Method and system for driving light emitting display

- Ignis Innovation Inc.

A display system includes a driver for operating a panel having a plurality of pixels arranged by a plurality of first lines and at least one second line The driver includes a driver output unit for providing to the panel a single driver output for activating the plurality of first lines, the single driver output being demultiplexed on the panel to activate each first line.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,471,875. This application is a reissue continuation of application Ser. No. 14/477,037, which is an application for reissue of U.S. Pat. No. 8,471,875.

FIELD OF INVENTION

The present invention relates to a display system, more specifically to a method and system for driving light emitting displays.

BACKGROUND OF THE INVENTION

A display device having a plurality of pixels (or subpixels) arranged in a matrix has been widely used in various applications. Such a display device includes a panel having the pixels and peripheral circuits for controlling the panels. Typically, the pixels are defined by the intersections of scan lines and data lines, and the peripheral circuits include a gate driver for scanning the scan lines and a source driver for supplying image data to the data lines. The source driver may include gamma corrections for controlling gray scale of each pixel. In order to display a frame, the source driver and the gate driver respectively provide a data signal and a scan signal to the corresponding data line and the corresponding scan line. As a result, each pixel will display a predetermined brightness and color.

In recent years, the matrix display has been widely employed in small electronic devices, such as handheld devices, cellular phones, personal digital assistants (PDAs), and cameras. However, the conversional scheme and structure of the source driver and the gate driver demands the large number of elements (e.g., resistors, switchers, and operational amplifiers), resulting that the layout area of the peripheral circuits is still large and expensive.

Therefore there is a need to provide a display driver that can reduce a driver die area and thus cost, without reducing the driver performance.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a method and system that obviates or mitigates at least one of the disadvantages of existing systems.

According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels arranged by a plurality of first lines and at least one second line, the driver having: a driver output unit for providing to the panel a single driver output for activating the plurality of first lines, the single driver output being demultiplexed on the panel to activate each first line.

According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels arranged by a plurality of data lines and at least one scan line, the driver having: a shift register unit including a plurality of shift registers; a latch and shift register unit including a plurality of latch and shift circuits for the plurality of shift registers, each storing an image signal from the corresponding shift register or shifting the image signal to a next latch and shift circuit; and a decoder unit including at least one decoder coupled to one of the latch and shift circuits, for decoding the image signal latched in the one of the latch and shift circuit to provide a driver output.

According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels, the driver having: a plurality of multiplexers for a plurality of offset gamma curve sections, each offset gamma curve section having a first range less than a second range of a main gamma curve, at least one of offset gamma curve sections being offset by a predetermined voltage from a corresponding section of the main gamma curve; a plurality of decoders for the plurality of multiplexers; and an output buffer for providing a driver output based on the output from the decoder and the predetermined voltage.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:

FIG. 1A illustrates a gate driver and a panel for a display system;

FIG. 1B illustrates an example of the gate driver and the panel of FIG. 1A;

FIG. 2 illustrates a timing chart for operating the display system of FIGS. 1A-1B;

FIG. 3A illustrates another example of a gate driver and a panel for a display system;

FIG. 3B illustrates an example of the gate driver and the panel of FIG. 3A;

FIG. 4 illustrates a timing chart for operating the display system of FIGS. 3A-3B;

FIG. 5 illustrates an example of a source driver and a panel for a display system;

FIG. 6 illustrates an example of operation for the display system having RGB pixel structure;

FIG. 7 illustrates a further example of a source driver and a panel for a display system;

FIG. 8 illustrates a further example of a source driver and a panel for a display system having RGBW pixel structure;

FIG. 9 illustrates an example of subpixel configuration for RGBW pixel stricture;

FIG. 10 illustrates a further example of a source driver, external gamma and a panel for a display system;

FIG. 11 illustrates a further example of a source driver and a panel for a display system;

FIG. 12 illustrates a further example of a source driver and a panel for a display system;

FIG. 13 illustrates a source driver for a conventional display system;

FIG. 14 illustrates a further example of a source driver for a display system;

FIG. 15 illustrates a further example of a source driver for a display system;

FIG. 16 illustrates an example of a gamma curve and segmented offset gamma curves;

FIG. 17 illustrates an example of a display system having the gate driver of FIG. 1A or 3A;

FIG. 18 illustrates an example of a display system having the source driver of FIGS. 5-12; and

FIG. 19 illustrates an example of a display system having the source driver of FIGS. 14-15.

DETAILED DESCRIPTION

One or more currently preferred embodiments have been described by way of example. It will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

Embodiments in this disclosure are described using a panel having pixels that are coupled to at least first line and at least one second line (e.g., scan lines and data lines) and being operated by a driver. The driver may be a driver IC having a plurality of pins, e.g., source driver ICs, gate driver ICs. The panel may be, for example, but not limited to, a LCD or LED panel. The panel may be a color panel or a monochrome panel.

In the description below, the terms “source driver” and “data driver” are used interchangeably, and the terms “gate driver” and “address driver” are used interchangeably. In the description below, the terms “row”, “scan line” and “address line” may be used interchangeably. In the description below, the terms “column”, “data line” and “source line” may be used interchangeably. In the description below, the terms “pixel” and “subpixel” may be used interchangeably.

Referring to FIGS. 1A-1B, there is illustrated a system 100 having a gate driver 102 and a panel 110 having pixels arranged in rows and columns. The system 100 includes a mechanism for multiplexing (muxing) gate driver outputs based on frequency reduction. In FIG. 1A, “fv” represents the vertical frequency of the display (or row frequency), and “M” is the number of muxing blocks. In FIG. 1B, “Cell #i” represents an address cell 106, and “SEL k” (k=(i−1)*M+1, (i−1)*M+2, . . . , (i−1)*M+M+1, i*M) represents a row or a scan line coupled to the row of the panel 110. A pixel in the row is selected by the scan line. The address cell 106 may be a logic or a flip-flop in a shift register chain to output a gate output.

The gate driver 102 includes a driver output unit 104 having at least one address cell 106 (Cell #i). The address cell 106 provides a single gate driver output 108 which is shared by M rows. An individual gate driver output 108 from the gate driver 102 is active for M rows. On the panel side 110, a demultiplexer 112 (“1:M Demuxs” in FIG. 1A) is employed for M rows. The input of the demultiplexer 112 is coupled to the gate driver output 108, and the outputs of the demultiplexer 112 are coupled to M rows. In this example, the demultiplexer 112 is coupled to scan lines SEL (i−1)*M+1, SEL (i−1)*M+2, . . . , and SEL i*M. The activated gate driver output 108 from the address cell 106 (Cell #i) is assigned to each individual row in sequence, via the demultiplexer 112.

The demultiplexer 112 is implemented using, for example, thin film transistors, on the panel 110. The demultiplexer 112 includes a plurality of switch blocks for activating M rows. In FIG. 1B, switches 116 (SET #1, SET #2, . . . , SET #M) are shown as an example of the components of the demultiplexer 112. The switch block 116 (SET #k: k=1, 2, . . . , M) is employed for the scan line SEL (i−1)*M+k. Each switch block 116 includes a pair of switches, one being capable of connecting the gate driver output 108 to the corresponding scan line and the other being capable of connecting VGL to the corresponding scan line. VGL may be a ground level voltage. Each scan line SEL (i−1)*M+k turns to be on the VGL level or the activated gate driver output 108 via the corresponding switch block 116 (SET #k). Each switch block 116 (SET #k) is controlled by the corresponding control signal CTRL (k). In FIG. 3B, the scan line SEL (i−1)*M+k is selected (becomes active) by the control signal CTRL (k). By operating the demultiplexer 112 with the control signals CTRL (1)-CTRL (M), the number of the gate driver outputs and address cells is reduced by a factor of M.

In FIG. 1B, one address cell 116 is shown as an element of the driver output unit 104; however, the number of the address cells may vary. In FIG. 1B, M rows (scan lines) are shown; however, the panel 110 may include a plurality of groups of rows where the ith group has M rows and is operated by the ith address cell (Cell #i). One of ordinary skill in the art would appreciate that the gate driver 102 and the panel 110 may include components not shown in the FIGS. 1A-1B.

Referring to FIGS. 1A, 1B and 2, the operation of a display having the gate driver 102 and the panel 110 is described. Each of the controlling signals CTRL (1)-CTRL (M) for controlling the demultiplexing on the panel 110 works at the normal gate frequency. When the display programming reaches the row SEL (i−1)*M+1, the control signal CTRL (1) for that row is high, resulting that the address cell 106 for the ith block (Cell #i) of rows is connected to SEL (i−1)*M+1. Thus, that row SEL (i−1)*M+1 is selected and the image data can be written in the pixels of the row.

After the programming of the row SEL (i−1)*M+1, the next control signal CTRL (2) is high, resulting that the next row SEL (i−1)*M+2 becomes active. This continues till the entire display is programmed (end of a frame).

If a row is not active, the control signal related to that row is low or the address cell related to that row is not active. Thus, the row is connected to VGL which will disconnect the pixels in that row from the gate driver 102.

Referring to FIGS. 3A-3B, there is illustrated a system 130 having a gate driver 132 and a panel 140 having pixels arranged in rows and columns. The system 130 has a mechanism for reducing the number of gate driver outputs and reducing the operation frequency of demultiplexing control signals on the panel side. In FIG. 3A, “fv” represents the vertical frequency of the display (or row frequency). In FIG. 3B, “Cell #j” (j=i, i+1, i+2, i+3) represents an address cell, and “SEL k” (k=i, i+1, i+2, i+3) represents a row or a scan line coupled to the row of the panel 140. A pixel in the row is selected by the scan line. The address cell may be a logic or a flip-flop in a shift register chain to output a gate output.

