Patents Issued in January 31, 2017
  • Patent number: 9554692
    Abstract: A multi-camera endoscope which includes an elongated shaft terminating with a tip section turnable by way of a bending section, wherein the tip section includes: a front-pointing camera and a discrete front illuminator associated therewith; a front fluid injector configured for cleaning at least one of said front-pointing camera and said discrete front illuminator; a side-pointing camera and a discrete side illuminator associated therewith; a side fluid injector configured for cleaning at least one of said side-pointing camera and said discrete side illuminator; a working channel configured for insertion of a surgical tool; and a pathway fluid injector for inflating and/or cleaning a body cavity into which the endoscope is inserted.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: January 31, 2017
    Assignee: EndoChoice Innovation Ctr. Ltd.
    Inventor: Avi Levy
  • Patent number: 9554693
    Abstract: An image processing device includes an image acquisition unit for acquiring a normal light observation image captured with white light and a special light observation image captured simultaneously with the normal light observation image using predetermined narrowband light, and an image processing unit for subjecting the normal light observation image acquired by the image acquisition unit to predetermined processing to generate a processed normal light observation image and providing information of the processed normal light observation image to the special light observation image.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 31, 2017
    Assignee: FUJIFILM CORPORATION
    Inventor: Toshihiko Kaku
  • Patent number: 9554694
    Abstract: Methods and apparatus for delivering a neurostimulator to a target tissue are provided which may include any number of features. One feature is a delivery tool comprising a handle portion, an elongate shaft comprising a contoured distal portion, a visualization system embedded in the elongate shaft, and an insertion groove on the elongate shaft configured to deploy the neurostimulator. The contoured distal portion can be shaped and configured to maintain contact with a posterior maxilla and elevate a periosteum off of the posterior maxilla to avoid soft tissue dissection. In some embodiments, the neurostimulator is implanted in close proximity to or touching the sphenopalatine ganglion.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 31, 2017
    Assignee: Autonomic Technologies, Inc.
    Inventors: Benjamin David Pless, Carl Lance Boling, Anthony V. Caparso
  • Patent number: 9554695
    Abstract: Selection items which can be executed by an ophthalmologic application are displayed on a display portion on an ophthalmologic apparatus, and can be selected and executed by an operation portion on the ophthalmologic apparatus, thereby providing an ophthalmologic information process system and program which can reduce load on the operator and increase the overall throughput of examination. An ophthalmologic application transmits executable selection item information to the ophthalmologic apparatus and causes the ophthalmologic apparatus to display the information. Selection of one of the displayed selection items is executed by operation on the ophthalmologic apparatus. The behavior of the application is then controlled in accordance with the selection item.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: January 31, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yutaka Yamashita
  • Patent number: 9554696
    Abstract: Systems and methods for measuring dysphotopsia are provided. These systems and methods can be used to objectively quantify positive and negative dysphotopsia. One embodiment provides a system and method for determining dysphotopsia that uses a first light source configured to provide light energy to illuminate a model eye, a refractor for refracting the light energy from the first light source and directing it into the model eye, a first electronic light sensor for measuring an amount of light in the model eye; a second light source configured to provide light energy to illuminate the model eye, wherein the light energy from the second light source is introduced at an angle from the first light source; and a second electronic light sensor for measuring the amount of light in the model eye, wherein the second electronic light sensor is capable of taking measurements from various points around the model eye. Data from these measurements can then analyzed to provide an objective measurement of dysphotopsia.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 31, 2017
    Assignee: Abbott Medical Optics Inc.
    Inventors: Huawei Zhao, Mihai State, Luuk Franssen, Patricia Ann Piers, Hendrik A. Weeber, Marrie Van Der Mooren
  • Patent number: 9554697
    Abstract: An ophthalmic method for determining a relationship between aphakic ocular power and estimated effective lens position (ELP) of an intraocular lens (IOL) to be implanted in a patient's eye. The method can be used to determine an estimate of the ELP of an IOL given the aphakic ocular power of the patient's eye, for example, without measurement of the corneal curvature or axial length of the patient's eye. The estimate of ELP can then be used to determine a suitable value of optical power for the IOL to be implanted in the patient's eye.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 31, 2017
    Assignee: WaveTec Vision Systems, Inc.
