Patents Issued in September 17, 2019
  • Patent number: 10419099
    Abstract: This application provides a phase tracking reference signal (PTRS) sending method and apparatus. The method includes: implicitly determining, by a terminal device based on obtained uplink grant information and a preset rule, a to-be-sent PTRS and an antenna port for carrying the to-be-sent PTRS, where the antenna port is selected from an antenna port set, and the to-be-sent PTRS is one or more of all available PTRSs; and putting the to-be-sent PTRS on the antenna port, and sending the to-be-sent PTRS on the antenna port. This implicit indication method can effectively reduce air interface signaling overheads and improve air interface efficiency.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 17, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Haibao Ren, Yi Qin, Xi Zhang
  • Patent number: 10419100
    Abstract: Certain aspects and embodiments are directed to a Doppler shift correction sub-system that can be disposed in a mobile repeater. The Doppler shift correction sub-system can include a processor and a frequency-shifting module. The processor can be configured to determine a corrective frequency shift based on a velocity of the repeater relative to a source and a representative transmission frequency. The processor can provide the corrective frequency shift to a frequency-shifting module. The frequency-shifting module can be configured to shift the signal using the corrective frequency shift prior to transmitting the signal to a destination, such as a mobile device.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 17, 2019
    Assignee: Andrew Wireless Systems GmbH
    Inventors: Van E. Hanson, Alfons Dussmann
  • Patent number: 10419101
    Abstract: A signal coupling apparatus for transmitting transmission signals between a terminal and an antenna includes a terminal-side interface, at least one attenuation device and at least one connection signal arm for connecting the terminal-side interface with the attenuation device. At least a first transmission activity detection device is coupled with the connection signal arm for signaling purposes. The first transmission activity detection device is capable of generating a protection signal for controlling the attenuation device if a transmission power of a transmission signal is greater than a predetermined power. There is also described a method for operating such a signal coupling apparatus.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: September 17, 2019
    Assignee: Laird Dabendorf GmbH
    Inventors: Helmut Nast, Raimo Jacobi, Ahmed Sayed
  • Patent number: 10419102
    Abstract: A SUDAC includes a first and a second wireless communication interface and a processor. The first wireless communication interface is configured for using ultra-high frequency in order to establish at least one backend communication link with a base station. The second wireless communication interface is configured for using extremely-high frequency in order to establish at least one frontend communication link with a user equipment. The processor is configured for at least partially forwarding a user information signal received via the frontend communication link to be transmitted via the backend communication link while frequency converting the extremely-high frequency to the ultra-high frequency vice versa. The processor is further configured for extracting control information from the user information signal and for controlling forward parameters of the first or the second wireless communication interface based on the control information.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: September 17, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Marco Breiling, Frank Burkhardt, Christian Rohde, Wing Kwan Ng, Robert Schober
  • Patent number: 10419103
    Abstract: Embodiments described herein are directed to creating a cognitive heterogeneous ad hoc mesh network via generation and utilization of a participant table. Participant object transmit notification signals to inform other participants objects in line-of-sight of their position and movement. Mobile participants that receive these notification signals update a local version of the participant table. If the receiving mobile participant is responsible for forwarding participant table updates to the sending mobile participant, then the receiving mobile participant includes the received notification signal with the transmission of its next notification signal to propagate the participant table update to a stationary participant. The stationary participant can then transmit participant table updates to other mobile participants. If a stationary participant is not accessible or not functioning, the participants continue to propagate participant table changes when a responsible forwarding participant changes.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 17, 2019
    Assignee: Quixotic Holdings LLC
    Inventors: Matthew David Perdew, Ryan Scott Luther
  • Patent number: 10419104
    Abstract: Provided is an end system device for a network system with a first port for connection with the network system, a second port for connection with the network system, a local interface and a switching device. The switching device is designed to switch into a first or a second mode. In the first mode, the switching device is set up to relay data received at the first and second port to the local interface, and relay data received at the local interface to the first port and the second port. In the second mode, the switching device is set up to relay data received at the first port to the second port or to the local interface, relay data received at the second port to the first port or to the local interface, and relay data received at the local interface to the first port and the second port.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 17, 2019
    Assignee: AIRBUS DEFENCE AND SPACE GMBH
    Inventor: Ferdinand Huber
  • Patent number: 10419105
    Abstract: Methods and systems are provided for a protected communications architecture in which a pool of limited availability channels are shared through the transmission of encoded symbols with time-varying path diversity by a pool of users. The communications architecture can be managed by a network controller that stores availability data describing the availability of multiple-access satellite communications channels. The network controller allocates a first user to a first time-varying subset of the plurality of multiple-access satellite or terrestrial communications channels based on the availability data. The network controller updates the availability data based on the allocation of the first user. The network controller allocates a second user to a second time-varying subset of the plurality of multiple-access satellite or terrestrial communications channels based on the updated availability data.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: Orbital Sciences Corporation
    Inventor: Leonard Atkinson
  • Patent number: 10419106
    Abstract: Technology for satellite-based content delivery network (CDN) is described. The satellite-based CDN uses a network architecture to provide global high-speed Internet service from above the sky through various aircrafts such as high-altitude airships, satellites, space stations, and eventually the lunar data centers by taking into consideration of the technology advancements in the RF and optical wireless communications. The satellite-based CDN provides content delivery over data networks, aviation, data storage, and edge caching. The satellite-based CDN supports both the delay-sensitive traffic such as interactive services, voice calls, and video calls that consume medium to low data bandwidth, and the more delay-tolerant but high bandwidth Internet content items such as streaming and background services (e.g. email, FTP).