In the system 130, gate driver output signals are multiplexed on the gate driver 132 side, and the outputs from the gate driver 132 are demultiplexed on the panel 140 side.

The gate driver 132 includes a driver output unit 133 having a plurality of multiplexers for a plurality of address cells. Each address cell provides a gate driver signal, and each multiplexer multiplexing the gate driver signals and outputs a single gate driver output. In FIG. 3B, four address cells 138a-138d (Cell #i, Cell #i+1, Cell #i+2, and Cell #i+3) are shown as an example of the address cells in the gate driver 132. In FIG. 3B, two multiplexers 134a and 134b are shown as an example of multiplexing the gate driver signals. The multiplexers 134a and 134b are controlled by a control signal iCTRL. The multiplexer 134a is coupled to the address cells 138a and 138c (Cell #i and Cell #i+2) and outputs a gate output signal 136a that corresponds to either address cell 138a or 138c (Cell #i or Cell #i+2). The multiplexer 134b is coupled to the address cells 138b and 138d (Cell #i+1 and Cell #i+3) and outputs a gate output signal 136b that corresponds to either address cell 138b or 138d (Cell #i+1 or Cell #i+3).

The panel 140 includes a multiplexer 142 (“1:M Demuxs” in FIG. 3A) coupling to the gate driver outputs and a plurality of rows. The demultiplexer 142 is implemented using, for example, thin film transistors, on the panel 140. The demultiplexer 142 includes a plurality of switch group blocks, each coupling to the gate driver multiplexers. In FIG. 3B, two switch group blocks 146a and 146b (SET #1 and SET #2) are shown as an example of the components of the demultiplexer 142. On the panel side 140, the activated gate driver outputs 136a and 136b are assigned of the switch group blocks 146a and 146b.

Each switch group block in the panel 140 includes a plurality of switch blocks 148. In FIG. 3B, each of the switch group blocks 146a and 146b includes two switch blocks 148, one being capable of coupling one gate driver output 136a to one scan line and the other being capable of coupling the other gate driver output 136b to the other scan line. The switch block 148 includes a pair of switches, one being capable of coupling the gate driver output to the corresponding scan line and the other being capable of coupling VGL to the corresponding scan line. VGL may be a ground level voltage. The switch block 148 in the switch group block (SET #k: k=1, 2, . . .) is controlled by the corresponding control signal CTRL (k). Each scan line turns to be on the VGL level or the corresponding activated gate driver output 136a or 136b via the corresponding switch block 148. In FIG. 3B, the scan lines SEL (i) and SEL (i+1) are selected (become active) by the control signal CTRL (1), and the scan lines SEL (i+2) and SEL (i+3) are selected (become active) by the control signal CTRL (2).

In FIG. 3B, the multiplexing (muxing) and demultiplexing (demuxing) operations are executed for two rows, however, the multiplexing and demultiplexing operations may be executed for more than two rows. In FIG. 3B, four address cells are shown as an element of the driver output unit 133; however, the number of the address cells is not limited to four and may vary. In FIG. 3B, rows (scan lines) are divided into two groups, each having two rows; however, the number of groups and the number of rows in each group are not limited to two and may vary. One of ordinary skill in the art would appreciate that the gate driver 132 and the panel 140 may include components not shown in the FIGS. 3A-3B.

In this structure, the physical multiplexing is used at the gate driver side 132. As a result, the number of address cells remains the same while the number of gate driver outputs is reduced by a factor of multiplexing blocks. The number of rows in each set (SET #k) can be increased for further reduction in output of the gate driver and the frequency of the control signals. Since multiple gate driver outputs can be active, the operation frequency of the demultiplexing control signals is reduced.

Referring to FIGS. 3A, 3B and 4, the operation of a display having the gate driver 132 and the panel 140 is described. When the display programming reaches the rows SEL (i) and SEL (i+1), the control signal CTRL (1) for those rows is high (150), resulting that the gate driver output 136a is coupled to the row SEL (i) and the gate driver output 136b is coupled to the row SEL (i+1). At this period (150), the control signal iCTRL is in one state (e.g., low). The gate driver output 136a corresponds to the output from the address cell 138a (Cell #i) and the gate driver output 136b corresponds to the output from the address cell 138b (Cell #i+1). The image data can be written in the pixels of the selected rows SEL (i) and SEL (i+1).

After the programming of the rows SEL (i) and SEL (i+1), the next control signal CTRL (2) is high (152), resulting that the next rows SEL (i+2) and SEL (i+3) become active. At this period (152), the control signal iCTRL is in the other state (e.g., high). The gate driver output 136a corresponds to the output from the address cell 138c (Cell #i+2) and the gate driver output 136b corresponds to the output from the address cell 138d (Cell #i+3). The image data can be written in the pixels of the selected rows SEL (i+2) and SEL (i+3). This continues till the entire display is programmed (end of a frame).

If a row is not active, the control signal related to that row is low or the address cell related to that row is not active. Thus, the row is connected to VGL which will disconnect the pixels in that row from the gate driver 132.

Referring to FIG. 5, there is illustrated a system 160 having a source driver 162 and a panel 180 having subpixels for RGB. Most of light emitting displays employ different gammas (or gamma corrections) for different subpixels, which use different decoders for different outputs. In the system 160, gammas (gamma corrections, gamma voltages) are multiplexed on the source driver 162 side. In the description, the terms “gamma”, “gamma correction” and “gamma voltages” may be used interchangeably. One of ordinary skill in the art would appreciate that the source driver 162 and the panel 180 may include components not shown in FIG. 5.

The source driver 162 includes a driver output unit 164 having a CMOS multiplexer 166 and a CMOS digital to analog converter (DAC) 170. The multiplexer 166 multiplexes a Red gamma correction 168a, a Green gamma correction 168b and a Blue gamma correction 168c. The DAC 170 includes a decoder. In the description, the terms “DAC” and “DAC decoder” may be used interchangeably.

Each of the gamma corrections 168a, 168b and 168c provides a reference voltage to the DAC 170. The reference voltage is selected based on the dynamic range of the DAC decoder 170. The reference voltage at the gamma correction block may be generated using, for example, resistors, or be stored using, for example, registers.

The output from the multiplexer 166 is provided to the DAC 170. The multiple gammas share one decoder in the DAC 170. The DAC decoder 170 operates on an output from a multiplexer 172. The multiplexer 172 multiplexes a Red register (reg) 174a for storing image data for Red, a Green register (reg) 174b for storing image data for Green, and a Blue register (reg) 174c for storing image data for Blue. The CMOS DAC 170 provides a single source driver output 174.

A demultiplexer 182 is employed on the panel 180 side to demultiplex the driver output 174 from the source driver 162. The demultiplexer 182 is implemented using, for example, thin film transistors, on the panel 180. The outputs from the demultiplexer 182 are couples to three data lines. The driver output 174 is demultiplexed 182 on the panel 180 side and goes to different subpixels (i.e., Red subpixel, Blue subpixel and Green subpixel).

In the system 160, the output of the source driver 162 is multiplexed to reduce the number of driver pins and demultiplexed at the panel 180. To further improve the size of the driver area, the multiplexing is executed at few stage earlier at the gamma selection and DAC inputs. For example, when, the Red pixels are being programmed at the panel 180, the Red data (Red register 174a) and the red gamma 168a are assigned to the DAC 170.

The multiplexers 166 and 172 may be controlled by a color selection control signal ColorSel. The demultiplexer 182 may be controlled by the control signal ColorSel or a control signal associated with the multiplexing control signal ColorSel.

As shown in FIG. 6, the Red pixels, Green pixels and Blue pixels may be programmed sequentially. It will be appreciated by one of ordinary skill in the art that the programming sequence is not limited to that of FIG. 6, and is changeable by using the color selection control signal.

Generally, the output range of the voltage required for the light emitting displays is high and thus source drivers are to be a rail-to-rail design for the power. Currently, this results in using multiple CMOS decoders, leading to a larger area source driver. Referring to FIG. 7, there is illustrated a system 190 having a source driver 192 and a panel 220 having sub-pixels for RGB. In this system 190, multiple gammas (gamma corrections, gamma voltages) are multiplexed and a DAC is divided into separate NMOS and PMOS components, resulting in that the source driver 192 area is reduced. One of ordinary skill in the art would appreciate that the source driver 192 and the panel 220 may include components not shown in FIG. 7.

The source driver 192 includes gamma corrections for Red, Blue and Green, each providing a reference voltage to a DAC decoder. The reference voltage is selected based on the dynamic range of the decoder. The reference voltage may be generated using, for example, resistors, or be stored using, for example, registers. Each gamma correction has a high voltage level gamma correction (high voltage level of gamma corrections) and a low voltage level gamma correction (low voltage level of gamma corrections). The high voltage level of gamma corrections is a level from a predefined reference voltage to the high point of the driver output, and the low voltage level of gamma corrections is a level from the predetermined reference voltage to the beginning of the gamma voltage. The predetermined reference voltage may be at the middle for the driver output range. For example, if the driver range is 10V, the predetermined reference voltage is 5V; the high voltage level of gamma corrections is 5 to 10V; and the low voltage level of gamma corrections is 0 to 5V.