    Inventors: Thomas D. Padrick, Jack T. Holladay
  • Patent number: 9554698
    Abstract: Ocular surface interferometry (OSI) devices, systems, and methods are disclosed for measuring a tear film layer thickness (TFLT) of the ocular tear film, including lipid layer thickness (LLT) and/or aqueous layer thickness (ALT). The measured TFLT can be used to diagnosis dry eye syndrome (DES). In certain disclosed embodiments, a multi-wavelength light source can be controlled to illuminate the ocular tear film. Light emitted from the multi-wavelength light source undergoes optical wave interference interactions in the tear film. An imaging device can be focused on the lipid layer of the tear film to capture optical wave interference interactions of specularly reflected light from the tear film combined with a background signal(s) in a first image. The imaging device can also be focused on the lipid layer of the tear film to capture a second image containing the background signal(s) present in the first image.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: January 31, 2017
    Assignee: TearScience, Inc.
    Inventors: Donald R. Korb, William L. Weber, Randal B. Chinnock, Benjamin T. Gravely, Stephen M. Grenon
  • Patent number: 9554700
    Abstract: An optical coherence tomographic imaging apparatus includes a movement amount acquisition unit configured to acquire an amount of rotation of a subject's eye based on a plurality of images of the subject's eye acquired at different times, and a control unit configured to control a scanning unit to correct, based on the acquired amount of rotation, a scanning position between a scan and a next scan performed by the scanning unit.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: January 31, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasuhiro Nakahara, Manabu Wada, Hiroki Uchida
  • Patent number: 9554701
    Abstract: An article for use in an OCT method, the article comprising a solid substrate and nanoparticles dispersed in or on the substrate in at least one light transmissive portion of the article such that the nanoparticles result in an increased extinction of the light transmissive portion along a transmission direction of the light transmissive portion compared to the substrate being free of nanoparticles. The extinction of the light transmissive portion along the transmission direction is less than 6, wherein the extinction is defined as a negative decadic logarithm of a ratio of an intensity of light which is transmitted through the light transmissive portion to an intensity of light which is incident on the light transmissive portion, wherein the light is in at least one of a visible and a near infrared wavelength range.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: January 31, 2017
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Marco Wilzbach, Martin Hacker, Christoph Hauger
  • Patent number: 9554702
    Abstract: A surgical imaging system can comprise a light source, configured to generate an imaging light beam; a beam guidance system, configured to guide the imaging light beam from the light source; a beam scanner, configured to receive the imaging light from the beam guidance system, and to generate a scanned imaging light beam; a beam coupler, configured to redirect the scanned imaging light beam; and a wide field of view (WFOV) lens, configured to guide the redirected scanned imaging light beam into a target region of a procedure eye.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 31, 2017
    Assignee: Novartis AG
    Inventors: Michael Papac, Lingfeng Yu, Tammo Heeren
  • Patent number: 9554703
    Abstract: A diabetes care system for detection of an analyte and method for selective data transmission are disclosed. The diabetes care system has a mobile component and a base station, wherein a data transmission occurring between the mobile component and the base station within a time interval in which a wireless communication link exists, wherein is selectively performed in such a manner that within the time interval, a first partial set of the data is transmitted from the mobile component to the base station. The first partial set is selected using a processor-controlled selection algorithm in such a manner that the data transmitted in the time interval is representative of the entirety of the data stored in the mobile component.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: January 31, 2017
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Jürgen Rasch-Menges, Paul Jansen, Hans-Peter Haar, Ulrich Haueter, Andreas Poredda
  • Patent number: 9554704
    Abstract: Provided is a living organism information measurement device which users can easily and reliably operate. A living organism information measurement device for acquiring living organism information and generating measurement data relating to the information is provided with a device body, and a panel detachably attached to the device body. The device body comprises a control unit which executes a plurality of functions of the device body, a living organism information measurement unit which is connected to the control unit and generates the measurement data, and a first communication unit connected to the control unit. The panel comprises a second communication unit including a memory storing predetermined information. When the panel is attached to the device body, the first communication unit receives the predetermined information from the second communication unit. The control unit selects and executes a function corresponding to the received predetermined information among the plurality of functions.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 31, 2017
    Assignee: PANASONIC HEALTHCARE HOLDINGS CO., LTD.
