Patents Issued in August 6, 2013
  • Patent number: 8500848
    Abstract: The present disclosed embodiments relate to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial membrane water vapor rejection into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently expelled through a membrane vapor rejection unit to ambient conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 6, 2013
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp
  • Patent number: 8500849
    Abstract: A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: August 6, 2013
    Assignee: SpectraSensors, Inc.
    Inventors: Xin Zhou, Xiang Liu, Alfred Feitisch, Gregory M. Sanger
  • Patent number: 8500850
    Abstract: The present invention relates to a process for the separation of gases which comprises putting a mixture of gases in contact with a zeolite of the ESV type to obtain the selective adsorption of at least one of the gases forming the gaseous mixture. The present invention also relates to particular zeolitic compositions suitable as adsorbents.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: August 6, 2013
    Assignee: ENI S.p.A.
    Inventors: Angela Carati, Caterina Rizzo, Marco Tagliabue, Luciano Cosimo Carluccio, Cristina Flego, Liberato Giampaolo Ciccarelli
  • Patent number: 8500851
    Abstract: The present disclosure relates generally to contaminant removal from gas streams. In certain embodiments, the present disclosure relates to a process for removing one or more contaminants from a gas stream via contact with a regenerable sorbent at high temperature and pressure, utilizing a unique arrangement of reactors operating in parallel.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 6, 2013
    Assignee: Phillips 66 Company
    Inventors: Ronald E. Brown, Daniel T. Fernald
  • Patent number: 8500852
    Abstract: Methods, devices, and systems, and devices for carrying out sorption (adsorption and absorption) for separating and/or purifying fluid mixtures are disclosed. Medical oxygen generators, dehumidifying units, sorptive heat pumps, ozone generators and Peltier devices are also disclosed. The sorption methods involve pressure swing operation of at least two sorption units. Energy from the desorbing and decompressing fluid is substantially recovered and used within the system.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 6, 2013
    Assignee: Separation Design Group, LLC
    Inventor: S. Douglas Galbraith
  • Patent number: 8500853
    Abstract: The invention provides gas purification methods and systems for the recovery and liquefaction of low boiling point organic and inorganic gases, such as methane, propane, CO2, NH3, and chlorofluorocarbons. Many such gases are in the effluent gas of industrial processes and the invention can increase the sustainability and economics of such industrial processes. In a preferred method of the invention, low boiling point gases are adsorbed with a heated activated carbon fiber material maintained at an adsorption temperature during an adsorption cycle. During a low boiling point desorption cycle the activated carbon fiber is heated to a desorption temperature to create a desorption gas stream with concentrated low boiling point gases. The desorption gas stream is actively compressed and/or cooled to condense and liquefy the low boiling point gases, which can then be collected, stored, re-used, sold, etc.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: August 6, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Mark J. Rood, K. James Hay, David Johnsen, Kaitlin Mallouk
  • Patent number: 8500854
    Abstract: The disclosure provides a CO2 absorption method using an amine-based solid sorbent for the removal of carbon dioxide from a gas stream. The method disclosed mitigates the impact of water loading on regeneration by utilizing a conditioner following the steam regeneration process, providing for a water loading on the amine-based solid sorbent following CO2 absorption substantially equivalent to the moisture loading of the regeneration process. This assists in optimizing the CO2 removal capacity of the amine-based solid sorbent for a given absorption and regeneration reactor size. Management of the water loading in this manner allows regeneration reactor operation with significant mitigation of energy losses incurred by the necessary desorption of adsorbed water.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: August 6, 2013
    Assignee: U.S. Department of Energy
    Inventors: Henry W. Pennline, James S. Hoffman, McMahan L. Gray, Daniel J. Fauth, Kevin P. Resnik
  • Patent number: 8500855
    Abstract: A method and a system to remove relatively pure carbon dioxide directly from ambient air. The method comprises generating process heat, to co-generate substantially saturated steam; alternately and repeatedly exposing a sorbent to a flow of ambient air, at substantially ambient conditions, to sorb, and therefore remove, carbon dioxide from said ambient air, and exposing the CO2-laden sorbent to a flow of the co-generated steam, at a temperature in the range of not greater than about 130° C, to release the carbon dioxide, thereby regenerating the sorbent, and capturing relatively pure carbon dioxide. To render this process more efficient, admix with the air a minor amount of a pre-treated effluent gas containing a higher concentration of carbon dioxide than in the atmosphere. The captured carbon dioxide can be stored for further use, or sequestered permanently. The purified carbon dioxide is useful for agriculture or chemical processes.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500856
    Abstract: In a method of capturing carbon dioxide in a gas, carbon dioxide in a gas is adsorbed to the hybrid adsorbent prepared by mixing an adsorbent with iron oxide nanoparticles, microwaves are irradiated to the hybrid adsorbent and the carbon dioxide adsorbed to the hybrid adsorbent is desorbed from the hybrid adsorbent, and the carbon dioxide desorbed from the hybrid adsorbent is captured.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 6, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kenji Nakao, Kimihito Suzuki, Kenichiro Fujimoto, Hatsuo Taira
  • Patent number: 8500857
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500858
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500859
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500860
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500861
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 6, 2013
    Inventor: Peter Eisenberger
  • Patent number: 8500862
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 6, 2013
    Assignee: Nanovapor Fuels Group, Inc.
