Fiber optic cable distribution box
A fiber optic cable distribution box has an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box. A drum region is disposed beneath the interface compartment. The drum region includes a cylindrical wall for supporting a fiber optic cable wound about the wall. The drum region is formed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are constructed so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound on the drum region.
Latest CommScope Technologies LLC Patents:
This application is a continuation of U.S. patent application Ser. No. 15/390,085, filed Dec. 23, 2016; and this application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '085 application is a continuation of U.S. patent application Ser. No. 14/492,970, filed Sep. 22, 2014, now U.S. Pat. No. RE462,255; and the '085 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '970 application is a continuation of U.S. patent application Ser. No. 13/091,851, filed Apr. 21, 2011, now U.S. Pat. No. RE45,153; and the '970 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '851 application is a reissue of U.S. patent application Ser. No. 12/156,297 filed May 30, 2008, now U.S. Pat. No. 7,522,806, both of which are entitled “Fiber Optic Cable Distribution Box”. The '297 application is a continuation of U.S. patent application Ser. No. 11/728,785, filed Mar. 27, 2007, now U.S. Pat. No. 7,400,814, and entitled “Wall-Mountable Optical Fiber and Cable Management Apparatus”. The '785 application claims priority under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/880,169, filed Jan. 13, 2007, and entitled “Multidwelling Unit (MDU) Drop Box for Fiber Optic Cables”.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to drop or distribution boxes for managing fiber optic cables in the deployment of fiber optic networks at subscriber premises.
2. Discussion of the Known Art
The deployment of fiber optic networks at multi-dwelling units (MDUs) and other subscriber premises, requires the use of so-called cable drop or distribution boxes that are designed for mounting on walls or other structures at the premises. Current industry practice calls for the boxes to have a cable entry port at the left side of the box for receiving a fiber optic cable originating from the network provider, and one or more ports at the right side of the box through which a number of fibers associated with individual subscribers at the premises are routed to connect with fibers in the provider cable. See, for example, Corning Cable Systems, Wall-Mountable Connector Housings, at <www.corningcablesystems.com>, and ADC Telecommunications, Indoor Fiber Distribution Terminals—Customer Premises Equipment (CPE), at <www.adc.com/productsandservices/>. See also, 2007 Multilink Catalog, vol. 24, at pages 87-94, disclosing a family of wall mountable fiber optic cable enclosures available from Multilink, Inc., of Elyria, Ohio, USA.
U.S. Pat. No. 4,976,510 (Dec. 11, 1990) discloses a wall communications outlet wherein cables may enter the outlet through panels inserted at sides of the outlet, or through an opening formed in a backplate of the outlet. Two sets of sidewalls are arranged concentric with the opening in the backplate so that spare lengths of optical fibers can be placed between the sidewalls, according to the patent. International Application No. PCT/IT92/00055 published Nov. 11, 1993, discloses a distribution device for termination of optical ribbon cables. The device has two circular grooves about which a ribbon, and fibers of the ribbon, are wound.
Installation of the known cable boxes by a single worker at a subscriber premises can be difficult and time consuming, however. Further, the known boxes are dimensioned to accommodate older types of fiber optic cables which can not tolerate bend diameters of less than three inches (76.2 mm) without impairing cable performance. Accordingly, the currently available boxes are relatively large, and are not well-suited for widespread deployment of fiber optic networks at multi-dwelling units or other kinds of premises without significant expenditures of time and labor.
SUMMARY OF THE INVENTIONAccording to the invention, a fiber optic cable distribution box includes an interface compartment for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a cable routed to the box. A drum region extends beneath the interface compartment and includes a cylindrical wall having an axis for supporting a length of a cable wound about the wall. The drum region is constructed so that the box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region. The interface compartment and the drum region are arranged so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound about the wall of the drum region.
For a better understanding of the invention, reference is made to the following description taken in conjunction with the accompanying drawing and the appended claims.
