Patents Issued in March 24, 2015
  • Patent number: 8984854
    Abstract: Apparatus and methods are disclosed for rapidly counteracting a transient low-pressure condition, that can occur intermittently in the exhaust section of a power plant or other such industrial facility upstream of exhaust fans as a result of an event that interrupts the generation and/or flow of exhaust gases, using jet nozzles disposed in the exhaust section and connected to a source of pressurized air or other suitable momentum material. By orienting the jet nozzles in a direction generally opposite to the flow of exhaust gas and actuating the system to release a burst of compressed air, for example in the event of a power plant interruption, the low-pressure condition can be ameliorated preventing damage to the exhaust section.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: March 24, 2015
    Assignee: Aecom
    Inventor: Frederick Robert Rosse
  • Patent number: 8984855
    Abstract: A rotating inlet cowl for a turbine engine, having a rotation axis and for which the forward end is arranged to be eccentric relative to this rotation axis. Furthermore, a forward cone of the cowl is truncated by a truncation surface defining the forward end of the inlet cowl.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 24, 2015
    Assignee: SNECMA
    Inventors: Mickael Delapierre, Herve Gignoux, Gael Loro, Sylvie Wintenberger
  • Patent number: 8984856
    Abstract: An example fuel system includes a fuel sensor configured to sense at least one characteristic of a fuel provided to an engine. The fuel is selected from a plurality of different fuel types. The fuel system also includes a controller that is configured to meter the fuel in response to the at least one characteristic of the fuel.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: March 24, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventor: William E. Rhoden
  • Patent number: 8984857
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. An alternative system provides for low emission power generation, carbon sequestration, enhanced oil recovery (EOR), or carbon dioxide sales using a hot gas expander and external combustor. Another alternative system provides for low emission power generation using a gas power turbine to compress air in the inlet compressor and generate power using hot carbon dioxide laden gas in the expander. Other efficiencies may be gained by incorporating heat cross-exchange, a desalination plant, co-generation, and other features.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: March 24, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Moses Minta, Franklin F. Mittricker, Peter C. Rasmussen, Loren K. Starcher, Chad C. Rasmussen, James T. Wilkins, Richard W. Meidel, Jr.
  • Patent number: 8984858
    Abstract: One embodiment of the present invention is a unique gas turbine engine. Another embodiment of the present invention is a unique gas turbine engine bearing system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines and gas turbine engine bearing systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: March 24, 2015
    Assignee: Rolls-Royce Corporation
    Inventor: Matthew Michael Miller
  • Patent number: 8984859
    Abstract: One embodiment of the present invention is a unique gas turbine engine. Another embodiment is a unique reheat system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines and reheat systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: March 24, 2015
    Assignee: Rolls-Royce North American Technologies, Inc.
    Inventors: Jon V. Ebacher, Carol Noëlle Nin
  • Patent number: 8984860
    Abstract: In a diesel engine and exhaust aftertreatment system, a controller is arranged to control operation of the engine to obtain a first set of exhaust characteristics and to control a fuel injector to inject fuel upstream of a DPF at a first rate of injection until at least one condition is attained, and, after the at least one condition is attained, to control the fuel injector so that a rate of fuel injection is reduced and to contra! operation of the engine to obtain a second set of exhaust characteristics so that regeneration of the DPF occurs. At least one characteristic of the first and second sets of characteristics beina, different. A method for treating, diesei engine exhaust is also disclosed.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 24, 2015
    Assignee: Mack Trucks, Inc.