The source driver 192 includes a driver output unit 194 having a PMOS multiplexer 196 for the high voltage level of gamma corrections, and a NMOS multiplexer 200 for the low voltage level of gamma corrections. In FIG. 7, the multiplexer 196 multiplexes a high Red gamma correction 198a, a high Green gamma correction 198b and a high Blue gamma correction 198c, and the multiplexer 200 multiplexes a low Red gamma correction 202a, a low Green gamma correction 202b and a low Blue gamma correction 202c.

The driver output unit 194 includes a DAC that is divided into separate components: a PMOS component 204 (“PMOS DAC” in FIG. 7) and a NMOS component 206 (“NMOS DAC” in FIG. 7). The PMOS component 202 includes a PMOS decoder and receives the output from the multiplexer 196. The NMOS component 206 includes a NMOS decoder and receives the output from the multiplexer 200. The reference voltage from the gamma correction is selected based on the dynamic range of the NMOS and PMOS decoders in the components 204 and 206. The PMOS and NMOS decoders in the components 204 and 206 operate on an output from a multiplexer 208 for multiplexing a Red register 210a, a Green register 210b, and a Blue register 210c. The registers 210a, 210b and 210c correspond to the resisters 174a, 174b and 174c of FIG. 5, respectively. The multiplexers 196, 200 and 208 are controlled by a color selection control signal ColorSel.

The driver output unit 194 includes a CMOS multiplexer 212 for multiplexing the outputs from the PMOS and NMOS components 204 and 206. The multiplexer 212 is operated by an output from a multiplexer 214. The multiplexer 214 multiplexes bit signals R[j], G[i], and B[k], based on the color selection control signal ColorSel. R[j] (G[i], B[k]) is a bit that defines when to use which part of the gamma for Red (Green, Blue). The bit R[j] (G[i], B[k]) is generated based on the Red register 210a (210b, 210c) and predefined data about the gamma curve for Red (Green, Blue), e.g., gamma values. The multiplexer 212 outputs a single source driver output 216.

When the bit signal R[j] is active and the other signals are not active, the source driver 192 outputs the driver output 216 based on either the high Red gamma correction or the low Red gamma correction.

A demultiplexer 222 is employed on the panel 220 side to demultiplex the source driver output 216. The demultiplexer 222 corresponds to the demultiplexer 182 of FIG. 5. The demultiplexer 222 is implemented using, for example, thin film transistors, on the panel 220. The outputs from the demultiplexer 222 are couples to three data lines. The demultiplexer 222 may be controlled by the control signal ColorSel or a control signal associated with the multiplexing control signal ColorSel. Based on the output from the demultiplexer 222, one of three data lines is active. The driver output 216 is demultiplexed 222 on the panel 220 side and goes to different subpixels (i.e., Red subpixel, Blue subpixel, Green subpixel).

Based on the image data, one of the low gamma correction and the high gamma correction is selected. For example, if the high voltage level of gamma corrections is 5 to 10V, the low voltage level of gamma corrections is 0 to 5V, and the image data requires 6 V, the high end of gamma correction will be selected.

Based on the color selection control signal ColorSel, the Red pixels, Green pixels and Blue pixels may be programmed sequentially, similar to that of FIG. 6. It will be appreciated by one of ordinary skill in the art that the programming sequence is not limited to that of FIG. 6, and is changeable by using the color selection control signal.

Instead of using a CMOS decoder that has twice as many transistors as a PMOS or NMOS decoder for the entire range the output voltage, the PMOS decoder 204 is used for the higher range and the NOMS decoder 206 for the lower range of the voltage. Thus, the area will be reduced by using twice less transistors.

Referring to FIG. 8, there is illustrated a system 230 having a source driver 232 and a panel 270 having subpixels. The system 230 is applied to quad RGBW pixel structure. Multiple gamma corrections for White, Green, Blue and Red are multiplexed in the source driver 232. In the source driver 232, four different gamma corrections are generated (White, Green Blue and Low) for each of high voltage level and low voltage level. One of ordinary skill in the art would appreciate that the source driver 232 and the panel 270 may include components not shown in FIG. 8.

The source driver 232 includes gamma corrections for White, Green, Blue and Red, each providing a reference voltage to a DAC decoder. The gamma correction may be generated using, for example, resistors, or be stored using, for example, registers. Each gamma correction has a high voltage level gamma correction (high voltage level of gamma corrections) and a low voltage level gamma correction (low voltage level of gamma corrections). As described above, the high voltage level of gamma corrections is a level from the reference voltage to the reference voltage to the high point of the driver output, and the low voltage level of gamma corrections is a level from the reference voltage to the beginning of the gamma voltage.

The source driver 232 includes a driver output unit 270 having PMOS multiplexers 240a and 240b for high voltage level of gamma corrections, and NMOS multiplexers 244a and 244b for low voltage level of gamma corrections. The multiplexer 240a multiplexes a high White gamma correction 242a and a high Green gamma correction 242b, and the multiplexer 240b multiplexes a high Blue gamma correction 242c and a high RED gamma correction 242d. The multiplexer 244a multiplexes a low White gamma correction 246a and a low Green gamma correction 246b, and the multiplexer 244b multiplexes a low Blue gamma correction 246c and a low RED gamma correction 246d.

The driver output unit 270 includes a PMOS multiplexer 248 for multiplexing the outputs from the PMOS multiplexers 240a and 240b, and a NMOS multiplexer 250 for multiplexing the outputs from the NMOS multiplexers 244a and 244b. Based on the image data and a color selection, one of the low gamma correction and the high gamma correction for the selected color is selected.

The driver output unit 270 includes a DAC that is divided into separate components; a PMOS component 252 (“PMOS DAC” in FIG. 8) for the high voltage level of the gamma corrections and a NMOS component 254 (“NMOS DAC” in FIG. 8) for the low voltage level of the gamma corrections. The PMOS component 252 includes a PMOS decoder and receives the output from the multiplexer 248. The NMOS component 254 includes a NMOS decoder and receives the output from the multiplexer 250. The reference voltage from the gamma correction is selected based on the dynamic range of the NMOS and PMOS decoders in the components 252 and 254.

The PMOS and NMOS decoders in the components 252 and 254 operate on an output from a multiplexer 256 for multiplexing a White/Blue register 258a and a Green/Red register 258b. The White/Blue register 258a stores image data for White/Blue. The Green/Red register 258b stores image data for Green/Red. In the RGBW structure, each data line carries data for two different colors. In this example, one data line carries data for White and Blue, and the other data line carries data for Green and Red. In one row, a data line is connected, for example, to White pixels (Green pixels) while during the next row it is connected to Blue pixels (Red pixels). As a result, the register 258a used for White and Blue data is shared, and the register 258b used for Green and Red is shared.

The driver output unit 270 includes a CMOS multiplexer 260 for multiplexing the outputs from the PMOS and NMOS decoders in the components 252 and 254. The multiplexer 260 is operated by a multiplexer 262 for multiplexing bit signals G/R[i] and W/B[k]. W/B[k] (G/R[j]) is a bit that defines when to use which part of the gamma for White or Blue (Green or Red). The bit W/B[k (G/R[j]) is generated based on the White/Blue register 258a (Green/Red register 258b) and predefined gamma values for White and Blue (Green and Red). The multiplexer 260 provides a source driver output 264.

When the bit signal W/B [k] is active, the source driver 192 outputs the source driver output 264 based on the high White gamma correction, the low White gamma correction, the high Blue gamma correction, the low White gamma correction or the low Blue gamma correction.

A demultiplexer 272 is employed in the panel 270 side to demultiplex the driver output 264 from the source driver 232. The demultiplexer 272 is implemented using, for example, thin film transistors, on the panel 270. The outputs from the demultiplexer 272 are couples to two data lines 274 and 276. The demultiplexer 272 is controlled by a control signal associated with the color selection. Based on the output from the demultiplexer 272, one of two data lines 274 and 276 is active. The driver output 264 is demultiplexed 272 on the panel 270 side and goes to different subpixels (i.e., White subpixel, Blue subpixel, Green subpixel, Red subpixel).

In the source driver 232, one PMOS decoder 254 is used for the higher range and one NOMS decoder 254 for the lower range of the voltage. Thus, the area will be reduced by using twice less transistors than a CMOS decoder.

In the panel 270, instead of having four Red subpixel, Green subpixel, Blue subpixel, and White subpixel side by side, they are configured in a quad arrangement where two subpixels for two colors are in one row and the other two colors are in the other row. In this example, one data line 274 carries data for White and Blue subpixels 278a and 278b, and the other data line 276 carries data for Green and Red subpixels 278c and 278d, as shown in FIG. 9. The subpixels are divided into two rows and two columns. Thus the source driver provides data for two subpixels at a time.

Referring to FIG. 10, there is illustrated a system 280 having a source driver 282, a panel 320 having pixels, and external gamma buffer area 290. The system 280 is applied to RGB pixel structure. Multiple gamma corrections for Red, Green and Blue are multiplexed in the external buffer area 290. The external gamma buffer area 290 is located external to the source driver area 282 (e.g., external to the source driver IC). The gamma voltages are generated externally and applied to the source driver 282 through buffers in the external gamma buffer area 290. On the display side 320, a demultiplexing is used to provide data for each color. One of ordinary skill in the art would appreciate that the source driver 282, the external gamma buffer area 290 and the panel 320 may include components not shown in FIG. 10.