In the drawing:
The box 10 also has a drum region 20 that extends axially upward from a central portion of the base 12. The drum region 20 includes an outer cylindrical wall 22 the outside periphery of which is partially visible in
The cable distribution box 10 also has an interface compartment 30 that is disposed atop the drum region 20, and which has a peripheral side wall 31. In the embodiment of
As mentioned, optical fibers routed into the interface compartment 30 may originate from the inside end portion of a cable wound over the drum region 20 and which passes through the drum wall 22 via the strain relief device 24. In such an application, the fibers are routed through an annular fiber routing region 46 that extends between the outer cylindrical wall 22, and an inner cylindrical wall 48 of the drum region which wall 48 is formed radially inward of the outer wall 22. The strain relief device 24 and the dimensions of the annular fiber routing region 46, are such that individual optical fibers will not be subject to a bend diameter less than that specified for the fibers before entering the interface compartment 30 and terminating in the connectors 44. For example, when using cables of Allwave® Flex™ fiber available from OFS Fitel, the inner wall 48 may have an outside diameter as small as 0.7874 inches (20 mm), and the mean diameter of the fiber routing region 46 may only be about 2.0 inches (50.8 mm).
The sidewall 31 of the interface compartment 30 also has a cable entry or pass through port 50 (
The diameter of the central passage 62 in the tube 60 is preferably sufficient to allow a long narrow tool such as a screwdriver shaft, bolt or other payoff mandrel, to be inserted through the passage from above or below the box 10 so that the tool will act as a spindle about which the box 10 can turn freely. This construction allows a single worker easily to pay out a cable wound on the drum region 20, as may be necessary for a network deployment at a MDU. For example, while holding the handle of an inserted screwdriver in one hand, the worker can use his or her other hand to pull and unwind a desired length of the cable from the drum region 20 while the box 10 is free to turn about the screwdriver shaft.
The box 200 has a single piece cover lid 232 with an integrated hinge 235 for a connector guard or cover 234. Further, a side wall 231 of an interface compartment 230 has a continuous circular disk flange 204 that extends radially outward beneath the compartment 230, parallel to a base 212 of the box. The flange 204 and the base 212 together serve to confine a length of fiber optic cable wound on the outer cylindrical wall 222, within the region between the flange 204 and the base 212. As with the box 10 of
Also, as seen in
Further, as shown in
The cable 260 and its individual fibers are guided over a substantially straight path between the device openings 226, 228, with the aid of a pair of parallel fingers or guides 211 that project upward from the base wall 224c of the device 224 as seen in
Accordingly, the inside end portion of the cable 260 and its individual fibers pass tangentially with respect to the outer cylindrical wall 222 through the cable entry port 225 in the wall, and into the annular fiber routing region 246 of the box 200. Because the yarn surrounding the fibers is anchored to the guides 211 of the strain relief device 224, any force applied externally to the cable 260 when the cable is being wound on or off the outer cylindrical wall 222 of the drum region, will be transferred to the wall 222 in which the device 224 is fixed rather than to the fibers themselves.
Typical MDU cable distribution box installations have single fiber breakouts that egress from the box, wherein each breakout is associated with a corresponding living unit of the premises where the box is installed. Single fiber cables from each living unit are often routed to a box without a terminating connector. The bare ends of these cables can be terminated at the box in various ways. For example, single ended fiber pigtails can be spliced within the box so that splice sleeves are housed in a common space. This requires a chamber or compartment to house the splice in order to prevent damage and to manage fiber slack. Alternatives may include mechanical splicing of the pigtails, which would require a similar chamber or housing. The individual single fiber cables may also be terminated directly with a field installable connector, thus obviating the need for a splice chamber.
The box 300 has an integrated splice chamber or compartment 308 attached or formed underneath the base 312, including a splice tray 309 mounted inside the base. The splice tray 309 may be fixed within the box 300, or affixed directly to a wall. In either case, the box 300 may be installed over the splice compartment 308. Pigtails or terminated ends can then enter or exit a lower section of the compartment through corresponding clearance notches 311 that are cut in a side wall of the base 312.