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 17, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Jungtao Liu, Jin Dong Kim
  • Patent number: 10419107
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for channel bonding in an adaptive coding and modulation mode. In some implementations, a system receives packets of a data stream for transmission in a satellite communications system. The system determines a modulation and coding arrangement for the received packets. The system generates code blocks that include data from the packets of the data stream. The system assigns the generated code blocks for transmission on different carriers. One or more of the different carriers is operated in an adaptive coding and modulation mode to support multiple modulation and coding arrangements within a single carrier. The system transmits the code blocks on the different carriers using the determined one or more modulation and coding arrangements.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 17, 2019
    Assignee: Hughes Network Systems, LLC
    Inventors: Liming Qin, Bala Subramaniam, Sri Bhat, Brandon Lasher
  • Patent number: 10419108
    Abstract: An optics module sends, to a host module, a pin signal indicating that an optics module is plugged into the host module, wherein the optics module is configured to operate at at least a first data rate and a second data rate. The optics module receives, from the host module, an indication of a host data rate. The optics module determines whether there is clock and data recovery loss of lock between the first data rate and a host data rate. If it is determined that there is clock and data recovery loss of lock between the first data rate and the host data rate, the optics module initializes at the second data rate if the second data rate matches the host data rate.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: September 17, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Norman Tang, Liang Ping Peng, David Lai, Anthony Nguyen
  • Patent number: 10419109
    Abstract: An optical transmitter is operable to generate an optical signal by modulating a number N of frequency divisional multiplexing (FDM) subcarriers using transformed digital signals which are determined by applying a pseudo FDM (pFDM) transformation to preliminary digital signals representative of multi-bit symbols. Rather than experiencing the effects of the number N of FDM channels, the optical signal experiences the effects of a different number M of pFDM channels, where M?N. In some examples, the number M of pFDM channels is less than the number N of FDM channels, and frequency-dependent degradations may be averaged across different symbol streams. In other examples, the number M of pFDM channels is greater than the number N of FDM channels, and different symbol streams may experience different frequency-dependent degradations. An optical receiver is operable to apply an inverse pFDM transformation in order to recover estimates of the multi-bit symbols.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: September 17, 2019
    Assignee: CIENA CORPORATION
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, Andrew D. Shiner, Hamid Ebrahimzad, Maurice O'Sullivan, Kim B. Roberts
  • Patent number: 10419110
    Abstract: A method and a device are provided for monitoring OSNR system margin in optical networks which relies on the relationship that exists between the OSNR value and the ESNR value.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: September 17, 2019
    Assignee: ECI TELECOM LTD.