    Inventors: Elliott Moorhead, Bryant Hickman
  • Patent number: 8500863
    Abstract: A room temperature trap for the purification and concentration of gaseous methane. The trap utilizes the adsorption and desorption properties of microporous spherical carbon molecular sieves to purify and concentrate radiolabelled methane for application in an automated synthesis module without the need for cryogenic cooling.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 6, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nicie C. Murphy, Todd L. Graves
  • Patent number: 8500864
    Abstract: A method for treating crude gas, in particular biogas, containing methane and carbon dioxide, in order to produce methane, and a plant suitable for carrying out the method. The method includes (a) washing the crude gas with an amine-containing washing solution, thereby forming a pure gas stream of methane and water, from which water is separated by subsequent cooling and condensation; (b) compressing and heating the washing solution containing CO2 and sulfur compounds and expanding the washing solution in a first expansion stage, during a secondary reaction time of 280 to 1200 seconds and at a constant reaction temperature; (c) cooling the purified washing solution and expanding it in a second expansion stage to normal pressure, whereupon any residual amounts of soluble CO2 and sulfur compounds are separated and the completely purified washing solution is cooled to normal temperature and returned to the washing stage.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 6, 2013
    Assignee: MT-Biomethan GmbH
    Inventor: Lothar Günther
  • Patent number: 8500865
    Abstract: The gaseous effluent to be treated is contacted in C1 with an absorbent solution selected for its property of forming two separable phases when it has absorbed an amount of acid compounds and when it is heated. According to the invention, the absorbent solution is regenerated in at least two stages in regeneration zones Z1 and Z2. At the end of the first regeneration stage in Z1, at least part of the partly regenerated absorbent solution is separated into two fractions in B1: a fraction rich in acid compounds and a fraction depleted in acid compounds. Fraction 10 rich in acid compounds is sent to the second regeneration stage in Z2. The fraction depleted in acid compounds and regenerated absorbent solution 6 from the second regeneration stage are recycled to absorption column C1. The method can be applied to combustion fumes decarbonation and to natural gas or synthesis gas deacidizing.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: August 6, 2013
    Assignee: IFP
    Inventors: Pierre-Antoine Bouillon, Marc Jacquin, Alain Methivier
  • Patent number: 8500866
    Abstract: Upon cooling to 15 to 45° C., a process for the treatment of raw product gas generated by pressure gasification of solid fuels comprises the removal of HCN and NH3 in a preliminary stage, of H2S and COS and possibly other sulfur-containing compounds in a first stage and of CO2 in a second stage by physisorption with cold oxygenate, and the pure product gas is supplied to the direct reduction of iron ore as reduction gas and/or as fuel gas. An improvement of the process consists in that recycle gas loaded with CO2 and steam, which is branched off from the circuit of the recycle gas of the direct reduction of iron ore, is admixed to the desulfurized product gas upon removal of the steam contained therein.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 6, 2013
    Assignee: Lurgi Clean Coal Technology (Proprietary) Limited
    Inventor: Gerhard Schmitt
  • Patent number: 8500867
    Abstract: CO2 is absorbed from a gas mixture by bringing the gas mixture into contact with an absorbent that comprises water and at least one amine of the formula (I), wherein R1 and R2, independently of each other, are hydrogen or an alkyl group. According to the invention, absorption media comprise sulfolane or an ionic liquid in addition to water and an amine of the formula (1). A device according to the invention for removing CO2 from a gas mixture comprises an absorption unit, a desorption unit, and an absorption medium according to the invention that is conducted in the circuit.