A PMOS multiplexer 292 is employed in the external gamma buffer area 290 for high voltage level of gamma corrections, and a NMOS multiplexer 294 is employed in the external gamma buffer area 290 for low voltage level of gamma corrections. The multiplexer 292 multiplexes a high Red gamma correction 296a, a high Green gamma correction 296b and a high Blue gamma correction 296c, and the multiplexer 294 multiplexes a low Red gamma correction 298a, a low Green gamma correction 298b and a low Blue gamma correction 298c. The gamma corrections 296a, 296b and 296c correspond to the gamma corrections 198a, 198b and 198c of FIG. 7, respectively and are located outside the source driver 282. The gamma corrections 298a, 298b and 298c correspond to the gamma corrections 202a, 202b and 202c of FIG. 7, respectively and are located outside the source driver 282. The PMOS and NMOS multiplexers 292 and 294 correspond to the multiplexers 196 and 200 of FIG. 7, respectively and are located outside the source driver 282. The outputs from the PMOS and NMOS multiplexers 292 and 294 are provided to the source driver 282.

The source driver 282 includes a driver output unit 284. The driver output unit 284 includes a DAC that is divided into separate components: a PMOS component 300 (“PMOS DAC” in FIG. 10) and a NMOS component 302 (“NMOS DAC” in FIG. 10). The PMOS and NMOS components 300 and 302 correspond to the PMOS and NMOS components 204 and 206 of FIG. 7, respectively. The PMOS component 300 includes a PMOS decoder and receives the output from the multiplexer 292. The NMOS component 302 includes a NMOS decoder and receives the output from the multiplexer 294. The PMOS and NMOS decoders in the components 300 and 302 operate on an output from a multiplexer 304 for multiplexing a Red register 306a, Green register 306b and Blue register 306c. The resisters 306a, 306b and 306b correspond to the registers 210a, 210b and 210c of FIG. 7, respectively.

The driver output unit 284 includes a CMOS multiplexer 308 for multiplexing the outputs from the PMOS and NMOS components 300 and 302. The multiplexer 308 is operated by a multiplexer 310 for multiplexing bit signals R[j], G[i] and B[k]. The multiplexers 308 and 310 correspond to the multiplexers 212 and 214 of FIG. 7, respectively. The multiplexer 308 outputs a single source driver output 316.

A demultiplexer 322 is employed on the panel 320 side to demultiplex the driver output 264 from the source driver 282. The demultiplexer 322 corresponds to the demultiplexer 182 of FIG. 5. The demultiplexer 322 is implemented using, for example, thin film transistors, on the panel 320. The outputs from the demultiplexer 322 are couples to three data lines. The demultiplexer 322 is controlled by a control signal associated with the color selection. Based on the output from the demultiplexer 322, one of three data lines is active. The driver output 316 is demultiplexed 322 on the panel 320 side and goes to different subpixels (i.e., Red subpixel, Blue subpixel, Green subpixel).

In this example, the PMOS decoder component 300 is used for the higher range and the NOMS decoder component 302 for the lower range of the voltage. Thus, the source area will be reduced by using twice less transistors than that of a CMOS decoder. In addition, the gammas are multiplexed and provided from the outside of the source driver 282 area, thus the number of inputs required for the gamma correction is reduced as well.

For small displays, the gamma correction is internally programmable. The data for gamma correction is stored in internal registers. To reduce the number of gamma registers, DAC resistive ladders and DAC decoders, the gamma registers are multiplexed, as shown in FIG. 11. For programming each color, the corresponding gamma color is assigned to the gamma block. Referring to FIG. 11, there is illustrated a system 330 having a source driver 332 and a panel 360 having pixels. The system is applied to quad RGB pixel structure. Multiple gamma corrections for Red, Green and Blue are multiplexed in the source driver 332. One of ordinary skill in the art would appreciate that the source driver 332 and the panel 360 may include components not shown in FIG. 11.

The source driver 332 includes a driver output unit 334 having a multiplexer 340 for multiplexing a Red gamma register 342a, a Green gamma register 342b and a Blue gamma register 342c, each for storing the corresponding gamma correction data. The gamma correction is internally programmed (configurable), and the data for the gamma correction is stored in the resister. The driver output unit 334 includes a gamma circuit 344 for generating the gamma voltage based on its input signals from the multiplexer 340 (i.e., data from the gamma resister 342a, 342b, 342c). The gamma circuit 344 may be, for example, but not limited to, a digital potentiometer or a DAC.

The driver output unit 334 includes a CMOS DAC 346 that has a decoder and receives the output from the gamma correction 344. The DAC decoder in the DAC 346 operates on an output from a multiplexer 348 for multiplexing a Red register 350a, a Green register 350b and a Blue register 350c. The registers 350a, 350b and 350c correspond to the resisters 174a, 174b and 174c of FIG. 5, respectively. The driver output 348 from the DAC decoder 346 is demultiplexed at a demultiplexer 362 in the panel 360 and goes to different subpixels (e.g., Red subpixel, Green subpixel and Blue subpixel). The demultiplexer 362 is implemented using, for example, thin film transistors, on the panel 360.

For further improving the source driver area, the DAC is divided into NMOS and PMOS decoders as shown in FIG. 12. Referring to FIG. 12, there is illustrated a system 370 having a source driver 372 and a panel 420 having pixels. The system 370 is applied to RGB pixel structure. Multiple gamma corrections for Red, Green and Blue are multiplexed in the source driver 372. One of ordinary skill in the art would appreciate that the source driver 372 and the panel 420 may include components not shown in FIG. 12.

The source driver 372 includes a driver output unit 374 having a multiplexer 380 for multiplexing a Red gamma register 382a, a Green gamma register 382b and a Blue gamma register 382c. The gamma registers 382a, 382b and 382c correspond to the gamma resisters 342a, 342b and 342c of FIG. 11, respectively. The driver output unit 374 includes a high gamma circuit 384 and a low gamma circuit 386. The high gamma circuit 384 generates a high gamma voltage based on its input signals from the multiplexer 380 (i.e., data from the gamma resister 382a, 382b, 382c). The low gamma circuit 386 generates a low gamma voltage based on its input signals from the multiplexer 380 (i.e., data from the gamma resister 382a, 382b, 382c). Each of the gamma circuits 384 and 386 may be, for example, but not limited to, a digital potentiometer or a DAC.

The driver output unit 374 includes PMOS and NMOS components 390 and 392. The PMOS component 390 includes a PMOS decoder and is provided for the high gamma 384. The NMOS component 392 includes a NMOA decoder and is provided for the low gamma 386. The PMOS and NMOS components 390 and 392 correspond to the PMOS and NMOS components 204 and 206 of FIG. 7. The PMOS and NMOS decoders in the components 390 and 392 operate on an output from a multiplexer 394 for multiplexing a Red register 396a, a Green register 396b and a Blue register 396c. The registers 396a, 396b and 396c correspond to the resisters 174a, 174b and 174c of FIGS. 5 (210a, 210b and 210c of FIG. 7), respectively.

The driver output unit 374 includes a CMOS multiplexer 400 for multiplexing the outputs from the PMOS and NMOS decoders in the components 390 and 392. The multiplexer 400 is operated by a multiplexer 402 for multiplexing bit signals R[j], G[i] and B[k]. The bit signals R[j], G[i] and B[k] correspond to the bit signals R[j], G[i] and B[k] of FIG. 8. The multiplexer 400 outputs a source driver output 404.

A demultiplexer 422 is employed on the panel 420 side to demultiplex the driver output 404 from the source driver 372. The demultiplexer 422 corresponds to the demultiplexer 182 of FIG. 5. The demultiplexer 422 is implemented using, for example, thin film transistors, on the panel 420. The outputs from the demultiplexer 422 are couples to three data lines. The demultiplexer 422 is controlled by a control signal associated with the color selection. Based on the output from the demultiplexer 422, one of three data lines is active. The driver output 404 is demultiplexed 422 on the panel 420 side and goes to different subpixels (i.e., Red subpixel, Blue subpixel, Green subpixel).

To develop muxing in a source driver, data for each color is multiplexed as shown in FIG. 13. FIG. 13 illustrates a source driver 450 for scanning a panel for a conventional display system. The source driver 450 includes a shift register unit 452 and a latch unit 456. The shift register unit 452 includes a plurality of shift registers 454a-454d, and receives a latch signal. The latch unit 456 includes a plurality of latch circuits 458a-458d that are employed for the shift registers 454a-454b, respectively. Each latch circuit 458a, 458b, 458c, 458d latches a digital image signal in response to the latch signal from the corresponding shift register. The outputs from three latch circuits 458a, 458b and 458c are multiplexed by a multiplexer 460 to output R, G, B image signals. The data for each color is multiplexed 460. A DAC 462 includes a decoder for decoding the output from the multiplexer 460 to output analog image signals.

To further reduce the source area, the latch unit 456 is replaced with shift registers as shown in FIG. 14. Referring to FIG. 14, there is illustrated a source driver 480 for a display system. The source driver 480 includes a first stage shift register unit 482, a second stage latch and shift unit 486, and a DAC unit. The multiplexer 460 of FIG. 13 is not implemented in the source driver 480 side. The shift register unit 482 includes a plurality of shift registers, and each receives a latch signal. The latch and shift unit 486 includes a plurality of latch and shift registers that are employed for the shift registers in the shift register unit 482, respectively. In FIG. 14, four shift registers 484a-484d are shown as an example of the components of the shift register unit 482. In FIG. 14, four latch and shift registers 488a-488d are shown as an example of the components of the latch and shift unit 486. In FIG. 14, one DAC 490 is shown as an element of the DAC unit. The DAC 490 has a decoder. The DAC 490 is coupled to the latch and shift register 488c, which decodes its input and outputs a source driver output 492.