    Inventor: Chun Tai
  • Patent number: 8984861
    Abstract: A catalyst deterioration diagnosis method for diagnosing deterioration of a catalyst for purification of exhaust gas by using a test catalyst disposed in an exhaust gas flow path through which the exhaust gas flows, the method including an exhaust gas control step of inverting an air-fuel ratio of the exhaust gas in the flow path from a lean side to a rich side or from a rich side to a lean side; a measurement step of measuring a change over time in electrical resistance of the test catalyst at the inversion of the air-fuel ratio and finding a resistance change ratio of the test catalyst; and a determination step of determining catalytic deterioration of the test catalyst based on the resistance change ratio.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Yoshiyuki Sakamoto, Akihiko Suda, Akira Morikawa
  • Patent number: 8984862
    Abstract: A component carrier (20) of a dosing system for injecting a urea solution to the exhaust-gas flow (9) of an internal combustion engine for the purpose of selective catalytic reduction, wherein the dosing system can be connected to a urea solution tank (1) from which urea solution can be extracted, and wherein the dosing system can be connected to a compressed air supply (6), wherein the dosing system has a pump (3) for feeding the urea solution and wherein the dosing system has at least one nozzle (5) by means of which the urea solution can be injected into the exhaust-gas flow (9) by means of compressed air, wherein components (2, 3, 7, 13, 14, 51, 52) of the dosing system can be mounted on the component carrier (20) so as to be in thermal contact with the component carrier (20), and wherein the component carrier (20) has at least one contact region (21, 22) for producing thermal contact with respect to the coolant circuit of the internal combustion engine, such that the component carrier (20) forms a heat s
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 24, 2015
    Assignee: Albonair GmbH
    Inventors: Werner Overhoff, Armin Kassel
  • Patent number: 8984863
    Abstract: Provided is an ammonia injection device (10) installed at an exhaust gas duct through which an exhaust gas generated in a gas turbine flows, and configured to inject ammonia into the exhaust gas at an upstream side of a denitration catalyst configured to perform denitration processing in a flowing direction of the exhaust gas, the device including a plurality of ammonia injection pipes (11) disposed in parallel each other in a surface which traverses the exhaust gas duct. A plurality of nozzle pipes (12) configured to eject the ammonia from the ammonia injection pipes in an arrangement direction of the plurality of ammonia injection pipes are installed at the ammonia injection pipe in a longitudinal direction of the ammonia injection pipes. Diffuser panels (13) extending toward a downstream side in a flowing direction of the exhaust gas at both sides in a longitudinal direction of the ammonia injection pipes with respect to the nozzle pipes are formed at the nozzle pipes.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 24, 2015
    Assignee: IHI Corporation
    Inventors: Akinori Yukimura, Masafumi Kawai, Yoshiyuki Yamane
  • Patent number: 8984864
    Abstract: An exhaust system for treating exhaust gas from an internal combustion engine is disclosed. The system comprises a three-way catalyst (TWC), a fuel reformer catalyst located downstream of the TWC, and a fuel supply means located upstream of the fuel reformer catalyst. The exhaust gas is split into two portions. The first portion of the exhaust gas bypasses the TWC and contacts the fuel reformer catalyst in the presence of fuel added from the fuel supply means, and is then recycled back to the engine intake. The second portion of the exhaust gas is contacted with the TWC and is then utilized to heat the fuel reformer catalyst before being expelled to atmosphere. The exhaust system allows for maximum heat exchange from the exhaust gas.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Kirsty Ellen Cockle, Paul James Millington, Edward James Richard Moss, John Frederick Pignon
  • Patent number: 8984865
    Abstract: The invention relates to an exhaust control device of an engine (10) comprising a catalyst (45) in an exhaust passage (40). In this invention, the active element transforms as a solid solution in the carrier when a catalyst temperature is higher than or equal to a predetermined solid solution temperature and an atmosphere in the catalyst is an oxidation atmosphere and the active element precipitates from the carrier when the catalyst temperature is higher than or equal to a predetermined precipitation temperature and the atmosphere in the catalyst is a reduction atmosphere.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: March 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Tanaka, Yusuke Saito
  • Patent number: 8984866
    Abstract: An exhaust gas post treatment system for an internal combustion engine, including an intake device for taking hydrocarbons into an exhaust gas pipe carrying the exhaust process gas from the internal combustion engine and a treatment device through which exhaust process gas flows downstream of the intake location and which increases the exhaust process gas temperature by oxidation of the hydrocarbons taken in. An exhaust gas post treatment system and a method for operating the same, in that the treatment device has catalytically coated components, the hydrocarbons are at least partly evaporated in the intake device and are modified chemically by cracking reactions and/or by partial oxidation, and the proportion of platinum, at least in a subregion of the catalytic coating of the components, is less than 50% of the overall mass of all the catalytically active substances in this sub region of the coating.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: March 24, 2015