    Inventor: Koji Okuyama
  • Patent number: 9554705
    Abstract: The present disclosure provides a medical monitoring system which comprises a landmark with a wireless module configured to broadcast a location information, a server connected to the landmark, a wearable device comprising a wearable-end wireless module and a user tag, a monitoring device comprising a monitor-end wireless module and a tag reader, and wherein the tag reader reads a user information from the user tag. The wearable device uses the wearable-end wireless module to receive the location information from the landmark, and determines a first current location based on the location information, and uses the wearable-end wireless module to send the first current location and the user information to the server via the landmark. The monitoring device uses the monitor-end wireless module and the user information as reference to obtain the first current location from the server via the landmark.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: January 31, 2017
    Assignee: International Mobile IOT Corp
    Inventor: Jung-Tang Huang
  • Patent number: 9554706
    Abstract: A patient monitor includes a plurality of monitoring devices which collect data about a patient. An evaluation unit determines the patient's condition from the collected data and generates an alarm if the patient's condition warrants notifying an appropriate medical responder. A communication unit which transmits the alarm to a access point over a hospital Internet protocol (IP) network, the communication device includes a first transmitter for transmitting the alarm using a primary link and a second transmitter for transmitting the alarm using a secondary link in response to the transmission using the primary link failing.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: January 31, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Amjad A. Soomro, Mark S. Kotfila, Ruediger Schmitt, Phillip Raymond
  • Patent number: 9554707
    Abstract: Exemplary embodiments are directed to acquiring multiple sets of positron emission tomography (PET) data for different areas of a subject concurrently with acquiring portions of a single magnetic resonance field of view. Positron emission tomography (PET) images and magnetic resonance (MR) images can be acquired using a combined PET-MRI scanner, wherein, for example, a first portion of MR data from a MR field of view can be acquired concurrently with a first acquisition of PET data, a position of the MR field of view can be adjusted in response to a change in a location of a bed in the combined PET-MRI scanner, and a second portion of MR data from the MR field of view can be acquired concurrently with a second acquisition of PET data.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 31, 2017
    Assignee: General Electric Company
    Inventors: Thomas Kwok-Fah Foo, Christopher Judson Hardy, Manjeshwar Mohan Ravindra
  • Patent number: 9554708
    Abstract: A catheter enables real-time light measurements, for example, without limitation, diffuse reflectance, fluorescence, etc., from biological materials, such as tissue (including blood), while performing RF ablation. The catheter tip design isolates illumination and collection paths within the tip electrode such that light for illuminating the tissue of interest (e.g., cardiac tissue or blood) is isolated within the tip electrode from light that returns from the tissue to the catheter tip, and vice versa. Such a design advantageously avoids saturation of the optical detector, and ensures diffusion of the illumination light within the medium of interest. The catheter has a catheter body and a tip electrode with a shell wall and a hollow cavity. The shell wall has at least an illumination opening and a collection opening.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 31, 2017
    Assignee: Biosense Webster, Inc.
    Inventor: James K. Lee
  • Patent number: 9554709
    Abstract: There is provided a specimen information acquisition apparatus that can obtain an image in which an influence of a local fluence distribution in a specimen is reduced. A signal processing apparatus includes a region extraction unit and an optical constant estimation unit. The region extraction unit extracts two or more regions that have a known absorption coefficient, from an optical characteristic value distribution of the specimen. The optical constant estimation unit estimates an optical constant of a background of the specimen by using optical characteristic values of the two or more regions extracted by the region extraction unit and a local fluence distribution obtained from an optical constant which is set in advance for the specimen background.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: January 31, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuhiko Fukutani
  • Patent number: 9554710