It will be appreciated by one of ordinary skill in the art that the number of the shift registers and the number of the latch and shift registers are not limited to four and may vary. It will be appreciated by one of ordinary skill in the art that the source driver 480 may include components not illustrated in FIG. 14. It will be appreciated by one of ordinary skill in the art that the DAC unit of the source driver 480 may include more than one DAC. In one example, the DAC unit includes a plurality of DACs connected in M intervals.

Each latch and shift register in the second stage latch and shift unit 486 can copy its input signal and keep it intact till the next activation signal. The input signal to the latch and shift register may come from the corresponding first stage shift register or the previous latch and shift register in the chain. As a result, the latch and shift register can store the data for a row from the first stage shift register or it can shift its own data to the next units. For example, the latch and shift register 488a latches a digital image signal in response to an activation signal from the corresponding shift register 484a. The latched signal is shifted to the next latch and shift register 488b.

After the input signal for a row is stored in the shift register unit 482, the second stage latch unit 486 is activated and copies the signals from the shift register unit 482. After that, the second stage latch unit 486 shifts the data one by one to the DACs connected in M intervals connect to the latch unit where M defines the muxing order.

After the first color data is programmed, the latch data is shifted by the number of required bits so that the second data is stored in the latch 488c connected to the DAC 490. This operation is executed for other colors as well until all the colors are programmed. This implementation results in a simpler routing and smaller die area. It will be appreciated by one of ordinary skill in the art that a panel side may have a demultiplexer for demultiplexing the source driver 480 output associated with the M multiplexing operation. It will be appreciated by one of ordinary skill in the art that the source driver 480 is applicable to monochrome displays.

Referring to FIG. 15, there is illustrated a source driver 500 for a display system. To develop DAC decoders, high voltage fabrication process is used, which results in large die area. Instead of a having one gamma curve that covers the entire output voltage rage (e.g. 0 to 15), the source driver 500 uses a plurality of smaller offset gamma curve segments (sections) at lower voltage range, which are extracted from different part of the complete gamma curve.

The source driver 500 includes a gamma block 502 for changing the color (gray scale) mapping for a display, a resistive ladder 504 for generating reference voltages, and an overlapping multiplexer block 506 for the offset gamma curve sections.

The overlapping multiplexer block 506 includes a plurality of multiplexers, each for multiplexing reference voltages for different colors. In FIG. 15, three multiplexers 508a, 508b and 508c are shown as an example of components of the overlapping multiplexer block 506. The adjacent multiplexer covers different range of the output voltage, having the beginning and the end of the range. However, the end of one range in one multiplexer and the beginning of the other range in the adjacent multiplexer overlap each other. The overlapping provides flexibility in achieving different gamma curve. The same inputs are being used for both multiplexers.

The source driver 500 includes a DAC decoder section that is segmented into a plurality of low voltage decoders for the offset gamma curve sections. In FIG. 15, the three low voltage decoders 510a, 510b and 510c are shown as the elements of the DAC decoder, each operating at low voltage. The two adjacent decoders share a small portion of their dynamic range. A programmable decoder 512 defines the border of each decoder 510a-510c according to the gamma curves. This allows for having different gamma curves for different applications.

In FIG. 16A, an example of a main gamma curve is illustrated. The main gamma curve 530 of FIG. 16A has a range from 0 to 10V. In FIG. 16B, the main gamma curve 530 of FIG. 16A is segmented into a plurality of offset gamma curve sections 540, 542 and 544. Each offset gamma curve section has a shape corresponding to that of the same section of the main gamma curve 530, and has a voltage range 0 to 5V. The gamma curve section 542 is offset by −5V. The gamma curve section 542 is offset by −10V. Using the offset gamma curve sections, the internal circuits associated with the gamma corrections are offset to lower voltage. The gamma curve section may be internally programmed or input from an external area or device. The display system may include a module for programming/defining offset gamma curve sections. This module may be integrated or operate in conjunction with the programmable decoder 512.

Referring to FIGS. 15 and 16B, the multiplexer 508a is allocated for one offset gamma curve section (e.g., 540 of FIG. 16B) and the low voltage decoder 510a uses that offset gamma curve section. The multiplexer 508b is allocated for another offset gamma curve section (e.g., 542 of FIG. 16B) and the low voltage decoder 510b uses that offset gamma curve section. The multiplexer 508c is allocated for the other offset gamma curve section (e.g., 544 of FIG. 16B) and the low voltage decoder 510c uses that offset gamma curve section. The low voltage decoders 510a, 510b and 510c are programmable.

The source driver 500 includes an output buffer 516. The output buffer 516 outputs a source driver output 520 based on the output from the decoder and the offset voltage.

Based on the pixel circuit data, one offset gamma curve section with its corresponding decoder is being selected. Then the data is passed to the output buffer 516. In order to create the required voltage, the created voltage is being shifted up at the output buffer 516. If a voltage is selected from the second gamma curve section 542 of FIG. 16B, it will be offset by 5 V at the output buffer 516 to cover for the original offset.

Each segment is in its own well so that the body bias can be adjusted accordingly. The decoder can be implemented in low voltage process, leading to smaller die area (over three times saving).

Referring to FIG. 17, there is illustrated an example of a display system 600. The system 600 includes a controller 602, a source driver IC 604, a gate driver IC 606, and a panel 608. The gate driver 606 may include the gate driver 102 of FIGS. 1A-1B or the gate driver 132 of FIGS. 3A-3B. The panel 608 includes a pixel array having a plurality of pixels (or subpixels) 610 and a demultiplexer 612. The demultiplexer 612 may include the demultiplexer 112 of FIGS. 1A-1B or the demultiplexer 142 of FIGS. 3A-3B. The controller 602 controls the source driver 604 and the gate driver 606. The controller 602 also generates control signals 614 to operate the demultiplexer 612, which may correspond to the control signals CTRL(k) of FIGS. 1A or 3A. The demultiplexer 612 is implemented using, for example, thin film transistors, on the panel 608.

Referring to FIG. 18, there is illustrated an example of a display system 630. The system 530 includes a controller 632, a source driver IC 634, a gate driver IC 636, and a panel 638. The source driver 632 may include the source driver 162 of FIG. 5, 192 of FIG. 7, 232 of FIG. 8, 282 of FIG. 10, 332 of FIG. 11 or 372 of FIG. 12. The panel 638 includes a pixel array having a plurality of pixels (or subpixels) 610 and a demultiplexer 642. The demultiplexer 642 may include the demultiplexer 182 of FIG. 5, 222 of FIG. 7, 272 of FIG. 8, 322 of FIG. 10, 362 of FIG. 11 or 422 of FIG. 12. The controller 632 controls the source driver 634 and the gate driver 636. The controller 632 also generates control signals 644 to operate the demultiplexer 632. The demultiplexer 642 is implemented using, for example, thin film transistors, on the panel 638. The system 630 may includes the external gamma 290 of FIG. 10.

Referring to FIG. 19, there is illustrated an example of a display system 660 having the source driver elements of FIG. 14 or FIG. 15. The system 660 includes a controller 662, a source driver IC 664, a gate driver IC 666, and a panel 668. The panel 668 includes a pixel array having a plurality of pixels (or subpixels) 610. The controller 662 controls the source driver 664 and the gate driver 666. The controller 662 controls, for example, the shift register unit 482 and the latch and shift unit 486 of FIG. 14 or the overlapping multiplexer block 506 and the low voltage decoders 510a-510b of FIG. 15.

In the above example, the gate drivers and the source drivers are described separately. However, one of ordinary skill in the art would appreciate that any of the gate drivers of FIGS. 1A and 3B can be used with the source drivers of FIGS. 6-15.

Claims

1. A drive system for an LED display panel having a multiplicity of LED pixels arranged in rows and columns, each of said LED pixels having a drive transistor that includes a gate, a source and a drain and an LED coupled to said drive transistor, comprising:

a gate driver having at least one address cell providing a single gate driver output for multiple rows of pixels of said display panel,
a gate driver multiplexer and a demultiplexer that includes multiple switch blocks coupled to the gate driver and controllably coupling said single gate driver output to said multiple rows of pixels in sequence so that whenever a selected one of said multiple rows is connected to said single gate driver output, all the other said multiple rows are disconnected from said single-game driver output.

2. A display system according to claim 1, wherein the gate driver output unit comprises:

at least one multiplexer, the multiplexer for multiplexing driver signals to provide the single gate driver output.

3. A display system according to claim 2, wherein the panel comprises:

a demultiplexer having a plurality of switch blocks for activating the first lines, each switch block receiving outputs from the at least one multiplexer.

4. A display system, comprising: the LED display panel including a demultiplexer for demultiplexing said single gate driver signal and including multiple switches for controllably coupling said multiple rows of pixels such that when a selected one of said multiple rows is connected to said single gate driver signal, all the other said multiple rows are disconnected from said single-gate driver signal.

a light emitting device (LED) display panel having a multiplicity of LED pixels arranged in rows and columns, each of said pixels having a drive transistor that includes a gate, a source and a drain; and
a gate driver including: an address cell for providing at least one single gate driver signal; and a multiplexer for multiplexing driver signals to provide the least one single gate driver signal for multiple rows of LED pixels of said LED display panel,

5. A display system according to claim 4, wherein the demultiplexer is further for receiving the single gate driver signal from the multiplexer and for activating the multiple rows.