    Assignees: Umicore AG & Co. KG, Deutz AG
    Inventors: Rolf Miebach, Stephan Schraml, Peter Broll, Andreas Geisselmann, Stefan De Buhr, Stéphanie Frantz, Anke Woerz, Frank-Walter Schuetze
  • Patent number: 8984867
    Abstract: A method for assessing NO2 generation efficiency in a diesel engine after-treatment (AT) system having a diesel oxidation catalyst (DOC) downstream of the engine generating the NO2 and a selective catalytic reduction (SCR) catalyst downstream of the DOC converting NOX with the aid of the NO2. Engine exhaust gas flow is passed into the AT system and a reductant is injected into the gas flow between the DOC and the SCR catalyst. SCR inlet gas flow temperature is monitored during transient engine operation and DOC inlet and SCR catalyst outlet NOX concentrations are detected when the SCR catalyst inlet gas flow temperature is in a predetermined range. SCR catalyst NOX conversion efficiency is determined using the detected DOC inlet and SCR catalyst outlet concentrations of NOX. Additionally, whether the NO2 generation efficiency is at or above threshold efficiency is assessed by comparing the determined and threshold NOX conversion efficiencies.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Igor Anilovich, John Coppola, Janean E. Kowalkowski, John F. Van Gilder, Ognyan N. Yanakiev
  • Patent number: 8984868
    Abstract: An exhaust system for a machine is disclosed. The exhaust system may have a diffuser configured to receive exhaust from an engine. The exhaust system may further have a plurality of dosers associated with the diffuser and configured to inject fuel into the diffuser. The exhaust system may also have a controller configured to selectively control an amount of fuel injected by each of the plurality of dosers based on a velocity of the exhaust adjacent to each doser. In addition, the exhaust system may have an after-treatment component fluidly connected downstream of the diffuser and configured to heat the exhaust by oxidizing the injected fuel.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Ajay Patel, Pradeep K. Ganesan
  • Patent number: 8984869
    Abstract: An exhaust gas emission control system for a diesel engine, having an oxidation catalyst (DOC) (7) and a diesel particulate filter (DPF) (9) in an exhaust passage, wherein a late post-injection control unit (62), which injects fuel into a combustion chamber at a timing not contributing to combustion in DPF regeneration control, feedback controls a late post-injection amount such that a regeneration amount of soot regenerated by the DPF (9) becomes a target soot regeneration amount per unit time.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: March 24, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Ko Takayanagi, Keisuke Okuda
  • Patent number: 8984870
    Abstract: Following a cold start of a hydrocarbon-fueled engine operated in a lean-burn-combustion mode, several seconds and minutes may be required for the exhaust gas stream to heat exhaust treatment devices in the exhaust system and conduit to their effective operating temperatures. The warm-up period may be particularly long for a NOx reduction catalyst (SCR) located downstream in the exhaust flow system. Accordingly, a bed of absorbent material, such as a suitably sized bed of alumina particles, located upstream of the SCR, is used to temporarily absorb water and NOx from a relatively cold exhaust until the exhaust has suitably heated the SCR to its operating temperature. Then, the warmed exhaust will remove the water and NOx from their temporary storage material and carry them to the reduction catalyst.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: March 24, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Schmieg, Chang H Kim, Wei Li
  • Patent number: 8984871
    Abstract: A hydraulic drive device having a pump and motor is disclosed, where the pump swash plate includes a pair of structural ribs and the housing has a pair of thrust ribs on an inner surface. Only one thrust rib is in contact with one of the structural ribs at a time, to permit arcuate rotation of the swash plate while limiting axial movement of the swash plate. The axes of rotation of the swash plate trunnion, input shaft and output shaft are in a common plane. A rotary bypass shaft for engaging transmission check plugs includes an external bypass arm. A pair of detents are externally formed on the housing, and the bypass arm includes separate pairs of openings to engage the pair of detents when the bypass arm is in different positions.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: March 24, 2015
    Assignee: Hydro-Gear Limited Partnership
    Inventors: Jesse L. Probst, Eric S. Phanco, Tyler J. Hermann, Joseph P. Niemerg, Shane A. Deters
  • Patent number: 8984872
    Abstract: A method for estimating a fluid charge of a hydraulic accumulator includes determining a first accumulator pressure at a first time with a pressure sensor, the first time during accumulator charging; determining a second accumulator pressure at a second time with the pressure sensor, the second time during accumulator charging; determining a first fan speed at the first time; determining a second fan speed at the second time; and estimating the fluid charge of the hydraulic accumulator as a function of the first accumulator pressure, the second accumulator pressure, the first fan speed, and the second fan speed.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 24, 2015
    Assignee: Caterpillar Inc.