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, side-loading electrical connectors for use with intravascular devices are provided. The side-loading electrical connector has at least one electrical contact configured to interface with an electrical connector of the intravascular device. A first connection piece of the side-loading electrical connector is movable relative to a second connection piece between an open position and a closed position, wherein in the open position an elongated opening is formed between the first and second connection pieces to facilitate insertion of the electrical connector between the first and second connection pieces in a direction transverse to a longitudinal axis of the intravascular device and wherein in the closed position the at least one electrical contact is electrically coupled to the at least one electrical connector received between the first and second connection pieces.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 31, 2017
    Assignee: Volcano Corporation
    Inventor: David H. Burkett
  • Patent number: 9554711
    Abstract: A sphygmomanometer includes an expandable/contractable air bag supplied with air; a bag-shaped cover body for accommodating the air bag and for attaching the air bag to a site to be measured; an expansion and contraction mechanism for expanding and contracting the air bag; and a power supply unit arranged in the bag-shaped cover body. The power supply unit includes a battery for supplying driving power to the expansion and contraction mechanism, and a non-contact power reception unit for receiving power for charging the battery. The non-contact power reception unit is supplied with power through an electromagnetic inductive action from a non-contact power transmission unit arranged in a non-contact state with the non-contact power reception unit.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: January 31, 2017
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Hiroyasu Ariga, Yoshihiko Sano
  • Patent number: 9554712
    Abstract: A test unit may generate a pulse signal based on a pulsatile profile and a frequency modulation component of a respiratory profile. A respiration modulated signal may be generated from the pulse signal, an amplitude modulation component, and a baseline modulation component. A patient modulated signal may be generated based on the respiration modulated signal and a patient profile. The artificial PPG signal may be generated based on the patient modulated signal and an artifact profile. The artificial PPG signal may be output to an electronic device.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 31, 2017
    Assignee: Covidien LP
    Inventors: Braddon M. Van Slyke, Ronald Kadlec, Scott McGonigle, Michael Mestek, Paul Stanley Addison, James Nicholas Watson
  • Patent number: 9554713
    Abstract: A muscle stimulator that may be used during ARM surgeries is disclosed that may be constructed from (1) a widely available low cost (e.g., $200 per unit) peripheral nerve stimulators or similar stimulator and (2) a relatively simple, handheld surgical probe to provide a low cost muscle stimulator that is adequate for ARM surgeries. These two components could provide a low cost solution to allow doctors in developing countries feasibly perform ARM surgeries with relatively minimal manufacturing and inexpensive maintenance.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: January 31, 2017
    Assignee: Global Pediatric Surgical Technology and Education Project, Inc.
    Inventors: Philip Kent Frykman, Keith J. Kimble
  • Patent number: 9554714
    Abstract: Implantable medical device systems and methods configured to use a detection profile selected from among a plurality of detection profiles to define a detection threshold for identifying cardiac events, in which a close call definition is used to determine which of the plurality of detection profiles is to be chosen. Upon identifying a close call, in which an overdetection nearly occurred but did not actually take place, a relatively less sensitive detection profile is chosen.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: January 31, 2017
    Assignee: CAMERON HEALTH INC.
    Inventor: Venugopal Allavatam
  • Patent number: 9554715
    Abstract: In one embodiment, ECG data collected during the long-term monitoring are compressed through a two-step compression algorithm executed by an electrocardiography monitor. Minimum amplitude signals may become indistinguishable from noise if overly inclusive encoding is employed in which voltage ranges are set too wide. The resulting ECG signal will appear “choppy” and uneven with an abrupt slope. The encoding used in the first stage of compression can be dynamically rescaled on-the-fly when the granularity of the encoding is too coarse. In a further embodiment, offloaded ECG signals are automatically gained as appropriate on a recording-by-recording basis to preserve the amplitude relationship between the signals. Raw decompressed ECG signals are filtered for noise content and any gaps in the signals are bridged. An appropriate signal gain is determined based on a statistical evaluation of peak-to-peak voltage (or other indicator) to land as many ECG waveforms within a desired range of display.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 31, 2017
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Gust H. Bardy, Jason Felix, Jon Mikalson Bishay, Ezra M. Dreisbach
  • Patent number: 9554716
    Abstract: A guidance system for assisting with the insertion of a needle or other medical component into the body of a patient is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 31, 2017
    Assignee: C. R. Bard, Inc.