    Type: Grant
    Filed: August 19, 2012
    Date of Patent: August 6, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Jörn Rolker, Rolf Schneider, Bernd Glöckler, Axel Kobus, Wolfgang Benesch, Thomas Riethmann, Hermann Winkler, Jens Reich, Helmut Brüggemann
  • Patent number: 8500868
    Abstract: Systems and methods for the separation and capture of carbon dioxide from water are generally described. In some embodiments, a vapor stream containing carbon dioxide and water is separated using a cascade of at least two flash drums. Additional flash steps may be incorporated to remove atmospheric gases, such as nitrogen and argon, from the feed. Carbon dioxide may be condensed and pressurized at purities suitable for pipeline transport and eventual storage in geological formations. In addition, water may be recovered at high purity. In some embodiments, fuel cells may be used in combination with fuel reforming or gasification to produce syngas. Certain aspects of the invention involve innovations related to the combined reforming and fuel cell process, that, in certain embodiments, do not depend upon water and carbon dioxide separation.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: August 6, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Thomas Alan Adams, II, Paul Inigo Barton
  • Patent number: 8500869
    Abstract: A deaerator includes a case defining a vortex chamber, a fluid inlet for allowing a mixture of lubricating liquid and air to pass through the case into the vortex chamber, an air outlet for allowing air flow out of the deaerator, and a liquid outlet for allowing lubricating liquid flow out of the deaerator. A porous diffuser is positioned proximate the liquid outlet. A plate is positioned adjacent the porous diffuser and has a first surface in contact with the porous diffuser.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 6, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Timothy A. Johnson, Jeff A. Brown, Michael R. Blewett
  • Patent number: 8500870
    Abstract: Methods of producing corrosion-inhibiting aluminum foil products suitable for culinary use involve metallurgical sequestration of aluminum radicals by applying a copper-containing barrier metal layer to a substrate aluminum foil, followed by application of a biocompatible, lipid-based sealant layer to seal any gaps in the barrier layer and provide a non-stick coating. The sealant, which has a vegetable cooking oil, or oil mixture, as its primary ingredient, may also function as a natural antimicrobial and/or anti-fungal agent. Various sealant additives may increase the thermal stability of the oil base, enhance the antimicrobial properties thereof, and increase shelf life. Aluminum foil products include a coated aluminum foil with a copper-containing barrier layer applied to an aluminum substrate layer, with a sealant layer applied to the barrier layer. The coated foil may be wound in a coil around a hollow tube which contains a desiccant.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 6, 2013
    Inventor: Marc S. Werblud
  • Patent number: 8500871
    Abstract: A water vapor permeable membrane is provided comprising a dense layer and a support layer that are adjacent to each other, wherein the dense layer contains voids with a void length of 0.1 ?m or less and the dense layer has a thickness of 0.1 ?m or more and 2 ?m or less while in the support layer, void (a), i.e. the void with the largest length in the 2 ?m thick region measured from the boundary between the dense layer and the support layer into the support layer, has a length of 0.3 ?m or more and void (b), i.e. the void with the largest length in the region ranging between 2 ?m and 4 ?m measured from the boundary into the support layer, has a length of 0.5 ?m or more, the length of the void (b) being larger than that of the void (a). A water vapor permeable membrane having both a high water vapor permeability and a low air leakage is provided.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: August 6, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Masahiro Osabe, Kazumi Tanaka, Hiroyuki Sugaya
  • Patent number: 8500872
    Abstract: The invention is a ceramic tube made of two parts. A first part of the tube is made of a sensitive material for facilitating oxygen separation in the membrane. The second part is made of a different material that does not react with CO2 and/or H2O. Accordingly, by means of this Invention, there is provided a ceramic tube that is stabilized and does not deteriorate upon exposure to CO2 and/or H2O at temperatures below the operating temperatures.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: August 6, 2013
    Assignee: Technion Research & Development Foundation Ltd.