    Inventors: Bryan E. Nelson, Jeremy T. Peterson, Jeffrey L. Kuehn
  • Patent number: 8984873
    Abstract: A hydraulic system includes a variable-displacement first pump, an over-center variable-displacement first travel motor selectively connected to receive fluid pressurized by the first pump in a closed loop manner, and an over-center variable-displacement second travel motor selectively connected to receive fluid pressurized by the first pump in parallel with the first travel motor in a closed loop manner. The hydraulic system also includes a linear actuator selectively connected to receive fluid pressurized by the first pump in parallel with the first and second travel motors in a closed loop manner.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 24, 2015
    Assignee: Caterpillar Inc.
    Inventors: Patrick Opdenbosch, Lawrence J. Tognetti, Bryan J. Hillman
  • Patent number: 8984874
    Abstract: A power transmission device that transmits power from a motor to a wheel via a hydraulically driven friction engagement element and that includes a mechanical pump driven by the motor to produce a hydraulic pressure that is regulated by a pressure regulating valve; an electric pump that produces a hydraulic pressure; a switching mechanism that either switches an output pressure of the regulating valve or an output pressure of the electric pump to a servo of the engagement element based upon a signal pressure, and a drain valve that opens to drain oil when a hydraulic pressure of a preset pressure or more is applied, and the switching mechanism connects to the drain valve to allow communication between the electric pump and the drain valve in the first state, and shut off communication between the electric pump and the drain valve.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 24, 2015
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tetsuya Shimizu, Tomomi Ishikawa, Tomoya Jinno, Kenichi Tsuchida, Kazunori Ishikawa
  • Patent number: 8984875
    Abstract: The present disclosure is a construction machine, such as an excavator, which comprises a plurality of hydraulically driven actuators, in which some of the actuators are provided in a one-to-one pump system where hydraulic pumps are connected to the respective actuators such that a working fluid is supplied from the respective pumps, and the remaining actuators are provided in an auxiliary control valve system where the working fluid is distributed by an auxiliary control valve connected to one or more pumps. When an amount of the working fluid of an actuator associated with the auxiliary control valve is insufficient, the actuator associated with the auxiliary control valve is connected to a pump of the one-to-one pump system to share the pump of the one-to-one pump system.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: March 24, 2015
    Assignee: Doosan Infracore Co., Ltd.
    Inventor: Dal Sik Jang
  • Patent number: 8984876
    Abstract: A three-dimensional measuring machine (industrial machine) includes an air supplier supplying air; a drive mechanism driven by the air supplied from the air supplier; an electromagnetic valve provided inside an air regulator set to open and close an air supply passage inside the air regulator set, the air regulator set introducing the air from the air supplier to the drive mechanism; and a motion controller controlling the electromagnetic valve to block the air supply passage when a time since the drive mechanism stopped operation reaches a preset time.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: March 24, 2015
    Assignee: Mitutoyo Corporation
    Inventors: Mitsuru Fukuda, Kazuaki Kawarai, Kazumi Mizukami, Seiichi Otsubo
  • Patent number: 8984877
    Abstract: A heat exchanger for a stirling engine 10A of a twin-cylinder ? type includes a heat transfer tube group 70A formed with heat transfer tubes 71A causing a working fluid of the stirling engine 10A to flow between a high-temperature cylinder 20 and a low-temperature cylinder 30 arranged linearly and parallel to each other in the stirling engine. The heat transfer tube group 70A includes a rising section G1 extending upward, a falling section G2 extending downward, and a connecting section G3 connecting the rising section G1 and the falling section G2 in a turn-back manner, where the heat transfer tube group 70A is regarded as extending from one end or the other end thereof.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yaguchi, Daisaku Sawada, Masaaki Katayama
