied in the non-overlap area. If the overlap area includes a standard CFA, standard demosaicing is applied there as well. If the overlap area includes a non-standard CFA, a special demosaicing algorithm is applied, depending on the CFA pattern used. In addition, in case the Tele sensor has a CFA, standard demosaicing is applied to reconstruct the missing pixel values in each pixel location and to generate a full RGB color image.
2. Registration Preparation
-
- Tele image: a luminance image LumaTele is calculated from the Tele sensor pixels. If the Tele subset has a Clear sensor, LumaTele is simply the sensor pixels data. If the Tele subset has a standard CFA, LumaTeleis calculated from the demosaiced Tele image.
- Wide image: as a first step, in case the Wide overlap CFA permits estimating the luminance component of the image, the luminance component is calculated from the demosaiced Wide image, LumaWide. If the CFA is one of those depicted in
FIGS. 4-9 , a luminance image is calculated first. If the CFA is one of the CFAs depicted inFIG. 2 orFIG. 3 , a luminance image is not calculated. Instead, the following registration step is performed between a weighted average of the demosaiced channels of the Wide image and LumaTele. For convenience, this weighted average image is also denoted LumaWide. For example, if the Wide sensor CFA in the overlap region is as shown inFIG. 2 , the demosaiced channels RWide and BWide are averaged to create LumaWide according to LumaWide=(f1*RWide+f2*BWide/(f1+f2), where f1 may be f1=1 and f2 may be f2=1. - Low-pass filtering is applied on the Tele luminance image in order to match its spatial frequency content to that of the LumaWide image. This improves the registration performance, as after low-pass filtering the luminance images become more similar. The calculation is LumaTele→Low pass filter→LumaTeleLP, where “LP” denotes an image after low pass filtering.
3. Registration of LumaWide and LumaTeleLP
This step of the algorithm calculates the mapping between the overlap areas in the two luminance images. The registration step does not depend on the type of CFA used (or the lack thereof), as it is applied on luminance images. The same registration step can therefore be applied on Wide and Tele images captured by standard CFA sensors, as well as by any combination of CFAs or Clear sensor pixels disclosed herein. The registration process chooses either the Wide image or the Tele image to be a primary image. The other image is defined as an auxiliary image. The registration process considers the primary image as the baseline image and registers the overlap area in the auxiliary image to it, by finding for each pixel in the overlap area of the primary image its corresponding pixel in the auxiliary image. The output image point of view is determined according to the primary image point of view (camera angle). Various correspondence metrics could be used for this purpose, among which are a sum of absolute differences and correlation.
In an embodiment, the choice of the Wide image or the Tele image as the primary and auxiliary images is based on the ZF chosen for the output image. If the chosen ZF is larger than the ratio between the focal-lengths of the Tele and Wide cameras, the Tele image is set to be the primary image and the Wide image is set to be the auxiliary image. If the chosen ZF is smaller than or equal to the ratio between the focal-lengths of the Tele and Wide cameras, the Wide image is set to be the primary image and the Tele image is set to be the auxiliary image. In another embodiment independent of a zoom factor, the Wide image is always the primary image and the Tele image is always the auxiliary image. The output of the registration stage is a map relating Wide image pixels indices to matching Tele image pixels indices.
4. Combination into a High Resolution Image
In this final step, the primary and auxiliary images are used to produce a high resolution image. One can distinguish between several cases:
a. If the Wide image is the primary image, and the Tele image was generated from a Clear sensor, LumaWide is calculated and replaced or averaged with LumaTele in the overlap area between the two images to create a luminance output image, matching corresponding pixels according to the registration map LumaOut=c1*LumaWide+c2*LumaTele. The values of c1 and c2 may change between different pixels in the image. Then, RGB values of the output are calculated from LumaOut and RWide, GWide, and BWide.
b. If the Wide image is the primary image and the Tele image was generated from a CFA sensor, LumaTele is calculated and is combined with LumaWide in the overlap area between the two images, according to the flow described in 4a.
c. If the Tele image is the primary image generated from a Clear sensor, the RGB values of the output are calculated from the LumaTele image and RWide, GWide, and BWide (matching pixels according to the registration map).
d. If the Tele image is the primary image generated from a CFA sensor, the RGB values of the output (matching pixels according to the registration map) are calculated either by using only the Tele image data, or by also combining data from the Wide image. The choice depends on the zoom factor.