    Inventors: Eddie K. Burnside, Kelly B. Powers, Shayne Messerly, Jiaye Z. Jho, Bret Hamatake
  • Patent number: 9554717
    Abstract: Described herein are implantable systems and devices, and methods for use therewith, that can be used to monitor and treat heart failure (HF). Such implantable systems preferably includes a lead having at least two electrodes implantable in a patient's left ventricular (LV) chamber. A plurality of different sensing vectors are used to obtain a plurality of IEGMs each of which is indicative of an evoked response at a corresponding different region of the LV chamber. For each of the IEGMs, there is a determination of one or more evoked response metrics indicative of a localized cardiac function at the corresponding region of the LV chamber. The evoke response metrics can be, e.g., paced depolarization integral (PDI) and/or maximum upward slope of an R-wave, but are not limited thereto.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 31, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Allen J. Keel, Kyungmoo Ryu, Stuart Rosenberg
  • Patent number: 9554718
    Abstract: Catheterization of the heart is carried out by inserting a probe having electrodes into a heart of a living subject, recording a bipolar electrogram and a unipolar electrogram from one of the electrodes at a location in the heart, and defining a window of interest wherein a rate of change in a potential of the bipolar electrogram exceeds a predetermined value. An annotation is established in the unipolar electrogram, wherein the annotation denotes a maximum rate of change in a potential of the unipolar electrogram within the window of interest. A quality value is assigned to the annotation, and a 3-dimensional map is generated of a portion of the heart that includes the annotation and the quality value thereof.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: January 31, 2017
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Meir Bar-Tal, Richard P. M. Houben, Yaniv Ben Zriham, Assaf Pressman, Roy Urman, Shmuel Auerbach
  • Patent number: 9554719
    Abstract: The present invention provides an improved, Internet-based system that seamlessly collects cardiovascular data from a patient before, during, and after a procedure for EP or an ID. During an EP procedure, the system collects information describing the patient's response to PES and the ablation process, ECG waveforms and their various features, HR and other vital signs, HR variability, cardiac arrhythmias, patient demographics, and patient outcomes. Once these data are collected, the system stores them on an Internet-accessible computer system that can deploy a collection of user-selected and custom-developed algorithms. Before and after the procedure, the system also integrates with body-worn and/or programmers that interrogate implanted devices to collect similar data while the patient is either ambulatory, or in a clinic associated with the hospital. A data-collection/storage module, featuring database interface, stores physiological and procedural information measured from the patient.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: January 31, 2017
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Gregory Kent Feld, Marshal Singh Dillon, Adolfo Meza-Guinea, Susan Meeks Pede, Andrew Terry
  • Patent number: 9554720
    Abstract: Detection of R-peak signal in an electrocardiogram signal is provided. An electrocardiogram signal representing heart activity of an individual is received. The electrocardiogram signal is sampled to obtain a plurality of sample points, and a bounded non-linear response value is computed for each sample point of the received signal by calculating a negative exponential of derivatives of the sample points.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: January 31, 2017
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Gurkirt Singh
  • Patent number: 9554721
    Abstract: The present invention relates to a brain dysfunction and seizure detector monitor and system, and a method of detecting brain dysfunction and/or seizure of a subject. The various embodiments of the system of the present invention were developed for the brain activity and preferably EEG monitoring of a single patient or multiple patients. Preferably, the system or monitor of the present invention also includes one or more seizure detection algorithms. The analysis method is specifically optimized to amplify abnormal brain activity and minimize normal background activity. This analysis yields a seizure index whose value is directly related to the current presence of ictal activity in the signal. In addition, a seizure probability index based on historical values of the aforementioned seizure index, is derived for diagnostic purposes. The seizure probability index quantifies the probability that the patient has exhibited abnormal brain activity since the beginning of the recording.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: January 31, 2017
    Assignee: NeuroWave Systems Inc.