  • Patent number: 8984878
    Abstract: An internal combustion engine has a cylinder head having at least one cylinder. A cover is connected to the cylinder head and covers the cylinder and related valve train components. An exhaust gas turbocharger powered by the engine's exhaust system delivers compressed gasses to the intake system. An exhaust gas recirculation system branches off from the exhaust system downstream of the turbocharger and feeds into the intake system upstream of the turbocharger. A coolant-fed charge air cooler is disposed between the cylinder head and the cover, and at a point that is a geodetically highest point in the intake system when the internal combustion engine is in an installed position. This configuration prevents any liquid that has condensed out of the charge air during cooling from collecting in the cooler and/or in the intake system between the cooler and the at least one cylinder.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 24, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Hans-Guenter Grosch, Andreas Kuske, Christian Winge Vigild
  • Patent number: 8984879
    Abstract: A variable geometry turbocharger is simplified yet able to maintain pulse energy. In a first embodiment, a turbine housing is provided with a pivoting wall which pivots about a point near the entry to the turbine housing. By moving the wall about the pivot point, the effective volume of the turbine housing volute is varied, thus effectively reducing the volume of exhaust gas in the volute, allowing control of exhaust gas flowing to the turbine wheel. In the second embodiment of the invention, a rotating wedge segment within the volute is rotated from a first position to a second position, changing the effective volume of the volute and allowing control of exhaust gas flowing to the turbine wheel.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: March 24, 2015
    Assignee: BorgWarner Inc.
    Inventors: John P. Watson, Tilman Bernauer, Kurtis E. Henderson, David G. Grabowska
  • Patent number: 8984880
    Abstract: An assembly can include a turbine housing that includes a bore, a wastegate seat and two wastegate passages that extend to the wastegate seat; a rotatable wastegate shaft configured for receipt by the bore; a wastegate arm extending from the wastegate shaft; and a wastegate plug extending from the wastegate arm where the wastegate plug comprises a profile defined in part by a portion of a torus, for contacting the wastegate seat in a closed state, and defined in part by two plug portions, for defining clearances with respect to the wastegate seat in an open state. Various other examples of devices, assemblies, systems, methods, etc., are also disclosed.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 24, 2015
    Assignee: Honeywell International Inc.
    Inventors: Manuel Marques, Jean-Jacques Laissus, Jose Alves
  • Patent number: 8984881
    Abstract: A Steam Engine Powered System is provided which, when integrated with an internal combustion engine, generates hydrogen gases to provide an additional fuel source. The System's hydrogen is created by electrolysis from electrical power supplied from an external generator powered by the steam engine which in turn is powered by the radiant heat of the engine without putting a drain on the existing electrical system. The system will also store external canisters of separated Hydrogen and Oxygen for later use of various needs.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: March 24, 2015
    Inventor: Arthur David Stanton
  • Patent number: 8984882
    Abstract: A solar receiver includes at least two receiver panels having a common outer front surface for receiving incident solar radiation from a field of mirrors. The receiver panels include an array of side by side arranged heat exchange tubes which have a substantially straight main portion which extend in an upwards longitudinal direction and an inwards extending portion for a connection to an input or output header for respectively distributing or collecting fluid to or from the heat exchange tubes. The receiver panels are spaced apart in the upwards direction at a distance of Z cm. The header for the solar receiver is spaced behind the front surface at a distance of A cm, wherein the quotient of Z and A, Z/A, at the most equals the quotient of a vertical V and a horizontal H distance, V/H, from the header to a most far positioned mirror.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 24, 2015
    Assignee: Nem Energy B.V.