    Inventors: David Jimmy Dahan, David Jacobian
  • Patent number: 10419111
    Abstract: The present disclosure provides example data transmission methods and apparatuses. One example method includes obtaining a radio signal by using an input port. Based on a correspondence between an input port and a bearer channel, a bearer channel corresponding to the radio signal is determined. Code Division Multiple Access (CDMA) modulation and carrier modulation on the radio signal are performed according to a codeword and a frequency sub-band corresponding to the bearer channel, to obtain a modulated electrical signal. The modulated electrical signal is then modulated to an optical wavelength corresponding to the bearer channel to obtain a modulated optical signal, and the modulated optical signal is sent to an optical network.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: September 17, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiaofeng Zhang, Lei Zhou
  • Patent number: 10419112
    Abstract: A monitoring system using an optical line is disclosed. The monitoring system using an optical line according to the present invention comprises: a laser diode for generating an input optical signal; an optical element for receiving the input optical signal through a first port and outputting same through a second port, and for receiving a reflected optical signal through the second port and outputting same through a third port; an optical switch unit for receiving the input optical signal through an input port connected to the second port of the optical element, and for distributing same through at least two output ports; at least one optical monitoring line connected to the output ports of the optical switch unit; a photodiode connected to the third port of the optical element, for detecting the reflected optical signal; and a signal processing unit for processing the signal detected by the photodiode.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: September 17, 2019
    Inventor: Jae Hee Byun
  • Patent number: 10419113
    Abstract: An optical communications system comprises a first node comprising a phased array transmitter for generating an optical beam and a receiver, and a second node comprising a phase conjugate mirror for returning the optical beam to be detected by the receiver of the first node. The phased array transmitters allow for electronic steering of the beams in a way that is much faster and with a potentially smaller physical footprint than the mechanical systems. The phase conjugate mirrors return the received beams of photons back over the exact path they were sent from the phased array transmitters, ensuring continuity of communication even in the presence of atmospheric turbulence.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 17, 2019
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robin Mark Adrian Dawson, Juha Pekka Laine, Steven Spector, Murali Chaparala
  • Patent number: 10419114
    Abstract: The invention relates to a method for directing communication traffic to and from a communication unit within an application control system, wherein the application control system comprises a plurality of application control components and the application control components are capable of transmitting messages to the communication unit using light waves. By determining position information of the application control components within the application control system and of a first communication unit within the application control system, an area of interest for the first communication unit is computed based on at least the first position information.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: September 17, 2019
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Bjorn Christiaan Wouter Kaag, Mark Thomas Johnson, Frederik Jan De Bruijn
  • Patent number: 10419115
    Abstract: An apparatus is provided that includes a light source, a memory storing a visible light signal, a control circuit configured to control change in luminance of the light source in accordance with the visible light signal, and a receiver configured to receive another visible light signal, which rewrites over the visible light signal, by a communication method that is different from a visible light communication. The control circuit determines whether the visible light signal is rewritten by the another visible light signal or not when the receiver receives the another visible light signal, and the visible light signal is rewritten by the another visible light signal when the control circuit determines the visible light signal is rewritten by the another visible light signal. The control circuit controls the change in luminance of the light source to transmit the another visible light signal.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 17, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Hideki Aoyama, Mitsuaki Oshima
  • Patent number: 10419116
    Abstract: A system may include a first module at a far end, and an optical fiber coupled to the first module. The system may also include a second module at a near end that is configured to generate and transmit instructions to the first module to control operation of the first module.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 17, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Giuliano Coli, Jingyun Zou, Jing Yang
  • Patent number: 10419117