    Inventor: Ilan Riess
  • Patent number: 8500873
    Abstract: A waste-gas cleaning system for cleaning aerosol-laden gases or atmospheres includes an inlet configured to intake raw gas, an outlet configured to discharge clean gas and at least one assembly including an ionization section and a downstream central collection section disposed centrally with respect to a channel axis. The ionization section includes at least one level at a right angle to the channel axis. The at least one assembly includes at least two substantially identical ionization stages disposed in a plane and arranged uniformly about the channel axis and configured to conduct a gas flow radially, with respect to the channel axis, inward therethrough into the downstream central collection section so as to be similarly diverted such that a flow profile over an inside cross section in the downstream central collection section is not inclined with respect to the channel axis in the course of the gas flow.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 6, 2013
    Assignee: Karlsruher Institut fuer Technologie
    Inventors: Hanns-Rudolf Paur, Andrei Bologa, Klaus Woletz
  • Patent number: 8500874
    Abstract: One ozone concentrating chamber is provided therein with a part of a cooling temperature range where ozone can be selectively condensed or an oxygen gas can be selectively removed by transmission from an ozonized oxygen gas, and a part of a temperature range where condensed ozone can be vaporized, and condensed ozone is vaporized by moving condensed ozone with flow of a fluid or by gravitation to the part where condensed ozone can be vaporized, whereby the ozonized oxygen gas can be increased in concentration. Such a constitution is provided that a particle material 13 for condensation and vaporization filled in the ozone concentrating chambers 11 and 12 has a spherical shape of a special shape with multifaceted planes on side surfaces, or an oxygen transmission membrane 130 capable of selectively transmitting an oxygen gas in an ozone gas is provided.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: August 6, 2013
    Assignee: Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Yoichiro Tabata, Tetsuya Saitsu, Yujiro Okihara, Nobuyuki Itoh, Ryohei Ueda, Yasuhiro Tanimura, Koji Ohta
  • Patent number: 8500875
    Abstract: A desulfurizer includes a filled chamber having a raw fuel passage through which a raw fuel flows, the filled chamber being filled with a desulfurizing agent, a supply chamber disposed upstream of the filled chamber, for uniformly supplying the raw fuel to the raw fuel passage, and a discharge chamber disposed downstream of the filled chamber, for uniformly discharging the raw fuel from the raw fuel passage. The raw fuel passage has first and second reversers for reversing the direction in which the raw fuel flows. The raw fuel passage has a cross-sectional area which is smaller in a downstream portion thereof than in an upstream portion thereof.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: August 6, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Jun Yamamoto
  • Patent number: 8500876
    Abstract: An air dehydrator system for supplying a source of dehydrated air includes an offsite data management system; at least one data network; and an air dehydrator located remote from the offsite data management system. The dehydrator includes a housing containing at least one drying canister; a pressurized air source; and a control circuit coupled with the pressurized air source. The control circuit is also in communication via the at least one data network with the offsite data management system. The control circuit controls operation of the pressurized air source dependent upon control by the offsite data management system.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 6, 2013
    Assignee: MSX, Incorporated
    Inventors: Thaddeus M. Jones, Lawrence W. Holz, Robert E. Tax
  • Patent number: 8500877
    Abstract: Systems are provided for gasification operations. The systems may use carbonous gas as part of plant operations. The systems may include a gasifier and a solid fuel feeder. The solid fuel feeder is capable of feeding solid fuel in a carbonous carrier gas to the gasifier during a startup period and also during a steady state period of the gasifier.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 6, 2013