    Inventors: Jacobus Johannes de Bruijn, Arie Meerkerk, Peter Simon Rop
  • Patent number: 8984883
    Abstract: A hydroelectric and geothermal system includes a fluid communication channel that includes a first portion that extends from the earth's surface toward a subterranean hot area, a second portion connected to the first portion and in thermal communication with the subterranean hot area, and a third portion connected to the second portion and that extends to the earth's surface. A first turbine generator is configured to convert kinetic energy of a fluid flowing substantially under the influence of gravity in the first portion of the fluid communication channel into electrical energy. A second turbine generator is configured to convert kinetic energy of a vapor flowing within or out from the third portion of the fluid communication channel into electrical energy. The system also includes a valve arrangement configured for manipulation to hold the fluid in the second portion of the fluid communication channel in thermal communication with the subterranean hot area to produce the vapor.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 24, 2015
    Inventor: William Riley
  • Patent number: 8984884
    Abstract: In one embodiment, a waste heat recovery system includes multiple organic Rankine cycle (ORC) systems arranged in a cascade configuration. Each ORC system includes a heat exchanger that transfers heat to the working fluid to vaporize the working fluid. Each ORC system also includes an integrated power module that expands the working fluid to generate electricity.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: James Jun Xu, Albert Andreas Scharl, Shamim Imani
  • Patent number: 8984885
    Abstract: A thermal magnetic engine and a thermal magnetic engine system are disclosed. The thermal magnetic engine includes a fixed element, a rotation element, working fluid and a fin structure. The rotation element includes a working material. The rotation element rotates relative to the fixed element. The working fluid flows through the rotation element and forms a temperature difference on the working material. The fin structure is disposed on the rotation element. The rotation element rotates along a rotating direction due to the temperature difference on the working material and/or due to the flowing of the first working fluid through the fin structure.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 24, 2015
    Assignee: Delta Electronics, Inc.
    Inventors: Chung-Jung Kuo, Tze-Chern Mao, Min-Tsz Lin, Chieh-Cheng Liu, Mao-Jen Hsu, Ya-Yun Cheng, Cheng-Yen Shih
  • Patent number: 8984886
    Abstract: A method for operating a catalytic reforming assembly. The method includes injecting a quantity of oxidizer gas and a quantity of combustion gas into a reformer to form a mixture. The mixture is channeled across a catalyst bed to form a reformate gas stream. A temperature of the catalyst bed is measured using at least one temperature sensor. A level of the oxidizer gas in the reformate stream is measured using at least one oxidizer gas sensor. A health of the catalyst bed is determined based on at least one of a catalyst bed temperature measurement and an oxidizer gas level.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Chetan Babu Velkur, Hasan Karim
  • Patent number: 8984887
    Abstract: A combustor includes an end cap having an upstream surface axially separated from a downstream surface and a cap shield circumferentially surrounding the upstream and downstream surfaces. A first circuit of tubes extends from the upstream surface through the downstream surface. A first fuel plenum is in fluid communication with the first circuit of tubes. A second circuit of tubes extends from the upstream surface through the downstream surface. A second fuel plenum downstream from the first fuel plenum is in fluid communication with the second circuit of tubes. A method for supplying fuel to a combustor includes flowing a working fluid through tubes, flowing fuel or diluent from a first fuel plenum through a first circuit of tubes, and flowing fuel or diluent from a second fuel plenum through a second circuit of tubes, wherein the second fuel plenum is downstream from the first fuel plenum.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventor: Jonathan Dwight Berry
  • Patent number: 8984888
    Abstract: A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Jong Ho Uhm, Thomas Edward Johnson
  • Patent number: 8984889
    Abstract: A combustor for a gas-turbine engine including a burner head, a combustion chamber disposed downstream of the burner head, a swirler for creating a swirling flow of air in the combustion chamber, and a fuel nozzle disposed in the burner head. The fuel nozzle is disposed giving rise to a first angle of exit of the fuel from a downstream face of the burner head of >±0° with respect to a longitudinal axis of the combustor, this first angle lying in a first plane passing through the longitudinal axis. The fuel also exits at a second angle from the downstream face of >±0° with respect to the first plane, the second angle lying in a second plane orthogonal to the first plane.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: March 24, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Nigel Wilbraham
  • Patent number: 8984890