Connector Parking Area 313The connector parking area or block 313 allows terminated fiber ends to be stored while not in use. The block 313 is constructed and dimensioned to receive and secure a selected one of a number of different commercially available connector parking strips 307 (e.g., type SC) in the block 313. This feature enables the future use of alternate connector types without having to replace the box 300, but at the same time allows installers to forego parking
Latch Holes 315Several latch or security holes 315 may be formed through corresponding feet on the hinged cover lid 332. The latch holes 315 allow the end user to utilize a number of safety lockout methods. For example, one hole 315 can be used with a standard plunger type latching mechanism simply to keep the lid closed. Other holes 315 can be used to receive wire ties, lockout tags, or other security locks.
Each of the subscriber fibers 416 is connected with a corresponding fiber in a cable 418 associated with the box 10 in the ceiling of the subscriber's floor. The cable 418 may be wound initially about the drum region 20 of the box 10, to be partially or fully unwound later for routing to another box 10 that serves as an “aggregation” box which is located, e.g, between a basement 420 and a roof 422 of the MDU 400. The fibers of the cable 418 are terminated in the connectors 44 which, in turn, are connected to the adapters 42 on the internal side of the box connector panel 40.
At the aggregation box 10, each one of the cables 418 containing subscriber fibers from each floor of the MDU 400, enters the aggregation box through its rear pass through port 50 or a faceplate port. As mentioned earlier, the fibers of each cable 418 may be routed inside the box with little if any bending to connect via a multi-fiber connector 44 with a corresponding adapter 42 on the internal side of the box panel 40. A main fiber optic cable 424 serving all subscribers in the MDU 400, is routed between a cable entry box 426 in the basement 420, and the aggregation box 10 in which the main cable fibers connect to the adapters 42 on the external side of the box panel 40 via multifiber connectors 36. A network provider cable 430 is routed to the entry box 426 from outside the MDU 400, and fibers of the cable 430 are connected to corresponding subscriber fibers of the cable 424 inside the entry box 426.
The various embodiments disclosed herein incorporate the following important features in a fiber optic cable distribution box.
1. Reduced physical dimensions for use with newer types of fiber optic cable such as Allwave® Flex™ available from OFS Fitel and which have superior bending performance.
2. An axial drum region that provides for external cable storage and keeps internal fiber routing within safe bending limits.
3. A central through tube that facilitates pay-off of cable wound externally on the drum region, with the use of a common tool such as a screwdriver.
While the foregoing represents preferred embodiments of the invention, it will be understood by those skilled in the art that various modifications and changes may be made without departing from the spirit and scope of the invention, and that the invention includes all such modifications and changes as come within the scope of the following claims.
Claims
1. A fiber optic cable distribution box, comprising:
- an interface compartment constructed and arranged for interfacing a first set of fibers when routed inside the compartment, with a second set of fibers associated with a fiber optic cable that is routed to the box;
- a drum region extending beneath the interface compartment, wherein the drum region includes a first cylindrical wall having an axis, the wall is dimensioned to support a length of a first fiber optic cable wound about the wall, and the drum region is constructed and arranged so that the distribution box can turn about the axis of the cylindrical wall when a cable is paid out from the drum region; and
- the interface compartment and the drum region are constructed and arranged so that the first set of fibers inside the interface compartment, originate from an inside end portion of the cable wound about the first cylindrical wall of the drum region.
2. A cable distribution box according to claim 1, including a tube arranged to extend coaxially through the drum region, and the tube has a central passage through which an outside shaft or spindle is insertable.
3. A cable distribution box according to claim 1, wherein a first cable entry port is formed in the first cylindrical wall of the drum region for receiving the inside end portion of the first fiber optic cable.
4. A cable distribution box according to claim 1, wherein the drum region includes a second cylindrical wall arranged radially inward and coaxially with the first cylindrical wall, and an annular fiber routing region is defined between the first and the second walls.