6. A display system according to claim 4, wherein the multiple switches of the LED display panel are further for controllably coupling said multiple rows of LED pixels such that when a selected one of said multiple rows is connected to said single gate driver signal, all the other said multiple rows are connected to a ground level voltage.

7. A method of driving a light emitting device (LED) display panel having a multiplicity of LED pixels arranged in rows and columns, each of said pixels having a drive transistor that includes a gate, a source and a drain, said method comprising:

multiplexing driver signals with use of an address cell and a multiplexer in a gate driver to generate a single gate driver signal;
providing the single gate driver signal for multiple rows of said LED pixels of said LED display panel by demultiplexing the single gate driver signal with a demultiplexer of the LED display panel; and
controllably coupling said multiple rows of LED pixels such that when a selected one of said multiple rows is connected to said single gate driver signal, all the other said multiple rows are disconnected from said single-gate driver signal.

8. A method according to claim 7, wherein controllably coupling said multiple rows of LED pixels is such that when a selected one of said multiple rows is connected to said single gate driver signal, all the other said multiple rows are connected to a ground level voltage.

Referenced Cited
U.S. Patent Documents
3506851 April 1970 Polkinghom et al.
3750987 August 1973 Gobel
3774055 November 1973 Bapat et al.
4090096 May 16, 1978 Nagami
4354162 October 12, 1982 Wright
4996523 February 26, 1991 Bell et al.
5134387 July 28, 1992 Smith et al.
5153420 October 6, 1992 Hack et al.
5170158 December 8, 1992 Shinya
5204661 April 20, 1993 Hack et al.
5266515 November 30, 1993 Robb et al.
5278542 January 11, 1994 Smith et al.
5408267 April 18, 1995 Main
5498880 March 12, 1996 Lee et al.
5572444 November 5, 1996 Lentz et al.
5589847 December 31, 1996 Lewis
5619033 April 8, 1997 Weisfield
5648276 July 15, 1997 Hara et al.
5670973 September 23, 1997 Bassetti et al.
5691783 November 25, 1997 Numao et al.
5701505 December 23, 1997 Yamashita et al.
5714968 February 3, 1998 Ikeda
5744824 April 28, 1998 Kousai et al.
5745660 April 28, 1998 Kolpatzik et al.
5748160 May 5, 1998 Shieh et al.
5758129 May 26, 1998 Gray et al.
5835376 November 10, 1998 Smith et al.
5870071 February 9, 1999 Kawahata
5874803 February 23, 1999 Garbuzov et al.
5880582 March 9, 1999 Sawada
5903248 May 11, 1999 Irwin
5917280 June 29, 1999 Burrows et al.
5949398 September 7, 1999 Kim
5952789 September 14, 1999 Stewart et al.
5990629 November 23, 1999 Yamada et al.
6023259 February 8, 2000 Howard et al.
6069365 May 30, 2000 Chow et al.
6091203 July 18, 2000 Kawashima et al.
6097360 August 1, 2000 Holloman
6100868 August 8, 2000 Lee et al.
6144222 November 7, 2000 Ho
6229506 May 8, 2001 Dawson et al.
6229508 May 8, 2001 Kane
6246180 June 12, 2001 Nishigaki
6252248 June 26, 2001 Sano et al.
6268841 July 31, 2001 Cairns et al.
6288696 September 11, 2001 Holloman
6307322 October 23, 2001 Dawson et al.
6310962 October 30, 2001 Chung et al.
6323631 November 27, 2001 Juang
6333729 December 25, 2001 Ha
6388653 May 14, 2002 Goto et al.
6392617 May 21, 2002 Gleason
6396469 May 28, 2002 Miwa et al.
6414661 July 2, 2002 Shen
6417825 July 9, 2002 Stewart et al.
6430496 August 6, 2002 Smith et al.
6433488 August 13, 2002 Bu
6473065 October 29, 2002 Fan
6475845 November 5, 2002 Kimura
6501098 December 31, 2002 Yamazaki
6501466 December 31, 2002 Yamagashi et al.
6522315 February 18, 2003 Ozawa et al.
6535185 March 18, 2003 Kim et al.
6542138 April 1, 2003 Shannon et al.
6559839 May 6, 2003 Ueno et al.
6580408 June 17, 2003 Bae et al.
6583398 June 24, 2003 Harkin
6618030 September 9, 2003 Kane et al.
6639244 October 28, 2003 Yamazaki et al.
6680580 January 20, 2004 Sung
6686699 February 3, 2004 Yumoto
6690000 February 10, 2004 Muramatsu et al.
6693610 February 17, 2004 Shannon et al.
6694248 February 17, 2004 Smith et al.
6697057 February 24, 2004 Koyama et al.
6724151 April 20, 2004 Yoo
6734636 May 11, 2004 Sanford et al.
6753655 June 22, 2004 Shih et al.
6753834 June 22, 2004 Mikami et al.
6756741 June 29, 2004 Li
6777888 August 17, 2004 Kondo
6781567 August 24, 2004 Kimura
6788231 September 7, 2004 Hsueh
6809706 October 26, 2004 Shimoda
6828950 December 7, 2004 Koyama
6858991 February 22, 2005 Miyazawa
6859193 February 22, 2005 Yumoto
6876346 April 5, 2005 Anzai et al.
6900485 May 31, 2005 Lee
6903734 June 7, 2005 Eu
6911960 June 28, 2005 Yokoyama
6911964 June 28, 2005 Lee et al.
6914448 July 5, 2005 Jinno
6919871 July 19, 2005 Kwon
6924602 August 2, 2005 Komiya
6937220 August 30, 2005 Kitaura et al.
6940214 September 6, 2005 Komiya et al.
6954194 October 11, 2005 Matsumoto et al.
6970149 November 29, 2005 Chung et al.
6975142 December 13, 2005 Azami et al.
6975332 December 13, 2005 Arnold et al.
6995519 February 7, 2006 Arnold et al.
7027015 April 11, 2006 Booth, Jr. et al.
7034793 April 25, 2006 Sekiya et al.
7038392 May 2, 2006 Libsch et al.
7057588 June 6, 2006 Asano et al.
7061451 June 13, 2006 Kimura
7071932 July 4, 2006 Libsch et al.
7106285 September 12, 2006 Naugler
7112820 September 26, 2006 Chang et al.
7113864 September 26, 2006 Smith et al.
7122835 October 17, 2006 Ikeda et al.
7129914 October 31, 2006 Knapp et al.
7164417 January 16, 2007 Cok
7224332 May 29, 2007 Cok
7248236 July 24, 2007 Nathan et al.
7259737 August 21, 2007 Ono et al.
7262753 August 28, 2007 Tanghe et al.
7274363 September 25, 2007 Ishizuka et al.
7310092 December 18, 2007 Imamura
7315295 January 1, 2008 Kimura
7317434 January 8, 2008 Lan et al.
7321348 January 22, 2008 Cok et al.
7327357 February 5, 2008 Jeong
7333077 February 19, 2008 Koyama et al.
7343243 March 11, 2008 Smith et al.
7414600 August 19, 2008 Nathan et al.
7466166 December 16, 2008 Date et al.
7495501 February 24, 2009 Iwabuchi et al.
7502000 March 10, 2009 Yuki et al.
7515124 April 7, 2009 Yaguma et al.
7535449 May 19, 2009 Miyazawa
7554512 June 30, 2009 Steer
7569849 August 4, 2009 Nathan et al.
7595776 September 29, 2009 Hashimoto et al.
7604718 October 20, 2009 Zhang et al.
7609239 October 27, 2009 Chang
7612745 November 3, 2009 Yumoto et al.
7619594 November 17, 2009 Hu
7619597 November 17, 2009 Nathan et al.
7639211 December 29, 2009 Miyazawa
7683899 March 23, 2010 Hirakata et al.
7688289 March 30, 2010 Abe et al.
7692641 April 6, 2010 Kudo et al.
7760162 July 20, 2010 Miyazawa
7808008 October 5, 2010 Miyake
7859520 December 28, 2010 Kimura
7889159 February 15, 2011 Nathan et al.
7903127 March 8, 2011 Kwon
7920116 April 5, 2011 Woo et al.
7944414 May 17, 2011 Shirasaki et al.
7978170 July 12, 2011 Park et al.
7989392 August 2, 2011 Crockett et al.
7995008 August 9, 2011 Miwa
8063852 November 22, 2011 Kwak et al.
8102343 January 24, 2012 Yatabe
8144081 March 27, 2012 Miyazawa
8159007 April 17, 2012 Barna et al.
8242979 August 14, 2012 Anzai et al.
8253665 August 28, 2012 Nathan et al.
8319712 November 27, 2012 Nathan et al.
20010002703 June 7, 2001 Koyama
20010009283 July 26, 2001 Arao et al.
20010026257 October 4, 2001 Kimura
20010030323 October 18, 2001 Ikeda
20010040541 November 15, 2001 Yoneda et al.
20010043173 November 22, 2001 Troutman
20010045929 November 29, 2001 Prache
20010052940 December 20, 2001 Hagihara et al.
20020000576 January 3, 2002 Inukai
20020011796 January 31, 2002 Koyama
20020011799 January 31, 2002 Kimura
20020012057 January 31, 2002 Kimura
20020030190 March 14, 2002 Ohtani et al.
20020047565 April 25, 2002 Nara et al.
20020052086 May 2, 2002 Maeda
20020080108 June 27, 2002 Wang
20020084463 July 4, 2002 Sanford et al.
20020101172 August 1, 2002 Bu
20020117722 August 29, 2002 Osada et al.
20020140712 October 3, 2002 Ouchi et al.
20020158587 October 31, 2002 Komiya
20020158666 October 31, 2002 Azami et al.
20020158823 October 31, 2002 Zavracky et al.
20020171613 November 21, 2002 Goto et al.
20020186214 December 12, 2002 Siwinski
20020190971 December 19, 2002 Nakamura et al.
20020195967 December 26, 2002 Kim et al.
20020195968 December 26, 2002 Sanford et al.
20030001828 January 2, 2003 Asano
20030020413 January 30, 2003 Oomura
20030030603 February 13, 2003 Shimoda
20030062524 April 3, 2003 Kimura
20030062844 April 3, 2003 Miyazawa
20030076048 April 24, 2003 Rutherford
20030090445 May 15, 2003 Chen et al.
20030090447 May 15, 2003 Kimura
20030090481 May 15, 2003 Kimura
20030095087 May 22, 2003 Libsch
20030098829 May 29, 2003 Chen et al.
20030107560 June 12, 2003 Yumoto et al.