    Abstract: A mixer for mixing flows in a turbofan engine is provided. The mixer includes a plurality of chevron lobes, each of the plurality of lobes comprising a crown, a keel, a first trailing edge, a second trailing edge, and a first transverse edge extending between first trailing edge and second trailing edge, said mixer configured to receive two separate incoming exhaust flows and mix the two flows into at least one rotational exhaust flow that is ejected out at least one of said first trailing edge and said second trailing edge.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Mustafa Dindar, Vaughn Kunze
  • Patent number: 8984891
    Abstract: An aircraft gas turbine engine has a row of FLADE fan blades disposed radially outwardly of and drivingly connected to a fan in the engine's fan section. The FLADE fan blades extend across a FLADE duct circumscribing the fan section. A two dimensional air discharge passage is in fluid flow communication with the FLADE duct and with FLADE air upstream and downstream discharge slots in a divergent flap of a two dimensional exhaust nozzle. A valve fully closes the upstream slot when the downstream slot is fully opened and fully opens the upstream slot when the downstream slot is fully closed. The upstream and downstream slots may be located upstream and downstream respectfully of a nozzle discharge area in the nozzle. A sliding deck slides aft or down to open upstream slot and close downstream slot and slides forward or up to close upstream slot and open downstream slot.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Erin Lee Lariviere, Stephen Michael Ettorre
  • Patent number: 8984892
    Abstract: A combined cycle power plant includes a gas turbomachine, a steam turbomachine operatively coupled to the gas turbomachine, and a heat recovery steam generator operatively coupled to the gas turbomachine and the steam turbomachine. The heat recovery steam generator includes a high pressure reheat section provided with at least one high pressure superheater and at least one reheater. The combined cycle power plant further includes a controller operatively connected to the gas turbomachine, the steam turbomachine and the heat recovery steam generator. The controller is selectively activated to initiate a flow of steam through the heat recovery steam generator following shutdown of the gas turbomachine to lower a temperature of at least one of the high pressure superheater and the at least one reheater and reduce development of condensate quench effects during HRSG purge of a combined cycle power plant shutdown.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Tailai Hu, Kelvin Rafael Estrada, Joel Donnell Holt, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Patent number: 8984893
    Abstract: A system for augmenting gas turbine power output includes a compressed air supply, and a compressed air storage plenum in fluid communication with the compressed air supply. The compressed air storage plenum is configured to store a compressed air from the compressed air supply for later use. The system further includes an inlet plenum sealingly coupled to an inlet of the gas turbine. The inlet plenum is in fluid communication with the compressed air storage plenum so as to route the compressed air from the compressed air storage plenum into the inlet of the compressor during augmented operation of the gas turbine.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Mark Stewart Schroder, Thomas Edward Wickert, Mark Allan Hadley
  • Patent number: 8984894
    Abstract: The invention relates to a method for operation of a combined-cycle power plant with cogeneration, in which method combustion air is inducted in at least one gas turbine, is compressed and is supplied to at least one combustion chamber for combustion of a fuel, and the resultant exhaust gas is expanded in at least one turbine, producing work, and in which method the exhaust gas emerging from the at least one turbine is passed through a heat recovery steam generator in order to generate steam, which generator is part of a water-steam circuit with at least one steam turbine, a condenser, a feedwater tank and a feedwater pump, wherein heat is provided by extracting steam from the at least one steam turbine.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: March 24, 2015
    Assignee: ALSTOM Technology Ltd
    Inventors: Francois Droux, Dario Ugo Breschi, Karl Reyser, Stefan Rofka, Johannes Wick
  • Patent number: 8984895
    Abstract: A method and apparatus are disclosed for a gas turbine spool design combining metallic and ceramic components in a way that controls clearances between critical components over a range of engine operating temperatures and pressures. In a first embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud and separated by a small clearance gap. The ceramic rotor is connected to a metallic volute. In order to accommodate the differential rates of thermal expansion between the ceramic rotor and metallic volute, an active clearance control system is used to maintain the desired axial clearance between ceramic rotor and the ceramic shroud over the range of engine operating temperatures. In a second embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud which is part of a single piece ceramic volute/shroud assembly.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: March 24, 2015
    Assignee: ICR Turbine Engine Corporation
    Inventors: James B. Kesseli, Matthew Stephen Baldwin
  • Patent number: 8984896