    Inventors: Tatjana Zikov, Stéphane Bibian, Mohammad Modarres
  • Patent number: 9554722
    Abstract: The present invention relates to an apparatus and a method for measuring muscular activity, in particular in relation to bruxism, and providing an electrical stimulation in response to the measured muscular activity through electrodes applied to the skin of an individual, wherein the quality of the connectivity of the electrodes to the skin is monitored and the electrical stimulation signal is changed based on said quality measurement.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: January 31, 2017
    Assignee: Sunstar Suisse SA
    Inventors: Faramarz Jadidi, Claus Steen
  • Patent number: 9554723
    Abstract: Medical devices having electrically conductive pathways are disclosed. More particularly, the disclosure is directed to catheter shafts including an electrically conductive wire embedded in a polymeric tube. The disclosure is also directed to catheter shafts including an electrically conductive media coextruded in a polymeric tube. The disclosure is also directed to catheter shafts including electrically conductive pathways formed with electrically conductive ink, paste, adhesive and/or epoxy.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: January 31, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: James M. Anderson, Karl A. Jagger, Al Delander, Richard R. Miller
  • Patent number: 9554724
    Abstract: Exemplary embodiments for self-aligning a sensor array with respect to blood vessel of a user comprise: determining an optimal sensor in a sensor array comprising an array of discrete sensors arranged on a band such that the sensor array straddles or otherwise addresses a blood vessel or other targeted area of a user by activating each of the discrete sensors to generate respective signals; designating as the optimal discrete sensor a particular discrete sensor producing a highest signal-to-noise ratio; and using the optimal sensor to collect physiological data of the user.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: January 31, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: James Schuessler
  • Patent number: 9554725
    Abstract: Embodiments relate to a method of monitoring physiological parameters of a patient with renal dysfunction. The method includes electrically connecting one or more medical device electrodes with a measurement site of a patient, generating one or more first stimulation signals sufficient to provide input physiological parameters specific to the patient, measuring one or more first bioimpedance values from the generated signals, analyzing at least one of the input physiological parameters within the one or more first bioimpedance values and generating a personalized dialysis program. The systems and methods can further provide essentially real-time data of patient undergoing treatment and control of treatment to a patient.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: January 31, 2017
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Rodolphe Katra, Niranjan Chakravarthy, Imad Libbus
  • Patent number: 9554726
    Abstract: A hyperpolarized liquid contrast agent is for use in a MRT device. The liquid contrast agent passes through a conduit of a MW resonator in the magnetic field of the MRT device. A microwave with a frequency of at least 40 GHz couples into the MW resonator for polarizing the liquid contrast agent upon passage through the conduit in the MW resonator using DNP. The contrast agent is polarized in a continuous passage in the MW resonator and administered immediately. A MW mode is formed in the MW resonator which has an antinode in the magnetic field strength and a node in the electric field strength. The power of the introduced microwave and coupling of the microwave into the resonator are adjusted such that in the area of the line, an amplitude of the MW magnetic field strength B 1 ? 1.5 · 10 - 2 ? Ts ? 1 T 1 , e results, wherein T1,e is the relaxation time of the DNP-active electrons.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: January 31, 2017
    Assignee: Johann Wolfgang Goethe-Universität Frankfurt am Main
    Inventors: Jan Krummenacker, Thomas Prisner, Vasyl Denysenkov, Laura Schreiber, Kerstin Münnemann
  • Patent number: 9554727
    Abstract: The present invention relates to imaging and characterizing atherosclerotic lesions. The invention utilizes a low-flip-angle gradient echo-based MRI acquisition technique combined with specialized magnetization preparative schemes (i.e. non-selective inversion and FSD), and multiple co-registered 3D image sets with different contrast weightings are collected in an interleaved fashion. Using the inventive method, a single scan allows for comprehensive assessment of atherosclerotic plaque within just a few minutes.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: January 31, 2017
    Assignee: Cedars-Sinai Medical Center
    Inventors: Debiao Li, Zhaoyang Fan
  • Patent number: 9554728
    Abstract: The present invention relates to visualizing information of an object.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 31, 2017
    Assignees: KONINKLIJKE PHILIPS N.V., KING'S COLLEGE LONDON
    Inventors: Robert Manzke, Patrick Etyngier, Pascal Yves Francois Cathier, Nicolas Francois Villain, Volker Rasche, Kawaldeep Singh Rhode
  • Patent number: 9554729
    Abstract: Visual-assisted guidance of an ultra-thin flexible endoscope to a predetermined region of interest within a lung during a bronchoscopy procedure. The region may be an opacity-identified by non-invasive imaging methods, such as high-resolution computed tomography (HRCT) or as a malignant lung mass that was diagnosed in a previous examination. An embedded position sensor on the flexible endoscope indicates the position of the distal tip of the probe in a Cartesian coordinate system during the procedure. A visual display is continually updated, showing the present position and orientation of the marker in a 3-D graphical airway model generated from image reconstruction. The visual display also includes windows depicting a virtual fly-through perspective and real-time video images acquired at the head of the endoscope, which can be stored as data, with an audio or textual account.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 31, 2017
    Assignee: University of Washington
    Inventors: Timothy D. Soper, Robb W. Glenny, Eric J. Seibel
  • Patent number: 9554730