    Abstract: There is provided a monitor device for monitoring a transmission line including a memory, and a processor coupled to the memory and configured to compensate for a portion of chromatic dispersion on electric signals indicating an electric field component of an optical signal, compensate for deterioration due to a nonlinear optical effect on the electric signals on which the portion of chromatic dispersion is compensated, compensate for a remaining chromatic dispersion except for the portion of chromatic dispersion on the electric signals on which the deterioration due to the nonlinear optical effect is compensated, evaluate quality of the electric signals on which remaining chromatic dispersion except for the portion of chromatic dispersion are compensated, and acquire a first compensation amount of the portion of chromatic dispersion and a second compensation amount of the deterioration due to the nonlinear optical effect, when the evaluated quality satisfies a predetermined condition.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: September 17, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Takahito Tanimura, Takeshi Hoshida
  • Patent number: 10419118
    Abstract: An optical transmission device includes: a memory; and a processor coupled to the memory; the processor: generate a first symbol by mapping a transmission data series to a first signal point which belongs to a first group within a signal space defined with regard to characteristics of an optical carrier wave of the transmission data series; generate a second symbol by mapping the transmission data series to a second signal point belonging to a second group; calculate a perturbation quantity of a signal electric field for each of the first and second symbols based on signal electric field vector information of a symbol which is generated before the first symbol and the second symbol; and determine, as a transmission signal, a symbol having a smaller perturbation quantity between the first symbol and the second symbol.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: September 17, 2019
    Assignee: FUJITSU LIMITED
    Inventor: Hiroyuki Irie
  • Patent number: 10419119
    Abstract: According to one embodiment, a communication repeater system includes a master station device and radio frequency units which convert a signal from each of base station systems into an optical digital signal for transmission to the master station device. The base station systems establish communication by time division duplex scheme. The communication repeater system repeats communication between a mobile communication terminal device and each base station system via a corresponding one of slave station devices. A setter sets, as reference transmission/reception switching timing, a transmission/reception switching timing between the master station device and one of the radio frequency units corresponding to one of the base station systems which is first connected to the communication repeater system. A corrector corrects variation in the transmission/reception switching timing in accordance with the reference transmission/reception switching timing.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: September 17, 2019
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Infrastructure Systems & Solutions Corporation
    Inventor: Kensei Kawabata
  • Patent number: 10419120
    Abstract: A phased-array coherent transceiver system includes a transceiver array including multiple receive (RX) optical elements, a number of RX optical fibers, and an optical receiver. The RX optical elements are coupled to the optical receiver via the RX optical fibers. The optical receiver includes multiple phase modulators, each phase modulator processes a phase of an optical signal received from an RX optical element.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 17, 2019
    Assignee: Lockheed Martin Corporation
    Inventors: Kevin Richard Bock, Patrick Eliott Perkins, Christopher William Tischhauser, Danielle Marie Rawles Wuchenich
  • Patent number: 10419121
    Abstract: An optical communication device according to an embodiment of the present invention includes: a heat sink integrally having a plurality of contact portions respectively corresponding to the plurality of the optical transceivers, and a heat transfer portion bound to a casing so as to be able to transfer heat to the casing; a plurality of cage members configured to respectively accommodate the plurality of the optical transceivers, and having openings so as to allow the optical transceivers to be partially exposed to the contact portion side, respectively; a holding unit configured to hold the plurality of the cage members inside the casing in a state where the openings correspond to the contact portions, respectively; and an elastic member configured to bring the plurality of the optical transceivers into thermal contact with the plurality of the contact portions, respectively, by pressing each of the plurality of the cage members toward the heat sink side.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 17, 2019
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shuitsu Yuda, Naoya Kizaki, Yuichi Kitajima
  • Patent number: 10419122
    Abstract: A multiplexer/demultiplexer and a passive optical network system are provided. The multiplexer/demultiplexer includes N optical multiplexing/demultiplexing modules. The optical multiplexing/demultiplexing modules multiplex signals with different wavelengths from a plurality of ports to a same port, or demultiplex signals with different wavelengths from one port to different ports. The N optical multiplexing/demultiplexing modules correspond to the signals with different wavelengths. In the optical multiplexing/demultiplexing modules, a negative dispersion amount and an insertion loss of an Mth optical multiplexing/demultiplexing module are less than those of an (M+1)th optical multiplexing/demultiplexing module, where N is a positive integer, and M is a positive integer less than or equal to N. The multiplexer/demultiplexer and the passive optical network system increase an optical power budget between an optical transmitter and an optical transceiver.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: September 17, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Dekun Liu, Shengping Li
  • Patent number: 10419123