5. A cable distribution box according to claim 3, including a strain relief device arranged at the first cable entry port for guiding the inside end portion of the first fiber optic cable through the first cylindrical wall over a path tangential to the circumference of the wall.
6. A cable distribution box according to claim 5, wherein the strain relief device is constructed and arranged to transfer a pull force applied externally to the first fiber optic cable, to the first cylindrical wall of the drum region when the cable is wound on or off the drum region.
7. A cable distribution box according to claim 5, wherein the strain relief device includes one or more guides for securing a strength material beneath an outer jacket of the cable.
8. A cable distribution box according to claim 1, wherein the interface compartment includes a connector panel, and a number of connector adapters mounted in the panel for coupling fiber optic connectors at an externally facing side of the panel, with corresponding fiber optic connectors at an internally facing side of the panel.
9. A cable distribution box according to claim 8, wherein the interface compartment is constructed and arranged to support the connector panel so that a first connector panel can be removed and exchanged with a second connector panel having connector adapters of a type different from a type of adapters mounted in the first connector panel.
10. A cable distribution box according to claim 1, wherein the interface compartment has a side wall, and a number of fingers or tabs that project outward from the side wall for confining the length of the first fiber optic cable when wound about the first cylindrical wall of the drum region.
11. A cable distribution box according to claim 1, including a disk flange that extends radially outward beneath the interface compartment for confining the length of the first fiber optic cable when wound on the first cylindrical wall of the drum region.
12. A cable distribution box according to claim 1, wherein the interface compartment has a side wall, and the side wall has a second cable entry port for receiving a fiber optic cable or cable assembly having a third set of fibers to be coupled via the connector panel with the second set of fibers of the second fiber optic cable routed to the box.
13. A cable distribution box according to claim 8, wherein one or more of the adapters mounted in the connector panel of the interface compartment are constructed and arranged to couple multi-fiber type connectors with one another.
14. A cable distribution box according to claim 1, including a length of the first fiber optic cable wound about the first cylindrical wall of the drum region, and a fiber optic connector for terminating an outside end of the cable.
15. A cable distribution box according to claim 14, wherein the fiber optic connector at the outside end of the cable is a multi-fiber type of connector.
16. A fiber optic cable distribution device comprising:
- a cable storage drum defining a cable storage region, wherein a connector interface region of the fiber optic cable distribution device is disposed atop the cable storage region, the connector interface region including a plurality of fiber optic adapters configured to receive fiber optic connectors, the fiber optic cable distribution device also including a connector interface compartment closable by a cover lid that is constructed and arranged to permit an installer to access an interior of the connector interface compartment from outside, wherein at least a portion of the plurality of fiber optic adapters are covered by the cover lid when the cover lid is closed;
- a first fiber optic cable coiled about the cable storage drum in a direction extending from an inside of the cable storage region toward an outside of the cable storage region, wherein at least a first set of optical fibers of the first fiber optic cable extends from the inside of the cable storage region to the connector interface region of the interface compartment; and
- the cable distribution device defining an axis of rotation about which the connector interface region and the drum rotate together in unison as the first fiber optic cable is paid off from the drum.
17. The fiber optic cable distribution device of claim 16, wherein at least the first set of fibers extends from the inside of the cable storage region into the connector interface compartment without any intermediate coiling of the first set of fibers.
18. The fiber optic cable distribution device of claim 16, wherein an outer end of the first fiber optic cable is terminated by a multi-fiber connector.
19. The fiber optic cable distribution device of claim 16, wherein the cable distribution device defines an opening that extends along the axis of rotation, the opening being configured for receiving a mandrel about which the cable distribution device rotates when the first fiber optic cable is paid off from the drum.
20. The fiber optic cable distribution device of claim 16, wherein the plurality of fiber optic adapters include first ports that receive fiber optic connectors associated with the first set of optical fibers.
21. The fiber optic cable distribution device of claim 20, wherein the plurality of fiber optic adapters include second ports that are accessible from outside the connector interface region.
22. The fiber optic cable distribution device of claim 16, wherein the cable storage drum defines a drum wall having an outer dimension of 3 inches or less.