    Abstract: A combustor heat shield assembly comprises a circumferential array of heat shield panels individually mounted to an inner surface of a combustor shell. Each heat shield panel has a sealing rail extending from a back side thereof and a plurality of bolted connections securely holding the heat shield panel on the combustor shell with the sealing rail in sealing contact with the inner surface of the combustor shell. Each pair of adjacent heat shield panels comprises first and second panels having adjoining lateral edges, the first panel having a boltless area on its back side at a location adjacent to its adjoining lateral edge. The second panel has a first one of its bolted connections provided adjacent to its adjoining lateral edge and in facing relationship with the boltless area of the first panel.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 24, 2015
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Nigel Caldwell Davenport, Eduardo David Hawie
  • Patent number: 8984897
    Abstract: Embodiments of the present invention generally provide for a system that removes excess thermal energy from a datacenter. In one embodiment, the system includes a holding container with highly thermally conductive surfaces installed in the warmest area(s) of the datacenter. Two substances are released into the holding container and are mixed creating a liquid solution and causing an endothermic reaction. The resulting reaction transfers thermal energy from the datacenter air to the new solution. The liquid solution is then pumped out of the datacenter, where it can be passed through a dialyzing membrane or an evaporation chamber, which separates the liquid solution into its two original substances.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Cary M. Huettner, Joseph Kuczynski, Robert E. Meyer, III, Timothy J. Tofil
  • Patent number: 8984898
    Abstract: A pressure wave generator (40) for driving one or more cryogenic refrigerator systems. The pressure wave generator (40) comprises a housing with one or more inlet/outlet ports (57,58) through which generated pressure waves of gas may pass through to drive a cryogenic refrigerator system or systems connected to the inlet/outlet ports (57,58). The pressure waves are generated by at least one pair of opposed diaphragms (41,42) located in the housing that are moveable in a reciprocating motion within the housing to create pressure waves in gas spaces (55,56) associated with each diaphragm (41,42). The gas spaces (55,56) each having associated inlet/outlet ports (57,58) through which the pressure waves may pass. An operable drive system is also provided to move the pair of diaphragms (41,42) in a reciprocating motion.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: March 24, 2015
    Assignee: Industrial Research Limited
    Inventors: Alan Caughley, David Haywood
  • Patent number: 8984899
    Abstract: The present disclosure relates to an ice bucket for a refrigerator and methods of using the same. The ice bucket is mounted on a door of the refrigerator and includes a platform that is movable along a vertical axis from a lowered position at a bottom portion of the ice bucket to a raised position at a top portion of the ice bucket.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventor: Alan Joseph Mitchell
  • Patent number: 8984900
    Abstract: A decorative member of a refrigerator and a method for fabricating the same are disclosed. A refrigerator includes a storage container provided in a storage chamber; and a decorative member provided in the storage container, the decorative configured to generate light refraction and guide a movement of condensate condensed in the storage container, and configured to be capable of displaying humidity inside the storage container according to the movement degree of condensate.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 24, 2015
    Assignee: LG Electronics Inc.
    Inventors: Seok Jae Jeong, Young Kyu Kim
  • Patent number: 8984901
    Abstract: A heat pump system includes: a heat-source-side refrigerant circuit having a heat-source-side compressor, a first usage-side heat exchanger operable as a radiator of heat-source-side refrigerant, and a heat-source-side heat exchanger operable as a radiator of heat-source-side refrigerant; and a usage-side refrigerant circuit having a usage-side compressor, a refrigerant/water heat exchanger operable as a radiator of usage-side refrigerant to heat an aqueous medium, and the first usage-side heat exchanger operable as an evaporator of usage-side refrigerant by radiation of heat-source-side refrigerant.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 24, 2015
    Assignees: Daikin Industries, Ltd., Daikin Europe N.V.
    Inventor: Masahiro Honda
  • Patent number: 8984902
    Abstract: A cooling system for an appliance includes an evaporator stage, a compressor stage coupled to the evaporator stage and a condenser stage coupled to the compressor stage. The condenser stage includes a condenser and a condenser cooling fan for cooling the condenser, and a condenser loop coupled between the condenser stage and the evaporator stage. A humidity sensor is configured to detect a humidity level in an area of the cooling system and a controller is configured to cycle an operating state of the condenser cooling fan from ON to a low speed or OFF prior to an end of a cooling cycle.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Brent Alden Junge, Eric Paez, Joseph Thomas Waugh, Kristin Marie Weirich
  • Patent number: 8984903
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 24, 2015
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Atsushi Inaba, Mikiharu Kuwahara