Certain portions of the registered Wide and Tele images are used to generate the output image based on the ZF of the output image. In an embodiment, if the ZF of the output image defines a FOV smaller than the Tele FOV, the fused high resolution image is cropped to the required field of view and digital interpolation is applied to scale up the image to the required output image resolution.
Exemplary and Non-Limiting Pixel Interpolations Specifications for the Overlap Area
In order to reconstruct the missing R22 pixel, we perform R22=(R31+R13)/2. The same operation is performed for all missing Blue pixels.
In order to reconstruct the missing B22 pixel, we perform B22=(B12+B21+B32+B23)/4. The same operation is performed for all missing Red pixels.
In order to reconstruct the missing C22 pixel, we perform C22=(C12+C21+C32+C23)/4. The same operation is performed for all missing Yellow pixels.
Case 1: W is Center Pixel
In order to reconstruct the missing 22 pixels, we perform the following:
B22=(B12+B32)/2
R22=(R21+R23)/2
G22=(W22−R22−B22) (assuming that W includes the same amount of R, G and B colors).
Case 2: R22 is Center Pixel
B22=(B11 +R33)/2
In order to reconstruct the missing 22 pixels, we perform the following:
W22=(2*W21+W24)/3
G22=(W22−R22−B22) (assuming that W contains the same amount of R, G and B colors). The same operation is performed for Blue as the center pixel.
In order to reconstruct the missing 22 pixels, we perform the following:
B22=(B12+B32)/2
R22=(R21+R23)/2.
In order to reconstruct the missing 32 pixels, we perform the following:
G32=(2*G31+2*G22+G43)/5
R32=(R41+2*R42+2*R33+R23+R21)/7.
In order to reconstruct the missing 22 pixels, we perform the following:
B22=(2*B12+2*B23+B31)/5
R22=(2*R21+2*R32+R13)/5
and similarly for all other missing pixels.
In order to reconstruct the missing 22 pixels, we perform the following:
B22=(2*B12+2*B32+B13)/5
R22=(2*R21+2*R23+R11)/5.
In order to reconstruct the missing 32 pixels, we perform the following:
G32=(2*G22+G52)/3
R32=(2*R33+2*R42+R41+R21+R23)/7.
In order to reconstruct the missing 22 pixels, we perform the following:
B22=(B12+B32+B23+B21)/4
R22=(R11+R13+R31+R33)/4.
In order to reconstruct the missing 32 pixels, we perform the following:
G32=(2*G22+G52)/3
R32=(R42+R31+R33)/3.
Triple-Aperture Zoom Imaging System with Improved Color Resolution
As mentioned, a multi-aperture zoom or non-zoom imaging system disclosed herein may include more than two apertures. A non-limiting and exemplary embodiment 1100 of a triple-aperture imaging system is shown in
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. For example, multi-aperture imaging systems with more than two Wide or Wide-Tele subsets (and sensors) or with more than one Tele subset (and sensor) may be constructed and used according to principles set forth herein. Similarly, non-zoom multi-aperture imaging systems with more than two sensors, at least one of which has a non-standard CFA, may be constructed and used according to principles set forth herein. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
Claims
1. A multi-aperture imaging system comprising: a) a first camera that provides a first camera image, the first camera having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard color filter array (CFA) used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA, wherein the nonstandard CFA includes a repetition of a n×n micro-cell where n=4 and wherein each micro-cell includes a BBRR-RBBR-RRBB-BRRB color filter order; b) a second camera that provides a second camera image, the second camera having a second sensor with a second plurality of sensor pixels, the second plurality of sensor pixels being either Clear or covered with a standard CFA, wherein the second camera image has an overlap area with the first camera image; and c) a processor configured to process the first and second camera images into a fused output image, wherein in the overlap area pixels of the second camera image are registered with corresponding pixels of the first camera image.
2. A multi-aperture imaging system comprising: a) a first camera that provides a first camera image, the first camera having a first sensor with a first plurality of sensor pixels covered at least in part with a non-standard color filter array (CFA) used to increase a specific color sampling rate relative to a same color sampling rate in a standard CFA. wherein the non-standard CFA includes a repetition of a n×n micro-cell where n=6 and wherein each micro-cell includes a color filter order selected from the group consisting of RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR, RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR and RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR; b) a second camera that provides a second camera image, the second camera having a second sensor with a second plurality of sensor pixels, the second plurality of sensor pixels being either Clear or covered with a standard CFA, wherein the second camera image has an overlap area with the first camera image; and c) a processor configured to process the first and second camera images into a fused output image, wherein in the overlap area pixels of the second camera image are registered with corresponding pixels of the first camera image.