1276825 | August 1918 | Swopo |
1442999 | January 1923 | Boardman et al. |
1446410 | February 1923 | McCormick et al. |
1474580 | November 1923 | Clark et al. |
RE20995 | February 1939 | Beasley |
2502496 | April 1950 | Wickman |
2521226 | September 1950 | Keller |
2727703 | December 1955 | Bonnett |
3131729 | May 1964 | Leysinger |
3657491 | April 1972 | Ryder et al. |
3667417 | June 1972 | Clinkenbeard |
3920308 | November 1975 | Murray |
3940086 | February 24, 1976 | Stoquelet |
4053118 | October 11, 1977 | Aikins |
4081258 | March 28, 1978 | Goell et al. |
4384688 | May 24, 1983 | Smith |
4587801 | May 13, 1986 | Missout et al. |
4635875 | January 13, 1987 | Apple |
4666237 | May 19, 1987 | Mallinson |
4767073 | August 30, 1988 | Malzacher |
4869437 | September 26, 1989 | Berz et al. |
4883337 | November 28, 1989 | Dahlgren |
4913369 | April 3, 1990 | Lia et al. |
4939798 | July 10, 1990 | Last |
4940859 | July 10, 1990 | Peterson |
4976510 | December 11, 1990 | Davila et al. |
5016554 | May 21, 1991 | Harris et al. |
5022600 | June 11, 1991 | Blanc et al. |
5066256 | November 19, 1991 | Ward |
5069523 | December 3, 1991 | Finzel et al. |
5074863 | December 24, 1991 | Dines |
5185843 | February 9, 1993 | Aberson et al. |
5185853 | February 9, 1993 | Cheng et al. |
5265815 | November 30, 1993 | Soyka et al. |
5280861 | January 25, 1994 | Corriveau |
5317663 | May 31, 1994 | Beard et al. |
5326040 | July 5, 1994 | Kramer |
5335874 | August 9, 1994 | Shrum et al. |
5434944 | July 18, 1995 | Kerry et al. |
5494234 | February 27, 1996 | Kramer |
5494446 | February 27, 1996 | De Lucia et al. |
5497444 | March 5, 1996 | Wheeler |
5519275 | May 21, 1996 | Scott et al. |
5522561 | June 4, 1996 | Koyamatsu et al. |
5544836 | August 13, 1996 | Pera |
5551545 | September 3, 1996 | Gelfman |
5638481 | June 10, 1997 | Arnett |
5657412 | August 12, 1997 | Caudrelier |
5703990 | December 30, 1997 | Robertson et al. |
5709347 | January 20, 1998 | Hoffmann et al. |
5717810 | February 10, 1998 | Wheeler |
5718397 | February 17, 1998 | Stevens |
5749148 | May 12, 1998 | White et al. |
5758004 | May 26, 1998 | Alarcon et al. |
5787219 | July 28, 1998 | Muellet et al. |
5915640 | June 29, 1999 | Wagter et al. |
5987203 | November 16, 1999 | Abel et al. |
5992787 | November 30, 1999 | Burke |
6167183 | December 26, 2000 | Swain |
6215938 | April 10, 2001 | Reitmeier et al. |
6220413 | April 24, 2001 | Walters et al. |
6243526 | June 5, 2001 | Garibay et al. |
6315598 | November 13, 2001 | Elliot et al. |
6347462 | February 19, 2002 | Steinich |
6379166 | April 30, 2002 | Hagarty et al. |
6494396 | December 17, 2002 | Sugata |
6522826 | February 18, 2003 | Gregory |
6551237 | April 22, 2003 | Matsui |
6554221 | April 29, 2003 | Hinds |
6591051 | July 8, 2003 | Solheid et al. |
6616080 | September 9, 2003 | Edwards |
6669129 | December 30, 2003 | Shah |
6694084 | February 17, 2004 | Nakamura |
6711339 | March 23, 2004 | Puetz et al. |
6834517 | December 28, 2004 | Sheehy, Jr. |
6856748 | February 15, 2005 | Elkins, II et al. |
6915058 | July 5, 2005 | Pons |
6927340 | August 9, 2005 | Binder et al. |
6937725 | August 30, 2005 | Liao |
6948680 | September 27, 2005 | Ganster |
6997410 | February 14, 2006 | Huang |
7000863 | February 21, 2006 | Bethea et al. |
7011538 | March 14, 2006 | Chang |
7016590 | March 21, 2006 | Tanaka et al. |
7017721 | March 28, 2006 | Bradford et al. |