20030107561 June 12, 2003 Uchino et al.
20030111966 June 19, 2003 Mikami et al.
20030112205 June 19, 2003 Yamada
20030112208 June 19, 2003 Okabe et al.
20030117348 June 26, 2003 Knapp et al.
20030122474 July 3, 2003 Lee
20030122747 July 3, 2003 Shannon et al.
20030128199 July 10, 2003 Kimura
20030151569 August 14, 2003 Lee et al.
20030156104 August 21, 2003 Morita
20030169241 September 11, 2003 LeChevalier
20030169247 September 11, 2003 Kawabe et al.
20030179626 September 25, 2003 Sanford et al.
20030185438 October 2, 2003 Osawa et al.
20030189535 October 9, 2003 Matsumoto et al.
20030197663 October 23, 2003 Lee et al.
20030214465 November 20, 2003 Kimura
20030227262 December 11, 2003 Kwon
20030230141 December 18, 2003 Gilmour et al.
20030230980 December 18, 2003 Forrest et al.
20040004589 January 8, 2004 Shih
20040032382 February 19, 2004 Cok et al.
20040041750 March 4, 2004 Abe
20040066357 April 8, 2004 Kawasaki
20040070557 April 15, 2004 Asano et al.
20040129933 July 8, 2004 Nathan et al.
20040130516 July 8, 2004 Nathan et al.
20040135749 July 15, 2004 Kondakov et al.
20040145547 July 29, 2004 Oh
20040150595 August 5, 2004 Kasai
20040155841 August 12, 2004 Kasai
20040171619 September 2, 2004 Libsch et al.
20040174349 September 9, 2004 Libsch
20040174354 September 9, 2004 Ono
20040183759 September 23, 2004 Stevenson et al.
20040189627 September 30, 2004 Shirasaki et al.
20040196275 October 7, 2004 Hattori
20040227697 November 18, 2004 Mori
20040239696 December 2, 2004 Okabe
20040251844 December 16, 2004 Hashido et al.
20040252085 December 16, 2004 Miyagawa
20040252089 December 16, 2004 Ono et al.
20040256617 December 23, 2004 Yamada et al.
20040257353 December 23, 2004 Imamura et al.
20040257355 December 23, 2004 Naugler
20040263437 December 30, 2004 Hattori
20050007357 January 13, 2005 Yamashita et al.
20050052379 March 10, 2005 Waterman
20050057459 March 17, 2005 Miyazawa
20050067970 March 31, 2005 Libsch et al.
20050067971 March 31, 2005 Kane
20050083270 April 21, 2005 Miyazawa
20050110420 May 26, 2005 Arnold et al.
20050110727 May 26, 2005 Shin
20050123193 June 9, 2005 Lamberg et al.
20050140610 June 30, 2005 Smith et al.
20050145891 July 7, 2005 Abe
20050156831 July 21, 2005 Yamazaki et al.
20050168416 August 4, 2005 Hashimoto et al.
20050206590 September 22, 2005 Sasaki et al.
20050219188 October 6, 2005 Kawabe et al.
20050243037 November 3, 2005 Eom et al.
20050248515 November 10, 2005 Naugler et al.
20050258867 November 24, 2005 Miyazawa
20050285825 December 29, 2005 Eom et al.
20060012311 January 19, 2006 Ogawa
20060038750 February 23, 2006 Inoue et al.
20060038758 February 23, 2006 Routley et al.
20060038762 February 23, 2006 Chou
20060044236 March 2, 2006 Kim
20060066533 March 30, 2006 Sato et al.
20060077077 April 13, 2006 Kwon
20060092185 May 4, 2006 Jo et al.
20060125408 June 15, 2006 Nathan et al.
20060139253 June 29, 2006 Choi et al.
20060145964 July 6, 2006 Park et al.
20060191178 August 31, 2006 Sempel et al.
20060209012 September 21, 2006 Hagood
20060214888 September 28, 2006 Schneider et al.
20060221009 October 5, 2006 Miwa
20060227082 October 12, 2006 Ogata et al.
20060232522 October 19, 2006 Roy et al.
20060244391 November 2, 2006 Shishido et al.
20060244697 November 2, 2006 Lee et al.
20060261841 November 23, 2006 Fish
20060290614 December 28, 2006 Nathan et al.
20070001939 January 4, 2007 Hashimoto et al.
20070001945 January 4, 2007 Yoshida et al.
20070008251 January 11, 2007 Kohno et al.
20070008297 January 11, 2007 Bassetti
20070035489 February 15, 2007 Lee
20070035707 February 15, 2007 Margulis
20070040773 February 22, 2007 Lee et al.
20070040782 February 22, 2007 Woo et al.
20070063932 March 22, 2007 Nathan et al.
20070080908 April 12, 2007 Nathan et al.
20070085801 April 19, 2007 Park et al.
20070109232 May 17, 2007 Yamamoto et al.
20070128583 June 7, 2007 Miyazawa
20070164941 July 19, 2007 Park et al.
20070182671 August 9, 2007 Nathan et al.
20070236430 October 11, 2007 Fish
20070241999 October 18, 2007 Lin
20070242008 October 18, 2007 Cummings
20080001544 January 3, 2008 Murakami et al.
20080043044 February 21, 2008 Woo et al.
20080048951 February 28, 2008 Naugler et al.
20080055134 March 6, 2008 Li et al.
20080088549 April 17, 2008 Nathan et al.
20080094426 April 24, 2008 Kimpe
20080122819 May 29, 2008 Cho et al.
20080074360 March 27, 2008 Lu et al.
20080129906 June 5, 2008 Lin et al.
20080228562 September 18, 2008 Smith et al.
20080231641 September 25, 2008 Miyashita
20080265786 October 30, 2008 Koyama
20080290805 November 27, 2008 Yamada et al.
20090009459 January 8, 2009 Miyashita
20090015532 January 15, 2009 Katayama et al.
20090058789 March 5, 2009 Hung et al.
20090121988 May 14, 2009 Feng et al.
20090146926 June 11, 2009 Sung et al.
20090153448 June 18, 2009 Tomida et al.
20090153459 June 18, 2009 Han et al.
20090174628 July 9, 2009 Wang et al.
20090201230 August 13, 2009 Smith
20090201281 August 13, 2009 Routley et al.
20090251486 October 8, 2009 Sakakibara et al.
20090278777 November 12, 2009 Wang et al.
20090289964 November 26, 2009 Miyachi
20100039451 February 18, 2010 Jung
20100039453 February 18, 2010 Nathan et al.
20100207920 August 19, 2010 Chaji et al.
20100225634 September 9, 2010 Levey et al.
20100251295 September 30, 2010 Amento et al.
20100269889 October 28, 2010 Reinhold et al.
20100277400 November 4, 2010 Jeong
20100315319 December 16, 2010 Cok et al.
20110050741 March 3, 2011 Jeong
20110069089 March 24, 2011 Kopf et al.
20120299976 November 29, 2012 Chen et al.
Foreign Patent Documents
729652 June 1997 AU
764896 December 2001 AU
1 294 034 January 1992 CA
2 249 592 July 1998 CA
2 303 302 March 1999 CA
2303302 March 1999 CA
2 368 386 September 1999 CA
2 242 720 January 2000 CA
2 354 018 June 2000 CA
2 432 530 July 2002 CA
2 436 451 August 2002 CA
2 507 276 August 2002 CA
2 463 653 January 2004 CA
2 498 136 March 2004 CA
2 522 3 96 November 2004 CA
2 438 363 February 2005 CA
2 443 206 March 2005 CA
2 519 097 March 2005 CA
2 472 671 December 2005 CA
2 523 841 January 2006 CA
2 567 076 January 2006 CA
2 495 726 July 2006 CA
2 557 713 November 2006 CA
2 526 782 August 2007 CA
2 651 893 November 2007 CA
2651893 November 2007 CA
2 672 590 October 2009 CA
2672590 October 2009 CA
1601594 March 2005 CN
1886774 December 2006 CN
202006007613 September 2006 DE
0 478 186 April 1992 EP
1 028 471 August 2000 EP
1 130 565 September 2001 EP
1 194 013 April 2002 EP
1 321 922 June 2003 EP
1 335 430 August 2003 EP
1 381 019 January 2004 EP
1 429 312 June 2004 EP
1 439 520 July 2004 EP
1 465 143 October 2004 EP
1 473 689 November 2004 EP
1 517 290 March 2005 EP
1 521 203 April 2005 EP
2 399 935 September 2004 GB
2 460 018 November 2009 GB
09 090405 April 1997 JP
10-254410 September 1998 JP
11 231805 August 1999 JP
2002-278513 September 2002 JP
2003-076331 March 2003 JP
2003-099000 April 2003 JP
2003-173165 June 2003 JP
2003-186439 July 2003 JP
2003-195809 July 2003 JP
2003-271095 September 2003 JP
2003-308046 October 2003 JP
2004-054188 February 2004 JP
2004-226960 August 2004 JP
2005-004147 January 2005 JP
2005-099715 April 2005 JP
2005-258326 September 2005 JP
2005-338819 December 2005 JP
569173 January 2004 TW
200526065 August 2005 TW
1239501 September 2005 TW
WO 98/11554 March 1998 WO
WO 99/48079 September 1999 WO
WO 01/27910 April 2001 WO
WO 02/067327 August 2002 WO
WO 03/034389 April 2003 WO
WO 03/063124 July 2003 WO
WO 03/075256 September 2003 WO
WO 2004/003877 January 2004 WO
WO 2004/015668 February 2004 WO
WO 2004/034364 April 2004 WO
WO 2005/022498 March 2005 WO
WO 2005/055185 June 2005 WO
WO 2005/055186 June 2005 WO
WO 2005/069267 July 2005 WO
WO 2005/122121 December 2005 WO
WO 2006/063448 June 2006 WO
WO 2006/128069 November 2006 WO
WO 2008/057369 May 2008 WO
WO 2008/0290805 November 2008 WO
WO 2009/059028 May 2009 WO
WO 2009/127065 October 2009 WO
WO 2010/066030 June 2010 WO
WO 2010/120733 October 2010 WO
Other references
  • Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”, dated Aug. 2009.
  • Alexander et al.: “Unique Electrical Measurement Technology for Compensation Inspection and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
  • Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
  • Chaji et al.: “Driving scheme for stable operation of 2-IFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
  • Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
  • Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
  • Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated May 2008 (177 pages).
  • Chapter 3: Color Spaces“ Keith Jack: ”Video Demystified: “A Handbook for the Digital Engineer” 2001 Referex ORD-0000-00-00 USA EP040425529 ISBN: 1-878707-56-6 pp. 32-33.