3. The multi-aperture imaging system of claim 1, wherein the first camera is a Wide camera with a field of view FOVW and wherein the second camera is a Tele camera with a field of view FOVT smaller than FOVW.
4. A method of acquiring images by a multi-aperture imaging system, the method comprising:
- a) providing a first image generated by a first camera of the imaging system, the first camera having a first field of view (F0V1);
- b) providing a second image generated by a second camera of the imaging system, the second camera having a second field of view (FOV2) such that FOV2<FOV1, the second image having an overlap area with the first image; and
- c) fusing the first and second images into a fused image, wherein the fusing includes applying a registration process between the first and second images, the registration process including: i. extracting a first Luma image from the first image ii. extracting a second Luma image from the second image, iii. applying low-pass filtering on the second Luma image in order to match its spatial frequency content to that of the first Luma image and to generate a low-pass second Luma image, and iv. applying registration on the low-pass second Luma image and the first Luma image,
- wherein the non-standard CFA includes a repetition of a n×n micro-cell where n=4 and
- wherein each micro-cell includes a BBRR-RBBR-RRBB-BRRB color filter order.
5. The method of claim 4, wherein n=6 instead of n=4 and wherein instead of each micro-cell including a BBRR-RBBR-RRBB-BRRB color filter order, each micro-cell includes a color filter order selected from the group consisting of RBBRRB-RWRBWB-BBRBRR-RRBRBB-BWBRWR-BRRBBR, BBGRRG-RGRBGB-GBRGRB-RRGBBG-BGBRGR-GRBGBR, RBBRRB-RGRBGB-BBRBRR-RRBRBB-BGBRGR-BRRBBR and RBRBRB-BGBRGR-RBRBRB-BRBRBR-RGRBGB-BRBRBR.
6. A multi-aperture imaging system comprising:
- a) a first camera having a first field of view (FOV1), a first zoom factor (X1) and a first sensor with a first filter array (FA);
- b) a second camera having a second field of view (FOV2), a second zoom factor (X2) and a second sensor with a second filter array, the first sensor having a first overlap area with the second sensor and a first non-overlap area; and
- c) a third camera having a third field of view (FOV3), a third zoom factor (X3) and a third sensor with a third filter array, the second sensor having a second overlap area with the third sensor and a second non-overlap area, wherein X1 is different from X3 and X2 wherein a FA pattern of the first FA in the first overlap area differs from a FA pattern of the first FA in the first non-overlap area or the second FA in the second non-overlap area, wherein an FA pattern of the second FA in the second overlap area differs from the FA pattern of the first FA in the first non-overlap area or the second FA in the second non-overlap area.
7. The multi-aperture imaging system of claim 6, wherein the third filter array is one of an RGB (Bayer), RGBE, CYYM, CYGM, RGBW#1, RGBW#2 or RGBW#3 color filter array.
8. The multi-aperture imaging system of claim 6, wherein X3 is greater than X1.
9. The multi-aperture imaging system of claim 6, wherein X3 is greater than X2.
10. The multi-aperture imaging system of claim 6, wherein X2 is greater than X1.
11. The multi-aperture imaging system of claim 6, wherein the second non-overlap area filter array is one of an RGB (Bayer), RGBE, CYYM, CYGM, RGBW#1, RGBW#2 or RGBW#3 color filter array.
12. The multi-aperture imaging system of claim 9, wherein the third filter array is a clear filter array.
13. The multi-aperture imaging system of claim of claim 9, wherein the second non-overlap area filter array is a clear filter array.
14. The multi-aperture imaging system of claim of claim 13, wherein the third color filter array is a Bayer color filter array.
15. The multi-aperture imaging system of claim 9, wherein the first non-overlap area filter array is one of an RGB (Bayer), RGBE, CYYM, CYGM, RGBW#1, RGBW#2 or RGBW#3 color filter array.
16. The multi-aperture imaging system of claim 9, wherein the first non-overlap area color filter array is a Bayer color filter array.