    Abstract: An emitter of an optical signal includes a laser source including a control input for receiving an injection current able to modify the frequency of the optical signal, this laser source emitting the optical signal at a frequency v0 in the absence of injection current, a feedback loop able to produce an injection current that is able to decrease the linewidth of the optical signal, this feedback loop including to this end an optical filter a pass band of which contains a preset operating point corresponding to a frequency vb, and a loop for automatically controlling the frequency vb to the frequency v0, and wherein the feedback loop includes an electrical filter that is able to selectively attenuate, in the produced injection current, the amplitude of frequency components generated by the automatic-control loop.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: September 17, 2019
    Assignee: Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventor: Sylvie Menezo
  • Patent number: 10419124
    Abstract: A method and device for optical data transmission are disclosed. Data bits are transmitted in the form of data symbols, by modulating an optical signal in dependence on the data bits and in accordance with two or more constellation schemes. The data bits are transmitted, by generating first data symbols, which represent respective sets of data bits containing an even number of data bits. The first data symbols are generated, by modulating the optical signal in accordance with a first constellation scheme. Furthermore, the data bits are transmitted, by generating second data symbols, which represent respective sets of data bits having an odd number of data bits. The second data symbols are generated, by modulating the optical signal in accordance with a second constellation scheme. The first and the second data symbols are generated at a predefined symbol rate, such that the first and the second data symbols are interleaved in time.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 17, 2019
    Assignee: Alcatel Lucent
    Inventors: Jeremie Renaudier, Rafael Rios Muller, Gabriel Charlet
  • Patent number: 10419125
    Abstract: A dynamic gain equalizer (DGE) for an optical communication device and related method which are capable of reducing power variations among wavelength division multiplexing (WDM) signals. The DGE and method use an optical attenuation device configured such that the ratio of pixel gap distance to the channel beam diameter at the point of incident to the optical attenuation device is less than or equal to 0.06. The DGE can produce output signal sets that have ripple increases of less than 0.1 db over the input signal sets.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 17, 2019
    Assignee: Molex, LLC
    Inventors: Gongjian Hu, Lifu Gong, Yi Liao, Tian Zhu
  • Patent number: 10419126
    Abstract: Aspects of a method and system for high-speed, low-power optical communications are provided. In one embodiment, a system for optical communications comprises a digital-to-analog converter (DAC), a driver, and a transmit optical subsystem. The DAC is operable to receive a digital code of a plurality of digital codes and output an analog current signal having an analog current level of a plurality of analog current levels. The driver is operable to condition the analog current signal output from the digital-to-analog converter. The transmit optical subsystem is operable to generate an optical power signal from the conditioned analog current signal. A mapping between the plurality of digital codes and the plurality of analog current levels is dynamically controlled according to one or more characteristics of the optical power signal. The one or more characteristics comprise or a symbol amplitude sensitivity and/or a nonlinearity that may be temperature dependent.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: September 17, 2019
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10419127
    Abstract: A symbol phase difference compensating portion (6) calculates a first phase difference which is a phase difference between a known pattern extracted from a received signal and a true value of the known pattern and performs phase compensation for the received signal based on the first phase difference. A tentative determination portion (12) tentatively determines an output signal of the symbol phase difference compensating portion (6) to acquire an estimated value of a phase. A first phase difference acquiring portion (13) acquires a second phase difference which is a phase difference between a phase of the output signal and the estimated value of the phase acquired by the tentative determination portion (12). A first phase difference compensating portion (14) performs phase compensation for the output signal based on the second phase difference.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 17, 2019
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Etsushi Yamazaki, Hiroyukl Nouchi, Yasuharu Onuma, Tomohiro Takamuku, Katsuichi Oyama, Kazuhito Takei, Masahito Tomizawa, Yoshiaki Kisaka, Mltsuteru Yoshida, Masanori Nakamura
  • Patent number: 10419128
    Abstract: An integrated circuit that includes an optical receiver is described. This integrated circuit may include an optical receiver. The optical receiver may include a photodiode that receives an optical signal and that outputs a corresponding current. Moreover, the optical receiver may include an inductor that is electrically coupled to the photodiode. Furthermore, the optical receiver may include a resistive analog front-end stage that is electrically coupled to the inductor. Note that the inductor may have a resistance per unit length that is greater than a first threshold value (such as 40 m?/?m), and the inductor may be approximately dispersion-less. For example, a Q factor for inductive peaking associated with the inductor is less than a second threshold value (such as 5).
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: September 17, 2019
    Assignee: Axalume, Inc.