    Assignee: General Electric Company
    Inventors: Anindra Mazumdar, Sunil Ramabhilakh Mishra, Rupinder Singh Benipal
  • Patent number: 8500878
    Abstract: The invention pertains to an inerting system for an aircraft featuring at least one air separation module with at least one air inlet, a first air outlet and a second air outlet. The air separation module is designed for splitting an input air flow into a first air flow and a second air flow, wherein the first air flow is enriched with oxygen in comparison with the input air flow and discharged at the first air outlet and the second air flow is enriched with nitrogen in comparison with the input air flow and discharged at the second air outlet. In comparison with known inerting systems, the inerting system according to the invention is characterized in that the air inlet can be connected to an air extraction point in an air processing system and the inerting system is designed for routing the first air flow into a cabin to be air-conditioned.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: August 6, 2013
    Assignee: Airbus Operations GmbH
    Inventors: Joerg Cremers, Klaus-Dieter Kricke, Christian Schumacher
  • Patent number: 8500879
    Abstract: The present invention provides oxygen concentrators which achieve reliable pressure control in the oxygen columns with reduced number of components for pressure control in the oxygen columns, and also easy maintenance and reduced power consumption. PSA, PVSA, or VSA oxygen concentrator consisting of oxygen concentration columns BF1 and BF2, pressure control means for adjusting pressure in the oxygen concentration columns, and oxygen tank T for storing concentrated oxygen, comprises mechanical flow control means SC1 which regulates flow from the oxygen tank to the oxygen concentration columns. Pressures in the oxygen concentration columns BF1 and BF2 are kept within a predetermined range by the function of mechanical flow control means SC1 placed in between the oxygen concentration columns and the oxygen tank.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: August 6, 2013
    Assignee: Metran Co., Ltd.
    Inventors: Tran Ngoc Phuc, Shinichi Nakane
  • Patent number: 8500880
    Abstract: An article comprising a substrate; and an amino acid salt disposed on the substrate. The article may be useful, for example, in the removal of an acid gas component from a gas.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 6, 2013
    Assignee: Corning Incorporated
    Inventor: Dayue David Jiang
  • Patent number: 8500881
    Abstract: The present invention discloses a carbon dioxide capture power generation system provided with a boiler to combust a fuel in the oxygen atmosphere, a carbon dioxide capture equipment to remove carbon dioxide in the wake flow of the boiler, a piping branching from the wake flow of the boiler to recycle the combustion exhaust gas to the boiler, and a desulfurization equipment to remove sulfur oxides and a sulfuric acid removal equipment to remove a sulfuric acid gas in the upstream of carbon dioxide capture equipment and in the wake flow of the boiler.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: August 6, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hisayuki Orita, Masaaki Mukaide, Nobuyuki Hokari, Tsuyoshi Shibata, Masayuki Taniguchi
  • Patent number: 8500882
    Abstract: There is provided an air purifier having a dehumidification function, including: a body case having an inner space; a blower part installed in the inner space of the body case and drawing outside air from both sides of the body case through a single blower fan; an air purifying part purifying air drawn from one side of the body case; and a dehumidifying part removing moisture from air drawn from the other side of the body case by a dehumidifying rotor. Through the blower part drawing the air from both sides of the body case, the air purifier purifies the air drawn from one side of the body case and dehumidifies the air drawn from the other side of the body case. Accordingly, a drop in an airflow amount caused by concurrently performing the dehumidification and the purification may be alleviated, so improved dehumidification and purification effects are achieved.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 6, 2013
    Assignee: Woongjin Coway Co., Ltd.