17. A multi-aperture imaging system comprising:
- a) a first camera having a first field of view (FOV1) and a first sensor;
- b) a second camera having a second field of view (FOV2) and a second sensor with a color filter array (CFA) that includes a red color filter, a green color filter and a blue color filter, the first sensor having a first non-overlap area with the second sensor and a first overlap area with the second sensor; and
- c) a third camera having a third field of view (FOV3) and a third sensor with a Bayer color filter array, the second sensor having a second overlap area with the third sensor and a second non-overlap area, wherein FOV1>FOV2>FOV3 wherein the first sensor comprises a Bayer CFA in the first non-overlap area, wherein a CFA pattern of the first sensor in the first overlap area differs from the Bayer CFA of the first sensor in the first non-overlap area or a second CFA pattern of the second sensor in the second non-overlap area, wherein a CFA pattern of the second sensor in the second overlap area differs from the Bayer CFA of the first sensor in the first non-overlap area or the CFA pattern of the second sensor in the second non-overlap area.
18. A multi-aperture imaging system comprising:
- a) a first camera having a first field of view (FOV1) and a first sensor with a first color filter array (CFA) that includes a red color filter, a green color filter and a blue color filter;
- b) a second camera having a second field of view (FOV2) and a second sensor with a second CFA that includes a red color filter, a green color filter and a blue color filter, the first sensor having a first overlap area with the second sensor and a first non-overlap area; and
- c) a third camera having a third field of view (FOV3) and a third sensor with a third color filter array that includes a red color filter, a green color filter and a blue color filter, the second sensor having a second overlap area with the third sensor and a second non-overlap area, wherein FOV1>FOV2>FOV3 wherein a CFA pattern of the first sensor in the first overlap area differs from a CFA pattern of the first sensor in the first non-overlap area or a second CFA pattern of the second sensor in the second non-overlap area, wherein a CFA pattern of the second sensor in the second overlap area differs from the CFA pattern of the first sensor in the first non-overlap area or the CFA pattern of the second sensor in the second non-overlap area.
4199785 | April 22, 1980 | McCullough et al. |
5005083 | April 2, 1991 | Grage et al. |
5032917 | July 16, 1991 | Aschwanden |
5041852 | August 20, 1991 | Misawa et al. |
5051830 | September 24, 1991 | von Hoessle |
5099263 | March 24, 1992 | Matsumoto et al. |
5248971 | September 28, 1993 | Mandl |
5287093 | February 15, 1994 | Amano et al. |
5394520 | February 28, 1995 | Hall |
5436660 | July 25, 1995 | Sakamoto |
5444478 | August 22, 1995 | Lelong et al. |
5459520 | October 17, 1995 | Sasaki |
5657402 | August 12, 1997 | Bender et al. |
5682198 | October 28, 1997 | Katayama et al. |
5768443 | June 16, 1998 | Michael et al. |
5926190 | July 20, 1999 | Turkowski et al. |
5940641 | August 17, 1999 | McIntyre et al. |
5982951 | November 9, 1999 | Katayama et al. |
6101334 | August 8, 2000 | Fantone |
6128416 | October 3, 2000 | Oura |
6148120 | November 14, 2000 | Sussman |
6208765 | March 27, 2001 | Bergen |
6268611 | July 31, 2001 | Pettersson et al. |
6549215 | April 15, 2003 | Jouppi |
6611289 | August 26, 2003 | Yu et al. |
6643416 | November 4, 2003 | Daniels et al. |
6650368 | November 18, 2003 | Doron |
6680748 | January 20, 2004 | Monti |
6714665 | March 30, 2004 | Hanna et al. |
6724421 | April 20, 2004 | Glatt |