7220144 | May 22, 2007 | Elliot et al. |
7315681 | January 1, 2008 | Kewitsch |
7346253 | March 18, 2008 | Bloodworth et al. |
7364108 | April 29, 2008 | Kim et al. |
7369739 | May 6, 2008 | Kline et al. |
7397997 | July 8, 2008 | Ferris et al. |
7400814 | July 15, 2008 | Hendrickson |
7477829 | January 13, 2009 | Kaplan |
7519258 | April 14, 2009 | Wilken et al. |
7522806 | April 21, 2009 | Hendrickson et al. |
7533472 | May 19, 2009 | Birchinger et al. |
7533841 | May 19, 2009 | Harrison et al. |
7546018 | June 9, 2009 | Hendrickson et al. |
7676136 | March 9, 2010 | Wakileh et al. |
7756379 | July 13, 2010 | Kowalczyk et al. |
7809234 | October 5, 2010 | Smith et al. |
7894701 | February 22, 2011 | Kowalczyk et al. |
RE45153 | September 23, 2014 | Hendrickson |
RE46255 | December 27, 2016 | Hendrickson |
RE48063 | June 23, 2020 | Hendrickson |
20020023814 | February 28, 2002 | Poutiatine |
20020122652 | September 5, 2002 | Gonzalez et al. |
20020126980 | September 12, 2002 | Holman et al. |
20020131749 | September 19, 2002 | Swenson et al. |
20020164121 | November 7, 2002 | Brennan et al. |
20020171002 | November 21, 2002 | Krestsch et al. |
20020172489 | November 21, 2002 | Daoud et al. |
20030037480 | February 27, 2003 | Davis |
20040218887 | November 4, 2004 | Brown et al. |
20040244430 | December 9, 2004 | Sheehy, Jr. |
20050135771 | June 23, 2005 | Attanasio et al. |
20050163448 | July 28, 2005 | Blackwell, Jr. et al. |
20050213920 | September 29, 2005 | Tanaka et al. |
20050247136 | November 10, 2005 | Cross et al. |
20050258411 | November 24, 2005 | Zeitler |
20060008231 | January 12, 2006 | Reagan et al. |
20060163403 | July 27, 2006 | Dickson |
20060183362 | August 17, 2006 | Mullaney et al. |
20060210230 | September 21, 2006 | Kline et al. |
20070025675 | February 1, 2007 | Kramer |
20070058919 | March 15, 2007 | Desanti |
20070165995 | July 19, 2007 | Reagan et al. |
20070189691 | August 16, 2007 | Barth et al. |
20070274659 | November 29, 2007 | Kaplan |
20080035778 | February 14, 2008 | Belden et al. |
20080037945 | February 14, 2008 | Gniadek et al. |
20080118207 | May 22, 2008 | Yamamoto et al. |
20080218947 | September 11, 2008 | Atkinson |
20080315030 | December 25, 2008 | Hendrickson et al. |
20090190894 | July 30, 2009 | Nhep et al. |
20100054680 | March 4, 2010 | Lochkovic et al. |
20100166376 | July 1, 2010 | Nair et al. |
3841607 | June 1990 | DE |
3841607 | June 1990 | DE |
42 26 368 | February 1994 | DE |
0343057 | November 1989 | EP |
0343057 | November 1989 | EP |
0725468 | August 1996 | EP |
1041417 | October 2000 | EP |
1041417 | October 2000 | EP |
1107031 | June 2001 | EP |
2566997 | January 1986 | FR |
2586822 | March 1987 | FR |
2586822 | March 1987 | FR |
2739460 | April 1997 | FR |
2739460 | April 1997 | FR |
61-093410 | December 1986 | JP |
6-27882 | April 1994 | JP |
9-236709 | September 1997 | JP |
11-349230 | December 1999 | JP |
2000258672 | September 2000 | JP |
2003114339 | January 2003 | JP |
2005-73365 | March 2005 | JP |
2005-249858 | September 2005 | JP |
2005234216 | September 2005 | JP |
2006173669 | June 2006 | JP |
WO PCT/IT/00055 | November 1993 | WO |
9723791 | July 1997 | WO |
PCT/US03/05238 | September 2003 | WO |
WO PCT/US03/05238 | September 2003 | WO |
PCT/US2006/014764 | October 2006 | WO |
WO PCT/US2006/014764 | October 2006 | WO |
- 7 Inch Modules, ADC Telecommunications, Inc, © 1998, “7 Inch Connector Module with IFC”, pp. 127.