    Abstract: According to the invention, a compression depth sensor for measuring a compression depth comprises a first pressure transducer (30), attachable to a fixed element, a first liquid filled lumen (20), having a first fixed lumen end (21) attachable to the pressure transducer and a first movable lumen end (22) being movable between a first position and a second position, a distance between the first and second position defining the compression depth, whereby the first pressure transducer is adapted to measure the compression depth by measuring a change in liquid pressure in the lumen during movement of the first movable lumen end between the first position and the second position. A CPR apparatus according to the invention comprises such a compression sensor.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: January 31, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Paul Aelen, Pierre Hermanus Woerlee
  • Patent number: 9554731
    Abstract: Systems and methods provide patient position information to a user. A patient positioning device is placed on a patient in a predefined location. The patient positioning device determines a relative patient position with respect to at least one known reference axis. The patient positioning device communicates patient position information including or with reference to the at least one known reference axis. The communicated patient position information allows the user to position the patient and/or a surgical tool using the communicated patient position information.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 31, 2017
    Assignee: The General Hospital Corporation
    Inventors: Henrik Malchau, Gavin Braithwaite, Orhun K Muratoglu, Harry E. Rubash, Bayen Lee Miller
  • Patent number: 9554732
    Abstract: A system includes an activity-specific article and an activity-agnostic puck. The article includes a receptacle and an activity-specific sensor coupled to the receptacle. The puck is configured to be removably positioned in the receptacle. The puck includes a processor, a communication interface, and at least one activity-agnostic sensor coupled to the processor. The processor receives information from the activity-specific sensor and the activity-agnostic sensor, and provides the received information through the communication interface.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 31, 2017
    Assignee: EVERYDAY OLYMPIAN, INC.
    Inventor: Jonathan C. Schaffer
  • Patent number: 9554733
    Abstract: A hearing protection device is disclosed which incorporates integrated audiometric testing, thereby allowing for testing without removal of safety hearing protection. The hearing protection is typically intended to be worn for the duration of a work shift, and allows for self-testing during the shift. Embodiments of the device may utilize a series of partial test sessions, so that each test session is kept brief so as to not interfere unduly with the work schedule. This may encourage frequent testing, hopefully aiding in early detection of potential hearing loss. Additionally, methods of use are disclosed.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: January 31, 2017
    Assignee: Honeywell Hearing Technologies AS
    Inventors: Viggo Henriksen, Trym Holter, Olav Kvaløy, Asle Melvaer, Georg Esa Ottesen, Odd Kristen Østern Pettersen, Jarle Svean, Svein Sørsdal
  • Patent number: 9554734
    Abstract: A disposable automatic painless safe hemostix includes an outer casing, an inner sleeve, a needle module and a spring. The needle module is snapped in the inner sleeve and the outer casing. The needle module has a needle point protecting pole. Interlock fixing faces and protrusions are provided on the inner sleeve. Interlock guiding slopes and protrusion stoppers are provided on the inner wall of the outer casing. One end of the interlock engages the interlock fixing face, and the other end engages the interlock guiding slope.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: January 31, 2017
    Inventor: Lin Wang
  • Patent number: 9554735
    Abstract: A system for determining the concentration of an analyte in at least one body fluid in body tissue comprises an infrared light source, a body tissue interface, a detector, and a central processing unit. The body tissue interface is adapted to contact body tissue and to deliver light from the infrared light source to the contacted body tissue. The detector is adapted to receive spectral information corresponding to infrared light transmitted through the portion of body tissue being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid, the algorithm adapted to convert the received spectral information into the concentration of the analyte in at least one body fluid.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: January 31, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Mihailo V. Rebec, James E. Smous, Steven D. Brown, Hu-Wei Tan
  • Patent number: 9554736
    Abstract: The disclosure provides an allergy detection system for use during catheterization. The allergy detection system is incorporated into specialized syringes, connectors for use with standard syringes, or can be an independent test module designed for the sole purpose of allergy detection. The detection system features a test strip, such as an immunochromatographic test strip, and a structure to couple the system to a connector, syringe, or a housing, to form an independent test module. The detection system, by way of test strips, is used to detect potential allergic reactions.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: January 31, 2017
    Assignee: Teleflex Medical Incorporated
    Inventors: Nisha Gupta, David T. Rowe, Rodney W. Denlinger
  • Patent number: 9554737
    Abstract: A method for noninvasively measuring analyte levels includes using a non-imaging OCT-based system to scan a two-dimensional area of biological tissue and gather data continuously during the scanning. Structures within the tissue where measured-analyte-induced changes to the OCT data dominate over changes induced by other analytes are identified by focusing on highly localized regions of the data curve produced from the OCT scan which correspond to discontinuities in the OCT data curve. The data from these localized regions then can be related to measured analyte levels.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 31, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Matthew J. Schurman, Walter J. Shakespeare, William Henry Bennett
  • Patent number: 9554738
    Abstract: In a noninvasive system for detection/measurement of analytes in tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to the analytes, are derived from one or more features after modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify the energy absorbed by the analyte from radiation directed to the tissue. The value of the amplified energy is transformed into an accurate estimate of the concentration of the analyte. Depending on the analyte type, a particular tissue region is targeted and/or one or more parameters of the computational collision are selected.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 31, 2017
    Assignee: Zyomed Corp.