6738073 | May 18, 2004 | Park et al. |
6741250 | May 25, 2004 | Furlan et al. |
6750903 | June 15, 2004 | Miyatake et al. |
6778207 | August 17, 2004 | Lee et al. |
7002583 | February 21, 2006 | Rabb, III |
7015954 | March 21, 2006 | Foote et al. |
7038716 | May 2, 2006 | Klein et al. |
7199348 | April 3, 2007 | Olsen et al. |
7206136 | April 17, 2007 | Labaziewicz et al. |
7248294 | July 24, 2007 | Slatter |
7256944 | August 14, 2007 | Labaziewicz et al. |
7305180 | December 4, 2007 | Labaziewicz et al. |
7339621 | March 4, 2008 | Fortier |
7346217 | March 18, 2008 | Gold, Jr. |
7365793 | April 29, 2008 | Cheatle et al. |
7411610 | August 12, 2008 | Doyle |
7424218 | September 9, 2008 | Baudisch et al. |
7509041 | March 24, 2009 | Hosono |
7533819 | May 19, 2009 | Barkan et al. |
7561191 | July 14, 2009 | May et al. |
7619683 | November 17, 2009 | Davis |
7676146 | March 9, 2010 | Border et al. |
7738016 | June 15, 2010 | Toyofuku |
7773121 | August 10, 2010 | Huntsberger et al. |
7809256 | October 5, 2010 | Kuroda et al. |
7880776 | February 1, 2011 | LeGall et al. |
7918398 | April 5, 2011 | Li et al. |
7964835 | June 21, 2011 | Olsen et al. |
7978239 | July 12, 2011 | Deever et al. |
8094208 | January 10, 2012 | Myhrvold |
8115825 | February 14, 2012 | Culbert et al. |
8134115 | March 13, 2012 | Koskinen et al. |
8149327 | April 3, 2012 | Lin et al. |
8154610 | April 10, 2012 | Jo et al. |
8179457 | May 15, 2012 | Koskinen et al. |
8238695 | August 7, 2012 | Davey et al. |
8274552 | September 25, 2012 | Dahi et al. |
8390729 | March 5, 2013 | Long et al. |
8391697 | March 5, 2013 | Cho et al. |
8400555 | March 19, 2013 | Georgiev et al. |
8439265 | May 14, 2013 | Ferren et al. |
8446484 | May 21, 2013 | Muukki et al. |
8483452 | July 9, 2013 | Ueda et al. |
8514491 | August 20, 2013 | Duparre |
8542287 | September 24, 2013 | Griffith et al. |
8547389 | October 1, 2013 | Hoppe et al. |
8553106 | October 8, 2013 | Scarff |
8587691 | November 19, 2013 | Takane |
8619148 | December 31, 2013 | Watts et al. |
8660420 | February 25, 2014 | Chang |
8803990 | August 12, 2014 | Smith |
8896655 | November 25, 2014 | Mauchly et al. |
8976255 | March 10, 2015 | Matsuoto et al. |
9019387 | April 28, 2015 | Nakano |
9025073 | May 5, 2015 | Attar et al. |
9025077 | May 5, 2015 | Attar et al. |
9041835 | May 26, 2015 | Honda |
9137447 | September 15, 2015 | Shibuno |
9185291 | November 10, 2015 | Shabtay et al. |
9215377 | December 15, 2015 | Sokeila et al. |
9215385 | December 15, 2015 | Luo |
9270875 | February 23, 2016 | Brisedoux et al. |
9286680 | March 15, 2016 | Jiang et al. |
9344626 | May 17, 2016 | Silverstein et al. |
9360671 | June 7, 2016 | Zhou |
9369621 | June 14, 2016 | Malone et al. |
9413930 | August 9, 2016 | Geerds |
9413984 | August 9, 2016 | Attar et al. |
9420180 | August 16, 2016 | Jin |
9438792 | September 6, 2016 | Nakada et al. |
9485432 | November 1, 2016 | Medasani et al. |
9578257 | February 21, 2017 | Attar et al. |
9618748 | April 11, 2017 | Munger et al. |
9681057 | June 13, 2017 | Attar et al. |
9723220 | August 1, 2017 | Sugie |
9736365 | August 15, 2017 | Laroia |
9736391 | August 15, 2017 | Du et al. |
9768310 | September 19, 2017 | Ahn et al. |
9800798 | October 24, 2017 | Ravirala et al. |
9851803 | December 26, 2017 | Fisher et al. |
9894287 | February 13, 2018 | Qian et al. |
9900522 | February 20, 2018 | Lu |
9927600 | March 27, 2018 | Goldenberg et al. |
20020005902 | January 17, 2002 | Yuen |
20020030163 | March 14, 2002 | Zhang |
20020063711 | May 30, 2002 | Park et al. |
20020075258 | June 20, 2002 | Park et al. |
20020122113 | September 5, 2002 | Foote |
20020167741 | November 14, 2002 | Koiwai et al. |