    Inventors: Seong-Jin Yun, Byung-Kil Park
  • Patent number: 8500883
    Abstract: A filter media for use in an inlet air filtration system includes a woven glass material and an amount of carbon impregnated within the woven glass material.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 6, 2013
    Assignee: General Electric Company
    Inventor: Karmin Lorraine Olson
  • Patent number: 8500884
    Abstract: One exemplary embodiment can be a vessel. The vessel can include a body, an inlet, and an impermeable impingement plate. The body may include a substantially cylindrical structure orientated substantially horizontally, and first and second heads coupled at opposing ends of the substantially cylindrical structure. Generally, the body forms an interior space, and a lower portion of the body forms a trough having a length and a width. The inlet can communicate with the interior space of the vessel. Typically, the impermeable impingement plate has an impingement surface. The impermeable impingement plate may have a first side and a second side extending substantially the length of the trough. The first and second sides may be substantially parallel and spaced apart across at least a portion of the width of the trough.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 6, 2013
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Hadjira Iddir
  • Patent number: 8500885
    Abstract: An air drier for an air suspension of a vehicle for supplying dry air to the air suspension, includes a housing having inflow and outflow ports formed at first and second ends in an axial direction, first and second filters accommodated in the housing, a desiccant agent supported between the first and second filters, and an air guide member arranged between the first filter and the first end of the housing and including a tubular portion and an annular plate having a plurality of holes, the tubular portion covering the inflow port in the axial direction to form a flow passage guiding fluid from the inflow port to the first filter, wherein the fluid guided from the inflow port flows through the flow passage and the first filter into the desiccant agent and is dried thereby, and the dry air is discharged from the outflow port to the air suspension.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: August 6, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventor: Yutaro Honjo
  • Patent number: 8500886
    Abstract: Exhaust gas after coal or oil burning has moisture, which hinders carbon dioxide adsorption. It is necessary to completely remove this moisture with the minimum use of energy. The exhaust gas from the burning apparatus is first lowered of its temperature by passing through an total heat exchanger rotor, and the resultant gas which has low temperature and humidity is sent to a carbon dioxide adsorption rotor, thereby removing carbon dioxide from the gas, which is then sent through the total heat exchanger rotor with the resultant desorption of moisture adsorbed there and is exhausted to outside atmosphere, while the carbon dioxide adsorption rotor is desorbed of its carbon dioxide using water vapor, with the resultant very humid carbon dioxide to be sent to a processing system such as for underground burial.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Seibu Giken Co, Ltd
    Inventors: Hiroshi Okano, Tsutomu Hirose
  • Patent number: 8500887
    Abstract: The present application provides a protected solid adsorbent that includes a solid adsorbent substrate and a surface layer at least partially coating the solid adsorbent substrate, the surface layer being generally permeable to an active agent. Additionally, a process for protecting a solid adsorbent and an adsorption system that includes a vessel containing the protected solid adsorbent is provided.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen S. Yeganeh, Bhupender S. Minhas, Sufang Zhao, Tahmid I. Mizan, Richard W. Flynn
  • Patent number: 8500888
    Abstract: A regeneration tower including a regeneration tower main body having a long trunk, and desorbed gas discharge passages through which a desorbed gas is discharged. The regeneration tower main body is configured so that a heating unit that heats an adsorbent, a separation part that separates desorbable substances as a desorbed gas from the heated adsorbent, and a cooling unit that cools the adsorbent from which the desorbable substances have been desorbed by heating are communicatively disposed in one direction and the heating unit and the cooling unit have approximately the same sectional outer diameter.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: August 6, 2013
    Assignee: J-Power EnTech, Inc.
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Patent number: 8500889
    Abstract: A gas adsorption material comprising: a porous metal-organic framework and a plurality of functionalized fullerenes or fullerides provided in the pores of the metal-organic framework. The metal-organic framework includes a plurality of metal clusters, each metal cluster including one or more metal ions, and a plurality of charged multidentate linking ligands connecting adjacent metal clusters.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: August 6, 2013
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Matthew Roland Hill, Katherine Michelle Nairn, Aaron Thornton, Dario Buso
  • Patent number: 8500890
    Abstract: An odor absorption component is fitted to a duct in a manner that does not obstruct fluid flow through the duct while simultaneously facilitating absorption of odors from a fluid flowing within the duct. The absorbing component comprises one or more carrier structures that support a fabric/textile treated with an odor absorption coating. In one position, the carrier structures can be placed on the wall of the duct such that a plane of the support structure is parallel to and in physical contact with the fluid flow within the duct. The carrier structures may also be placed in another position within the duct such that at least two surfaces of the carrier structure that extend in a longitudinal direction along its length are parallel to and in the path of the fluid flow within the duct.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Faurecia Interior Systems, Inc.