    Inventors: Sandeep Gulati, Timothy L. Ruchti, John L. Smith, William Van Antwerp
  • Patent number: 9554739
    Abstract: Systems, methods, and devices for intercommunication between a medical sensor and an electronic patient monitor are provided. For example, one embodiment of a system for communicably coupling a medical sensor to an electronic patient monitor may include a sensor-side communication connector and a monitor-side communication connector. The sensor-side communication connector may be capable of receiving a raw physiological measurement signal from the medical sensor, and the monitor-side communication connector may be capable of providing a digital physiological measurement signal based at least in part on the raw physiological measurement signal to the electronic patient monitor via a data link.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 31, 2017
    Assignee: Covidien LP
    Inventor: Daniel Lisogurski
  • Patent number: 9554740
    Abstract: An apparatus (10) for predicting patient respiratory stability includes a patient data memory (24) which stores patient data for a patient (12) and an analyzer (34) in communication with the memory computes a measure of patient respiratory stability. The analyzer applies one or more rules to the patient data that are based on a plurality of parameters which in combination, have been identified as being predictive of patient respiratory instability, such as mean airway pressure (MAWP), plateau pressure (PP), arterial oxygen saturation (SaO2 or SpO2), and heart rate (HR). Based on the application of the rules, the analyzer determines the measure of patient respiratory stability.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: January 31, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mohammed Saeed, Kwok Pun Lee, Colleen M. Ennett, Larry Eshelman, Larry Nielsen, Brian Gross
  • Patent number: 9554741
    Abstract: A bodily fluid sampling device is operable to lance with a precise depth and express fluid from both fingertip and alternate sites. In one form, the device is operable to adjust the penetration depth of the lancet into the skin. The bodily fluid sampling device includes a lancet adapted to form an incision in skin. A skin contacting member has an orifice through which the lancet extends when lancing the skin. The orifice has a first opening size that is sized to flatten the skin around the lancet during lancing. The orifice has a second opening size that is larger than the first opening size after the incision is formed to express fluid from the incision.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: January 31, 2017
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Steven N. Roe, Chris Wiegel
  • Patent number: 9554742
    Abstract: Systems and method are disclosed for determining a concentration of an analyte in a fluid (e.g., blood). The system can draw blood from a patient and deliver the blood to a sample cell. A particular component of the fluid (e.g., plasma) may be separated and/or positioned such that the concentration of the analyte is measured in the particular component of the fluid (e.g., plasma). The sample cell can include a sample container that has two window pieces. The system can have a fluid passage having a tip configured to mate with a multi-lumen catheter without leaking. The multi-lumen catheter can have proximal and distal ports. A fluid pressure system can be configured to periodically draw fluid from vasculature through a proximal intravascular opening and the proximal port while maintaining a low pressure and/or flow rate to thereby reduce risk of reversing the fluid flow in a vessel and drawing infusates upstream into another intravascular opening.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: January 31, 2017
    Assignee: OptiScan Biomedical Corporation
    Inventors: Eugene Lim, Roger Tong, Peter Rule, James R. Braig, Richard Keenan, David N. Callicoat