20030030729 | February 13, 2003 | Prentice et al. |
20030093805 | May 15, 2003 | Gin |
20030160886 | August 28, 2003 | Misawa et al. |
20030202113 | October 30, 2003 | Yoshikawa |
20040008773 | January 15, 2004 | Itokawa |
20040012683 | January 22, 2004 | Yamasaki et al. |
20040017386 | January 29, 2004 | Liu et al. |
20040027367 | February 12, 2004 | Pilu |
20040061788 | April 1, 2004 | Bateman |
20040141065 | July 22, 2004 | Hara et al. |
20040141086 | July 22, 2004 | Mihara |
20040240052 | December 2, 2004 | Minefuji et al. |
20050013509 | January 20, 2005 | Samadani |
20050046740 | March 3, 2005 | Davis |
20050157184 | July 21, 2005 | Nakanishi et al. |
20050168834 | August 4, 2005 | Matsumoto et al. |
20050185049 | August 25, 2005 | Iwai et al. |
20050200718 | September 15, 2005 | Lee |
20060054782 | March 16, 2006 | Olsen et al. |
20060056056 | March 16, 2006 | Ahiska et al. |
20060067672 | March 30, 2006 | Washisu et al. |
20060102907 | May 18, 2006 | Lee et al. |
20060125937 | June 15, 2006 | LeGall et al. |
20060170793 | August 3, 2006 | Pasquarette et al. |
20060175549 | August 10, 2006 | Miller et al. |
20060187310 | August 24, 2006 | Janson et al. |
20060187322 | August 24, 2006 | Janson et al. |
20060187338 | August 24, 2006 | May et al. |
20060227236 | October 12, 2006 | Pak |
20070024737 | February 1, 2007 | Nakamura et al. |
20070126911 | June 7, 2007 | Nanjo |
20070177025 | August 2, 2007 | Kopet et al. |
20070188653 | August 16, 2007 | Pollock et al. |
20070189386 | August 16, 2007 | Imagawa et al. |
20070257184 | November 8, 2007 | Olsen et al. |
20070285550 | December 13, 2007 | Son |
20080017557 | January 24, 2008 | Witdouck |
20080024614 | January 31, 2008 | Li et al. |
20080025634 | January 31, 2008 | Border et al. |
20080030592 | February 7, 2008 | Border et al. |
20080030611 | February 7, 2008 | Jenkins |
20080084484 | April 10, 2008 | Ochi et al. |
20080106629 | May 8, 2008 | Kurtz et al. |
20080117316 | May 22, 2008 | Orimoto |
20080129831 | June 5, 2008 | Cho et al. |
20080218611 | September 11, 2008 | Parulski et al. |
20080218612 | September 11, 2008 | Border et al. |
20080218613 | September 11, 2008 | Janson et al. |
20080219654 | September 11, 2008 | Border et al. |
20090086074 | April 2, 2009 | Li et al. |
20090109556 | April 30, 2009 | Shimizu et al. |
20090122195 | May 14, 2009 | Van Baar et al. |
20090122406 | May 14, 2009 | Rouvinen et al. |
20090128644 | May 21, 2009 | Camp et al. |
20090219547 | September 3, 2009 | Kauhanen et al. |
20090252484 | October 8, 2009 | Hasuda et al. |
20090295949 | December 3, 2009 | Ojala |
20090324135 | December 31, 2009 | Kondo et al. |
20100013906 | January 21, 2010 | Border et al. |
20100020221 | January 28, 2010 | Tupman et al. |
20100060746 | March 11, 2010 | Olsen et al. |
20100097444 | April 22, 2010 | Lablans |
20100103194 | April 29, 2010 | Chen et al. |
20100165131 | July 1, 2010 | Makimoto et al. |
20100196001 | August 5, 2010 | Ryynänen et al. |
20100238327 | September 23, 2010 | Griffith et al. |
20100259836 | October 14, 2010 | Kang et al. |
20100277619 | November 4, 2010 | Scarff |
20100283842 | November 11, 2010 | Guissin et al. |
20100321494 | December 23, 2010 | Peterson et al. |
20110058320 | March 10, 2011 | Kim et al. |
20110063417 | March 17, 2011 | Peters et al. |
20110063446 | March 17, 2011 | McMordie et al. |
20110064327 | March 17, 2011 | Dagher |
20110080487 | April 7, 2011 | Venkataraman et al. |
20110121421 | May 26, 2011 | Charbon et al. |
20110128288 | June 2, 2011 | Petrou et al. |
20110164172 | July 7, 2011 | Shintani et al. |
20110216228 | September 8, 2011 | Kawamura |
20110229054 | September 22, 2011 | Weston et al. |