    Inventor: Daniel Vander Sluis
  • Patent number: 8500891
    Abstract: A system and process for capturing CO2 100 is disclosed. The process 100 includes reusing heat from a CO2 compression process 120 by providing the heat to a fuel treatment process 130. The heat may used to dry a fossil fuel to improve the efficiency of the fossil fuel combustion.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: August 6, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: John Oliver Butler, Rasesh R. Kotdawala
  • Patent number: 8500892
    Abstract: CO2 is absorbed from a gas mixture by bringing the gas mixture into contact with an absorbent that comprises water and at least one amine of the formula (I), wherein R1 and R2, independently of each other, are hydrogen or an alkyl group. According to the invention, absorption media comprise sulfolane or an ionic liquid in addition to water and an amine of the formula (I). A device according to the invention for removing CO2 from a gas mixture comprises an absorption unit, a desorption unit, and an absorption medium according to the invention that is conducted in the circuit.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 6, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Jörn Rolker, Rolf Schneider, Bernd Glöckler, Axel Kobus, Wolfgang Benesch, Thomas Riethmann, Hermann Winkler, Jens Reich, Helmut Brüggemann
  • Patent number: 8500893
    Abstract: This invention involves a marine ship flue gas scrubbing equipment and scrubbing method. The equipment includes a shell with an upper scrubbing section and a water tank in the lower section. A smoke pipe leads in exhaust gas to an area between the scrubbing section and water tank. Scrubbing seawater is injected through an inlet above the scrubbing section, and a cooler is located along the pathway of the exhaust gas. The method of scrubbing includes leading-in exhaust gas, cooling the exhaust gas, injecting scrubbing seawater, performing scrubbing operation, and discharging clean gas. Embodiments of the invention provide a highly efficient scrubbing equipment and method suitable for high-temperature exhaust gas within a limited usable space. The methods and equipment are highly effective for emission reduction, has low energy consumption, small size, and long life performance.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 6, 2013
    Inventor: Sigan Peng
  • Patent number: 8500894
    Abstract: A method of mixing an oxygen gas with a hydrocarbon-containing gas includes the steps of wet scrubbing the oxygen gas in a wet scrubber, supplying oxygen gas from the wet scrubber to a gas mixer and mixing the oxygen gas with the hydrocarbon-containing gas in the gas mixer. Wet scrubbers for use in the method may take various forms, including packed-tower, bubble cap, and sparger-type wet scrubbers. The removal of the particulate matter reduces the risk of ignition of the hydrocarbon-containing gas in the gas mixer. The use of a wet scrubber in the oxygen supply line overcomes many problems currently faced with screen and filters, as per current practice.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Patent number: 8500895
    Abstract: Methods are disclosed that include directing electromagnetic radiation and/or heat to a structure, the structure including a substrate, a first layer, and a marking composition between the substrate and the first layer. At least a portion of the electromagnetic radiation and/or heat is transmitted through the first layer and the structure is marked.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: August 6, 2013
    Assignee: Marken-Imaje Corporation
    Inventors: David H. Blank, Benjamin J. Brown, Michael P. Secord, James W. Foley
  • Patent number: 8500896
    Abstract: A solid ink composition comprising an amorphous component, a crystalline component, and optionally, a colorant, which are suitable for ink jet printing, including printing on coated paper substrates. In embodiments, the amorphous component is synthesized from an esterification reaction of tartaric acid.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: August 6, 2013
    Assignee: Xerox Corporation
    Inventors: Kentaro Morimitsu, Jennifer L. Belelie, Naveen Chopra, Stephan V. Drappel, Corey Tracy, Peter G. Odell
  • Patent number: 8500897
    Abstract: An ink set is provided, the ink set including a yellow ink composition; and at least one of a magenta ink composition and a cyan ink composition, wherein a colorant of the yellow ink composition contains an azo pigment represented by formula (1), its tautomer, or a salt or hydrate thereof, the magenta ink composition contains at least one pigment selected from quinacridone pigments, and the cyan ink composition contains at least one pigment selected from phthalocyanine pigments: wherein Z represents atoms necessary to complete a 5- to 8-membered nitrogen-containing heterocycle; Y1, Y2, R11 and R12 each represents a hydrogen or a substituent; G1 and G2 each represents a hydrogen, an alkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group; and W1 and W2 each represents an alkoxy group, an amino group, an alkyl group or an aryl group.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: August 6, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Keiichi Tateishi