- Description of Admitted Prior Art, 30 pages.
- F3DF Modules, ADC Telecommunications, Inc. © 1995, “Individual 12-Pack Assemblies”, pp. 90.
- Fiber Cable Management Products, Third Edition, ADC Telecommunications, Inc., © 1995, 1998.
- Fiber Distribution Frame, Pre-Terminated Rear Load Connector Module, Installation Instructions, ADC Telecommunications, Inc., © 2000.
- Fiber Main Distribution Frame (FMDF), Fiber Terminal Block, Installation Instructions, ADC Telecommunications, Inc., © 2001.
- Fiber Panel Products—Cable Management Tray Panels, ADC Telecommunications, Inc., © 1994, 1996 “72 Fiber Distribution Module (FDM) With Intrafacility Fiber Cable”, pp. 56.
- Fiber Panel Products, Second Edition, ADC Telecommunications, Inc., © 1994, 1996.
- FL2000 Products—Preconfigured Panels, ADC Telecommunications, Inc., © 2000 “Rack or Cabinet Mount Termination Panel with Multifiber Cable”, pp. 13.
- FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996.
- FL2000 Products, ADC Telecommunications, Inc., © 1994, 1996, “Rack Mount Panel with Intrafacility Fiber Cable”, pp. 16.
- IFC Style Frame Modules, ADC Telecommunications, Inc., © 1995, “Connector Module Equipped with IFC”, pp. 27.
- Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000, “Fiber Termination Blocks (FTB) Preterminated”, pp. 8.
- Next Generation Frame (NGF), Product Family Ordering Guide, ADC Telecommunications, Inc., © 1996, 1999, 2000.
- Next Generation Frames—Fiber Termination Blocks, ADC Telecommunication, Inc., © 1998, “Fiber Termination Blocks (FTB) Preterminated” pp. 6.
- Value-Added Module System, ADC Telecommunications, Inc., © 1993, 1194, 1998, “12-Pack Module Assemblies”, pp. 30-31.
- Corning Cable Systems, Wall-Mountable Connector Housings (WCH), at www.corningcablesystymes.com (undated).
- Multilink, Inc., 2007 Multilink Catalog, vol. 24, at p. 87-94.
- Extended European Search Report issued in European Application No. 16171981.0, dated Oct. 13, 2016 (9 pgs).
- ADC Telecommunications, Inc., Indoor Fiber Distribution Terminals—CPE, at www.adc.com/productsand services/ (undated).
Type: Grant
Filed: Jun 22, 2020
Date of Patent: Jan 24, 2023
Assignee: CommScope Technologies LLC (Hickory, NC)
Inventors: Daniel Hendrickson (Roswell, GA), Hongbo Zhang (Duluth, GA)
Primary Examiner: Deandra M Hughes
Application Number: 16/907,621
International Classification: G02B 6/00 (20060101); G02B 6/44 (20060101);