20110234798 | September 29, 2011 | Chou |
20110234853 | September 29, 2011 | Hayashi et al. |
20110234881 | September 29, 2011 | Wakabayashi et al. |
20110242286 | October 6, 2011 | Pace et al. |
20110242355 | October 6, 2011 | Goma et al. |
20110285730 | November 24, 2011 | Lai et al. |
20110292258 | December 1, 2011 | Adler et al. |
20110298966 | December 8, 2011 | Kirschstein et al. |
20120026366 | February 2, 2012 | Golan et al. |
20120044372 | February 23, 2012 | Cote et al. |
20120062780 | March 15, 2012 | Morihisa |
20120069235 | March 22, 2012 | Imai |
20120075489 | March 29, 2012 | Nishihara |
20120081566 | April 5, 2012 | Cote |
20120105579 | May 3, 2012 | Jeon et al. |
20120124525 | May 17, 2012 | Kang |
20120154547 | June 21, 2012 | Aizawa |
20120154614 | June 21, 2012 | Moriya et al. |
20120196648 | August 2, 2012 | Havens et al. |
20120229663 | September 13, 2012 | Nelson et al. |
20120249815 | October 4, 2012 | Bohn et al. |
20120287315 | November 15, 2012 | Huang et al. |
20120320467 | December 20, 2012 | Baik et al. |
20130002928 | January 3, 2013 | Imai |
20130016427 | January 17, 2013 | Sugawara |
20130063629 | March 14, 2013 | Webster et al. |
20130076922 | March 28, 2013 | Shihoh et al. |
20130093842 | April 18, 2013 | Yahata |
20130094126 | April 18, 2013 | Rappoport et al. |
20130113894 | May 9, 2013 | Mirlay |
20130135445 | May 30, 2013 | Dahi et al. |
20130136355 | May 30, 2013 | Demandolx |
20130155176 | June 20, 2013 | Paripally et al. |
20130182150 | July 18, 2013 | Asakura |
20130201360 | August 8, 2013 | Song |
20130202273 | August 8, 2013 | Ouedraogo et al. |
20130235224 | September 12, 2013 | Park et al. |
20130250150 | September 26, 2013 | Malone et al. |
20130258044 | October 3, 2013 | Betts-LaCroix |
20130270419 | October 17, 2013 | Singh et al. |
20130278785 | October 24, 2013 | Nomura et al. |
20130321668 | December 5, 2013 | Kamath |
20140009631 | January 9, 2014 | Topliss |
20140049615 | February 20, 2014 | Uwagawa |
20140118584 | May 1, 2014 | Lee et al. |
20140192238 | July 10, 2014 | Attar et al. |
20140192253 | July 10, 2014 | Laroia |
20140218587 | August 7, 2014 | Shah |
20140313316 | October 23, 2014 | Olsson et al. |
20140362242 | December 11, 2014 | Takizawa |
20150002683 | January 1, 2015 | Hu et al. |
20150042870 | February 12, 2015 | Chan et al. |
20150070781 | March 12, 2015 | Cheng et al. |
20150092066 | April 2, 2015 | Geiss et al. |
20150103147 | April 16, 2015 | Ho et al. |
20150138381 | May 21, 2015 | Ahn |
20150154776 | June 4, 2015 | Zhang et al. |
20150162048 | June 11, 2015 | Hirata et al. |
20150195458 | July 9, 2015 | Nakayama et al. |
20150215516 | July 30, 2015 | Dolgin |
20150237280 | August 20, 2015 | Choi et al. |
20150242994 | August 27, 2015 | Shen |
20150244906 | August 27, 2015 | Wu et al. |
20150253543 | September 10, 2015 | Mercado |
20150253647 | September 10, 2015 | Mercado |
20150261299 | September 17, 2015 | Wajs |
20150271471 | September 24, 2015 | Hsieh et al. |
20150281678 | October 1, 2015 | Park et al. |
20150286033 | October 8, 2015 | Osborne |
20150316744 | November 5, 2015 | Chen |
20150334309 | November 19, 2015 | Peng et al. |
20160044250 | February 11, 2016 | Shabtay et al. |
20160070088 | March 10, 2016 | Koguchi |
20160154202 | June 2, 2016 | Wippermann et al. |
20160154204 | June 2, 2016 | Lim et al. |
20160212358 | July 21, 2016 | Shikata |
20160212418 | July 21, 2016 | Demirdjian et al. |
20160241751 | August 18, 2016 | Park |
20160291295 | October 6, 2016 | Shabtay et al. |
20160295112 | October 6, 2016 | Georgiev et al. |
20160301840 | October 13, 2016 | Du et al. |
20160353008 | December 1, 2016 | Osborne |
20160353012 | December 1, 2016 | Kao et al. |