    Inventors: Saman Saeedi, Ashok V. Krishnamoorthy
  • Patent number: 10419129
    Abstract: A single line converter module comprises a housing; an environmentally hardened fiber optic connector located in the housing and configured to be optically coupled to a service terminal for receiving downstream optical frames; a single electrical connector located in the housing and coupled over a metallic medium to a network terminal providing a service to respective customer premise equipment (CPE); and an optical-to-electrical (O/E) converter located in the housing and configured to convert the downstream optical frames to an electrical signal for transmission over the metallic medium to the network terminal.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: September 17, 2019
    Assignees: CommScope Connectivity UK Limited, CommScope Connectivity Belgium BVBA, CommScope Technologies LLC
    Inventors: David Brown, David Mather, Robert Neil Shaddock, William Atley Weeks, Joris Franckx, Jan Jozef Julia Maria Erreygers
  • Patent number: 10419130
    Abstract: A system for powering a network element of a fiber optic wide area network is disclosed. When communication data is transferred between a central office (CO) and a subscriber terminal using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and twisted wire pair, coaxial cable or Ethernet cable transmission lines from the subscriber terminal, techniques related to local powering of a network element or drop site by the subscriber terminal or subscriber premise remote powering device are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges and does not require a separate power network.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 17, 2019
    Inventors: Alexander Ivan Soto, Walter Glen Soto
  • Patent number: 10419131
    Abstract: This cyber-retro-reflector technology is a series of Architectures, representing staged deployments, including backward compatibility, of products with enhanced features, for integrating technologies and capabilities, of electronic and photonic systems to: (a) reduce power consumption for circuits and systems that are placed into ‘off’ and/or disabled states, including external interface portals of electronic and photonic systems, (b) increase and enhance intra-/inter-connectivity, interoperability, and functionality of a system and the aggregate of systems, (c) increase and enhance integrated capabilities leading to higher computational performance for the system and the aggregate of systems, (d) take full advantage of photonic capabilities, and (e) improve hacking detection.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: September 17, 2019
    Inventors: Paul Westmeyer, Renee Mazaheri
  • Patent number: 10419132
    Abstract: The continuous demand for capacity and the limited available spectrum in wireless and wired communication has led to reliance on advanced modulation techniques to dramatically increase the number of bits per hertz per second. This demand in capacity and using the higher order constellations shorten the link range, and as a result, system gain becomes an important characteristic. The modulation techniques described here improve the system gain by, e.g., as much as 2.5 dB in high order modulations such as 4096-QAM. The modulation techniques include reducing the peak to average ratio and adding shaping gain. These techniques dramatically improve the system capacity, system gain, power consumption and system cost.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: September 17, 2019
    Assignee: Maxlinear Asia Singapore PTE LTD
    Inventors: Nadav Fine, Ran Soffer
  • Patent number: 10419133
    Abstract: Disclosed is a method of estimating a position of a signal source and a position estimation apparatus, the method including acquiring an environment, a frequency, and a bandwidth of the interference signal source, determining an arrangement form of the two antennas based on the environment, the frequency, and the bandwidth and arranging the two antennas, and estimating a position of the interference signal source based on an interference signal of the interference signal source and the two arranged antennas, wherein the environment includes an indoor environment and an outdoor environment.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: September 17, 2019
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Chung Sup Kim, Hyuk Je Kim, Young Jun Chong, Jong Soo Lim, Woo Jin Byun
  • Patent number: 10419134
    Abstract: Certain aspects are directed to a configuration sub-system for telecommunication systems. The configuration sub-system can include a test signal generator, a power measurement device, at least one additional power measurement device, and a controller. The test signal generator can be integrated into components of a telecommunication system. The test signal generator can provide a test signal to a signal path of the telecommunication system. The power measurement device and the additional power measurement device can respectively be integrated into different components of the telecommunication system. The power measurement device and the additional power measurement device can respectively measure the power of the test signal at different measurement points in the signal path. The controller can normalize signals transmitted via the telecommunication system by adjusting a path gain for the signal path based on measurements from the power measurement device and the additional power measurement device.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 17, 2019
    Assignee: Andrew Wireless Systems GmbH
    Inventors: Matthew Thomas Melester, Stefan Eisenwinter, Ahmed H. Hmimy, Massimiliano Mini, Joerg Stefanik, Alfons Dussmann
  • Patent number: 10419135
    Abstract: The present invention provides an over the air, OTA, power sensor (1, 20, 50) for measuring power of a wireless signal (2, 21) with at least two different polarizations, the OTA power sensor (1, 20, 50) comprising a first power sensor (3, 4, 22, 23, 51, 52) for every polarization, every power sensor comprising a signal detector (5, 6, 25, 26, 27) for detecting the wireless signal (2, 21), wherein the signal detectors (5, 6, 25, 26, 27) are single polarized and wherein the polarization planes (7, 8, 28-30) of the signal detectors (5, 6, 25, 26, 27) are arranged at an angle of more than zero degree to each other and wherein the main radiation vectors (9, 10, 31-33) of the signal detectors (5, 6, 25, 26, 27) are parallel to each other, and the first power sensors (3, 4, 22, 23, 51, 52) each comprising a power measurement device (11, 12, 43-45), which is configured to measure the power of the detected wireless signal (2, 21) and output a respective measurement signal (13, 14, 46-48, 55-58).