  • Chapter 8: Alternative Flat Panel Display 1-25 Technologies; Willem den Boer: “Active Matrix Liquid Crystal Display: Fundamentals and Applications” 2005 Referex ORD-0000-00-00 U.K.; XP040426102 ISBN: 0-7506-7813-5 pp. 206-209 p. 208.
  • European Partial Search Report Application No. 12 15 6251.6 European Patent Office dated May 30, 2012 (7 pages).
  • European Patent Office Communication Application No. 05 82 1114 dated Jan. 11, 2013 (9 pages).
  • European Patent Office Communication with Supplemental European Search Report for EP Application No. 07 70 1644.2 dated Aug. 18, 2009 (12 pages).
  • European Search Report Application No. 10 83 4294.0-1903 dated Apr. 8, 2013 (9 pages).
  • European Search Report Application No. EP 05 80 7905 dated Apr. 2, 2009 (5 pages).
  • European Search Report Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages).
  • European Search Report Application No. EP 07 70 1644 dated Aug. 5, 2009.
  • European Search Report Application No. EP 10 17 5764 dated Oct. 18, 2010 (2 pages).
  • European Search Report Application No. EP 10 82 9593.2 European Patent Office dated May 17, 2013 (7 pages).
  • European SearchReport Application No. EP 12 15 6251.6 European Patent Office dated Oct. 12, 2012 (18 pages).
  • European Search Report Application No. EP. 11 175 225.9 dated Nov. 4, 2011 (9 pages).
  • European Supplementary Search Report Application No. EP 09 80 2309 dated May 8, 2011 (14 pages).
  • European Supplementary Search Report Application No. EP 09 83 1339.8 dated Mar. 26, 2012 (11 pages).
  • Extended European Search Report Application No. EP 06 75 2777.0 dated Dec. 6, 2010 (21 pages).
  • Extended European Search Report Application No. EP 09 73 2338.0 dated May 24, 2011 (8 pages).
  • Extended European Search Report Application No. EP 11 17 5223., 4 dated Nov. 8, 2011 (8 pages).
  • Extended European Search Report Application No. EP 12 17 4465.0 European Patent Office dated Sep. 7, 2012 (9 pages).
  • Fan et al. “LTPS_TFT Pixel Circuit Compensation for TFT Threshold Voltage Shift and IR-Drop On the Power Line For Amolded Displays” 5 pages copyright 2012.
  • Goh et al. “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes” IEEE Electron Device Letters vol. 24 No. Sep. 9, 2003 pp. 583-585.
  • International Search Report Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages).
  • International Search Report Application No. PCT/CA2006/000941 dated Oct. 3, 2006 (2 pages).
  • International Search Report Application No. PCT/CA2007/000013 dated May 7, 2007.
  • International Search Report Application No. PCT/CA2009/001049 dated Dec. 7, 2009 (4 pages).
  • International Search Report Application No. PCT/CA2009/001769 dated Apr. 8, 2010.
  • International Search Report Application No. PCT/IB2010/002898 Canadian Intellectual Property Office dated Jul. 28, 2009 (5 pages).
  • International Search Report Application No. PCT/IB2010/055481 dated Apr. 7, 2011 (3 pages).
  • International Search Report Application No. PCT/IB2011/051103 dated Jul. 8, 2011 3 pages.
  • International Search Report Application No. PCT/IB2012/052651 5 pages dated Sep. 11, 2012.
  • International Searching Authority Written Opinion Application No. PCT/IB2010/055481 dated Apr. 7, 2011 (6 pages).
  • International Searching Authority Written Opinion Application No. PCT/IB2012/0526516 pages dated Sep. 11, 2012.
  • International Searching Authority Written Opinion Application No. PCT/IB2011/051103 dated Jul. 8, 2011 6 pages.
  • International Searching Authority Written Opinion Application No. PCT/IB2010/002898 Canadian Intellectual Property Office dated Mar. 30, 2011 (8 pages).
  • International Searching Authority Written Opinion Application No. PCT/CA2009/001769 dated Apr. 8, 2010 (8 pages).
  • Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated May 2005 (4 pages).
  • Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated May 2006 (6 pages).
  • Ma e y et al.: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto Sept. 15-19, 1997 (6 pages).
  • Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004 (4 pages).
  • Nathan et al. “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic” IEEE Journal of Solid-State Circuits vol. 39 No. Sep. 9, 2004 pp. 1477-1486.
  • Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated Sep. 2006 (16 pages).
  • Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
  • Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated Jun. 2006 (4 pages).
  • Nathan et al.: “Thin film imaging technology on glass and plastic”; dated October 31-Nov. 2, 2000 (4 pages).
  • Ono et al. “Shared Pixel Compensation Circuit for AM-OLED Displays ” Proceedings of the 9th Asian Symposium on Information Display (ASID) pp. 462-465 New Delhi dated Oct. 8-12, 2006 (4 pages).
  • Philipp: “Charge transfer sensing” Sensor Review vol. 19 No. 2 Dec. 31, 1999 (Dec. 31, 1999) 10 pages.
  • Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages).
  • Stewart M. et al. “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices vol. 48 No. 5 May 2001 (7 pages).
  • Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated Feb. 2009.
  • Yi He et al. “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays” IEEE Electron Device Letters vol. 21 No. 12, Dec. 2000 pp. 590-592.
  • International Search Report Application No. PCT/IB2013/059074, dated Dec. 18, 2013 (5 pages).
  • International Searching Authority Written Opinion Application No. PCT/IB2013/059074, dated Dec. 18, 2013 (8 pages ).
  • Supplementary European Search Report for EP 09 80 2309, dated May 8, 20011 (14 pages).
  • Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
  • Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
  • Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
  • Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
  • Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
  • Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
  • Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
  • Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
  • Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
  • Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
  • Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
  • Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
  • Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
  • Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
  • Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
  • Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
  • Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
  • Chaji et al.: “High Speed Low Power Adder Design With A New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
  • Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
  • Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
  • Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
  • Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
  • Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
  • Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
  • Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
  • Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
  • Chaji et al.: “Stable Pixel Circuit for Small-Area High- Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
  • Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
  • Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
  • Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
  • Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
  • Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
  • Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
  • Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
  • Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
  • Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
  • Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
  • Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
  • Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
  • Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Patent History
Patent number: RE49389
Type: Grant
Filed: Aug 25, 2017
Date of Patent: Jan 24, 2023
Assignee: Ignis Innovation Inc. (Waterloo)
Inventors: Gholamreza Chaji (Waterloo), Kongning Li (Toronto), Vasudha Gupta (Cupertino, CA), Arokia Nathan (Cambridge)
Primary Examiner: Woo H Choi
Application Number: 15/687,017
Classifications
Current U.S. Class: Color (345/83)
International Classification: G09G 5/10 (20060101); G09G 3/36 (20060101); G09G 3/20 (20060101); G09G 3/3266 (20160101); G09G 3/3275 (20160101);