20170019616 | January 19, 2017 | Zhu et al. |
20170070731 | March 9, 2017 | Darling et al. |
20170187962 | June 29, 2017 | Lee et al. |
20170214846 | July 27, 2017 | Du et al. |
20170214866 | July 27, 2017 | Zhu et al. |
20170242225 | August 24, 2017 | Fiske |
20170289458 | October 5, 2017 | Song et al. |
20180013944 | January 11, 2018 | Evans, V et al. |
20180017844 | January 18, 2018 | Yu et al. |
20180024329 | January 25, 2018 | Goldenberg et al. |
20180059379 | March 1, 2018 | Chou |
20180120674 | May 3, 2018 | Avivi et al. |
20180150973 | May 31, 2018 | Tang et al. |
20180176426 | June 21, 2018 | Wei et al. |
20180198897 | July 12, 2018 | Tang et al. |
20180241922 | August 23, 2018 | Baldwin et al. |
20180295292 | October 11, 2018 | Lee et al. |
20180300901 | October 18, 2018 | Inakai et al. |
20190121103 | April 25, 2019 | Bachar et al. |
101276415 | October 2008 | CN |
201514511 | June 2010 | CN |
102739949 | October 2012 | CN |
103024272 | April 2013 | CN |
103841404 | June 2014 | CN |
1536633 | June 2005 | EP |
1780567 | May 2007 | EP |
2523450 | November 2012 | EP |
S59191146A | October 1984 | JP |
04211230 | August 1992 | JP |
H107318864 | December 1995 | JP |
08271976 | October 1996 | JP |
2002010276 | January 2002 | JP |
2003298920 | October 2003 | JP |
2004133054 | April 2004 | JP |
2004245982 | September 2004 | JP |
2005099265 | April 2005 | JP |
2006238325 | September 2006 | JP |
2007228006 | September 2007 | JP |
2007306282 | November 2007 | JP |
2008076485 | April 2008 | JP |
2010204341 | September 2010 | JP |
2011085666 | April 2011 | JP |
2013106289 | May 2013 | JP |
20070005946 | January 2007 | KR |
20090058229 | June 2009 | KR |
20100008936 | January 2010 | KR |
20140014787 | February 2014 | KR |
101477178 | December 2014 | KR |
20140144126 | December 2014 | KR |
20150118012 | October 2015 | KR |
2000027131 | May 2000 | WO |
2004084542 | September 2004 | WO |
2006008805 | January 2006 | WO |
2009097552 | August 2009 | WO |
2010122841 | October 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | February 2017 | WO |
2017037688 | March 2017 | WO |
2018130898 | July 2018 | WO |
- Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
- A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
- Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
- Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
- Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
- Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
- Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
- Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
- Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
- Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
- High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
- Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
- Superimposed multi-resolution imaging, Caries et al., Publisher: Optical Society of America, 2017, 13 pages.
- Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
- Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
- Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology Jun. 2009, 3 pages.
- International Search Report and Written Opinion issued in related PCT patent application PCT/IB2013/060356, dated Apr. 17, 2014, 15 pages.
Type: Grant
Filed: Apr 15, 2019
Date of Patent: Aug 17, 2021
Assignee: Corephotonics Ltd. (Tel Aviv)
Inventors: Gal Shabtay (Tel-Aviv), Noy Cohen (Tel-Aviv), Oded Gigushinski (Herzlia), Ephraim Goldenberg (Ashdod)
Primary Examiner: Mark Sager
Application Number: 16/384,244
International Classification: H04N 5/232 (20060101); H04N 9/04 (20060101); G06T 11/60 (20060101); G06T 7/00 (20170101); H04N 9/09 (20060101); H04N 5/225 (20060101); G06T 5/20 (20060101);