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 17, 2019
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventors: Markus Gallhauser, Werner Perndl, Nino Voss, Georg Schnattinger, Adam Tankielun
  • Patent number: 10419136
    Abstract: According to an embodiment, a communication device includes a phase-shifting circuit that shifts a phase of a local signal and supplies it to an orthogonal demodulator. The phase-shifting circuit includes first and second signal input ends that are supplied with an output signal of a local oscillator between both ends thereof, a frequency divider that has first and second input ends, and a switching part that is provided between the first and second signal input ends and the first and second input ends of the frequency divider and switches connection between the first and second signal input ends and the first and second input ends of the frequency divider.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: September 17, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Hagiwara, Yuki Fujimura, Hiroyuki Kobayashi, Ichiro Seto, Shigehito Saigusa
  • Patent number: 10419137
    Abstract: In a digital communication system there is provided a method for OFDM channel estimation that jointly considers the effects of coarse timing error and multipath propagation. The method uses an iterative channel estimation technique, which considers the practical scenario of fractional timing error and non-sample space echo delays. The method does not require channel state information such as second-order statistic of the channel impulse responses or the noise power. Moreover, timing error can be conveniently obtained with the proposed technique. Simulation shows that, when comparing OFDM channel estimation techniques under DOCSIS 3.1 realistic channel conditions, the proposed algorithm significantly outperforms conventional methods.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: September 17, 2019
    Assignee: VECIMA NETWORKS INC.
    Inventors: Brian Michael Berscheid, Tung Trong Nguyen, Joseph Eric Salt, Ha Hoang Nguyen
  • Patent number: 10419138
    Abstract: An example device may include at least three phased array antennas controllable to provide respective receive beams steerable in azimuth and elevation, where faces of the phased array antennas are arranged to provide a receive beam coverage 360 degrees in azimuth, and at least three radio frequency front ends to receive channel sounding waveforms from a fifth generation base station of a cellular network via the respective receive beams and to generate baseband signals from the channel sounding waveforms. The device may include a processing system including at least one processor in communication with the radio frequency front ends to steer the respective receive beams via instructions to the radio frequency front ends, receive the baseband signals from the radio frequency front ends, determine a plurality of measurements of at least one wireless channel parameter based upon the baseband signals, and record locations and spatial orientation information for the measurements.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: September 17, 2019
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Aditya Chopra, Arunabha Ghosh, Saeed Ghassemzadeh, Salam Akoum, Xiaoyi Wang
  • Patent number: 10419139
    Abstract: Method and apparatus are disclosed for vehicle camera signal strength indicator. An example vehicle includes a first communication module, a second communication module, and a hardware module with a processor and memory. The first communication module communicatively couples to a wireless camera. The second communication module communicatively couples to a mobile device. The second communication module is different than the first communication module. The hardware module (i) determines a metric of transmission quality based on a signal strength from the wireless camera, and (ii) sends the metric of transmission quality to the mobile device to provide feedback regarding a placement of the wireless camera on the vehicle.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 17, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: David Hiskens, Cynthia M. Neubecker, Brad Ignaczak, Somak Datta Gupta
  • Patent number: 10419140
    Abstract: A transmitting apparatus is provided.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: September 17, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-hyeon Bae, Young-ho Oh, Sung-hee Hwang
  • Patent number: 10419141
    Abstract: Examples disclosed herein to estimate volume of switching (VoS) among television programs include determining, based on panelist program viewing data, a first VoS value representing a portion of a decreased amount of tuning by matched panelists to a first program from first to second measurement periods to attribute to an increased amount of tuning by the matched panelists to a second program from the first to second measurement periods; estimating, based on the program viewing data and first VoS value, a second VoS value representing a portion of a decreased amount of tuning by unmatched panelists to the first program from the first to second measurement periods to attribute to an increased amount of tuning by the unmatched panelists to the second program from the first to second measurement periods; and combining the first and second VoS values to determine a third VoS value for a combination of the matched and unmatched panelists.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 17, 2019
    Assignee: The Nielsen Company (US), LLC
    Inventors: Jingsong Cui, XiaoTing Liang, Scott John Sereday
  • Patent number: 10419142
    Abstract: An apparatus including a memory for associating at least one user defined channel identifier with at least one selection item of the apparatus and a control unit coupled to the memory, the control unit being configured to cause one of the at least one user defined channel identifier to play when a corresponding one of the at least one selection item is activated by a user.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: September 17, 2019
    Assignee: Conversant Wireless Licensing S.a r.l.
    Inventor: Juha Arrasvuori
  • Patent number: 10419143
    Abstract: The present disclosure includes systems and techniques relating to wireless local area network devices. Systems and techniques include multiplexing information for a single wireless communication device onto multiple radio pathways to produce a data packet, operating the multiple radio pathways to generate different portions of the data packet, and transmitting the data packet to the single wireless communication device by concurrent transmissions of the different portions of the data packet over different wireless channels.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 17, 2019
    Assignee: MARVELL INTERNATIONAL LTD.
    Inventors: Hongyuan Zhang, Hui-Ling Lou, Rohit U. Nabar
  • Patent number: 10419144
    Abstract: A method of simplifying the implementation of Synchronous Ethernet on an Ethernet device having a first port and a second port device using a predetermined protocol and signaling, comprises delivering a master clock from a Synchronous Ethernet system to the first port of the Ethernet device; transmitting the delivered master clock to the second port of the Ethernet device independently of the protocol and signaling of the Ethernet device; and transmitting the master clock from the second port of the Ethernet device to a downstream device that supports Synchronous Ethernet. In one implementation, the Ethernet device has a local clock, and the method synchronizes the local clock to the master clock. In another implementation, the Ethernet device does not have a local clock, and the master clock is transmitted from the second port of the Ethernet device to the downstream device without any synchronizing operation at the Ethernet device.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 17, 2019
    Assignee: Accedian Networks Inc.
    Inventors: Claude Robitaille, Steve Rochon, Yanick Viens
  • Patent number: 10419145
    Abstract: Apparatus, systems, and methods to identify victims and aggressors of interference in full duplex communication systems are described. In one example, a controller comprises logic to detect a quality of service issue in a wireless communication downlink with a first user equipment in a first cell and in response to detecting the quality of service issue, determine whether the user equipment is a victim of interference from a second user equipment or is a victim of interference from a downlink with a second user equipment in a second cell. Other examples are also disclosed and claimed.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: September 17, 2019
    Assignee: INTEL CORPORATION
    Inventors: Ping Wang, Feng Xue, Yang-Seok Choi, Shu-Ping Yeh, Shilpa Talwar
  • Patent number: 10419146
    Abstract: A method for detecting a transmission from an interfering radio cell includes: receiving a signal comprising transmissions from a serving radio cell and from a plurality of interfering radio cells, wherein a reference symbol of a transmission from at least one interfering radio cell of the plurality of interfering radio cells is colliding with a reference symbol of a transmission from the serving radio cell; generating a set of transmission signal hypotheses, each of which is dependent on at least one interferer parameter of the at least one interfering radio cell; obtaining at least one interferer radio cell identifier; and detecting a transmission from at least one interfering radio cell of the plurality of interfering radio cells in the received signal based on the at least one interferer radio cell identifier and the set of transmission signal hypotheses.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: September 17, 2019
    Assignee: Intel IP Corporation
    Inventors: Manoj Ravichandran, Andrey Chervyakov, Franz Eder, Stefan Fechtel, Sabine Roessel
  • Patent number: 10419147
    Abstract: An apparatus is provided that includes an optical noise generator and a noise combiner. The noise generator is configured to produce an optical signal having a noise channel. The noise combiner is configured to combine an optical data channel with the noise channel received at one or more add ports to produce an optical output signal. A controller is configured to operate the noise generator or the noise combiner to provide a variable bandwidth of added noise combined with the optical data channel.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: September 17, 2019
    Assignee: Alcatel Lucent
    Inventor: David Butler
  • Patent number: 10419148
    Abstract: An optical node (100) is disclosed. The optical node (100) comprises first and second line ports (104, 106) for Wavelength Division Multiplexing (WDM) signals and first and second pluralities of local add/drop ports (108, 110) for optical signals. The optical node further comprises a wavelength selective switch (112), coupled between the first and second line ports (104, 106) and configured to drop optical signals from a WDM signal traversing the optical node between the first and second line ports (104, 106), and a node optical combiner (114) coupled between the first and second line ports (104, 106) and configured to add optical signals to a WDM signal traversing the optical node between the first and second line ports (104, 106).
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: September 17, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Giulio Bottari, Fabio Cavaliere, Francesco Testa