Patents Issued in June 2, 2020
  • Patent number: 10670535
    Abstract: Methods and systems for determining parameter(s) of a metrology process to be performed on a specimen are provided. One system includes one or more computer subsystems configured for automatically generating regions of interest (ROIs) to be measured during a metrology process performed for the specimen with the measurement subsystem based on a design for the specimen. The computer subsystem(s) are also configured for automatically determining parameter(s) of measurement(s) performed in first and second subsets of the ROIs during the metrology process with the measurement subsystem based on portions of the design for the specimen located in the first and second subsets of the ROIs, respectively. The parameter(s) of the measurement(s) performed in the first subset are determined separately and independently of the parameter(s) of the measurement(s) performed in the second subset.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: June 2, 2020
    Assignee: KLA-Tencor Corp.
    Inventors: Brian Duffy, Ajay Gupta, Thanh Huy Ha
  • Patent number: 10670536
    Abstract: Methods and systems for selecting a mode for inspection of a specimen are provided. One method includes determining how separable defects of interest (DOIs) and nuisances detected on a specimen are in one or more modes of an inspection subsystem. The separability of the modes for the Dais and nuisances is used to select a subset of the modes for inspection of other specimens of the same type. Other characteristics of the performance of the modes may be used in combination with the separability to select the modes. The subset of modes selected based on the separability may also be an initial subset of modes for which additional analysis is performed to determine the final subset of the modes.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: June 2, 2020
    Assignee: KLA-Tencor Corp.
    Inventors: Martin Plihal, Saravanan Paramasivam, Ankit Jain, Prasanti Uppaluri, Raghavan Konuru
  • Patent number: 10670537
    Abstract: A inspection system includes an illumination source to generate an illumination beam, focusing elements to direct the illumination beam to a sample, a detector, collection elements configured to direct radiation emanating from the sample to the detector, a detection mode control device to image the sample in two or more detection modes such that the detector generates two or more collection signals based on the two or more detection modes, and a controller. Radiation emanating from the sample includes at least radiation specularly reflected by the sample and radiation scattered by the sample. The controller determines defect scattering characteristics associated with radiation scattered by defects on the sample based on the two or more collection signals. The controller also classifies the one or more particles according to a set of predetermined defect classifications based on the one or more defect scattering characteristics.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 2, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Guoheng Zhao, J. K. Leong, Michael Kirk
  • Patent number: 10670538
    Abstract: A probe driver may include a coupling that interfaces with a conduit section at a first position of the conduit section. A probe driver may also have one or more positioning elements to reposition the conduit section to interface with the coupling at a second position of conduit section in response to one or more commands based on a recorded inspection, where through completing the one or more commands is configured to initiate a second inspection identical to the recorded inspection.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventor: Bryan Christopher Morris
  • Patent number: 10670539
    Abstract: An inspection system includes a light source, an imaging device, and one or more processors. The light source is configured to direct an illumination light having a controlled light characteristic towards a surface of a thermal barrier coating of a work piece. The imaging device is configured to capture image data of the surface of the thermal barrier coating by monitoring the illumination light reflected off the surface. The one or more processors are operably connected to the imaging device and configured to analyze the image data of the surface by comparing the image data to reference image data depicting a first designated microstructure. The first designated microstructure has an associated coating quality value. The one or more processors are configured to determine that the thermal barrier coating of the work piece has the first designated microstructure based on the analysis.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventors: Guanghua Wang, Margeaux Wallace, Bernard Patrick Bewlay
  • Patent number: 10670540
    Abstract: A photolithography method includes dispensing a first liquid onto a first target layer formed over a first wafer through a nozzle at a first distance from the first target layer; capturing an image of the first liquid on the first target layer; patterning the first target layer after capturing the image of the first liquid; comparing the captured image of the first liquid to a first reference image to generate a first comparison result; responsive to the first comparison result, positioning the nozzle and a second wafer such that the nozzle is at a second distance from a second target layer on the second wafer; dispensing a second liquid onto the second target layer formed over the second wafer through the nozzle at the second distance from the second target layer; and patterning the second target layer after dispensing the second liquid.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hung Liao, Wei Chang Cheng
  • Patent number: 10670541
    Abstract: Several embodiments include a method of computing void fraction in a two-phase mixture in a pipe. A driver and a transmitter antenna can transmit a radio frequency (RF) signal through the pipe. The pipe can convey the two-phase mixture extracted from a geothermal well. The RF signal can pass through the two-phase mixture. A receiver antenna in the pipe can receive the RF signal. A receiver circuit can measure signal strength attenuations of the RF signal at the receiver antenna over a time window. A computation engine can compute an average of the signal strength attenuations over the time window. The computation engine or another computing device can then compute, in real-time, a change in a void fraction of the two-phase mixture based on the average of the signal strength attenuations.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 2, 2020
    Assignees: Steamfield Sensors, Inc., Auckland UniServices Limited
    Inventors: John R. Sisler, Sadiq Jafar Mohammed Zarrouk
  • Patent number: 10670542
    Abstract: A method includes processing an object in a cavity by applying radio frequency (RF) energy to the cavity. A first plurality of frequencies is identified, characterized in that a time derivative of a value indicative of a dielectric response of the cavity to RF energy at frequency of the first plurality of frequencies is larger than a first threshold. More energy is applied at frequencies of the first plurality of frequencies than at other frequencies.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: June 2, 2020
    Assignee: GOJI LIMITED
    Inventors: Avner Libman, Hertzel Yehezkely, Sharon Hadad, Ram Elboim, Zalman Ibragimov, Amit Rappel
  • Patent number: 10670543
    Abstract: A system and method for monitoring environmental state that includes a structure element with a base substrate and at least one reflector element integrated to the base substrate, wherein the reflector element is physically configured with at least one response signature that is discretely expressed based on an substance induced environmental condition of the reflector element; and a remote monitor device comprising a transmitter and receiver unit and a controller, wherein the monitor device is configured to interrogate the structure element; detect a response signature corresponding to at least the one reflector element; and map the response signature to a corresponding substance induced environmental condition.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: June 2, 2020
    Inventors: Brenna Elizabeth Donohue, Patrick Francis Donohue
  • Patent number: 10670544
    Abstract: A water cut measurement tool includes an elongated tubular section configured to flow a multiphase fluid including water and hydrocarbons. The elongated tubular section includes two portions. A first portion has a first diameter. A second portion is axially coupled to the first portion and has a second diameter less than the first diameter. The second portion can receive the multiphase fluid from the first portion. A first electrode is attached to an inner wall of the second portion. A second electrode is attached to the inner wall of the second portion and is positioned diametrically opposite to the first electrode. The two electrodes are configured to measure an impedance of the multiphase fluid flowed through the second portion responsive to a current flowed from the first electrode to the second electrode, and provide the impedance as an output.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Jana Mohammed Aljindan, Mohamed Nabil Noui-Mehidi
  • Patent number: 10670545
    Abstract: The present disclosure relates to the field of a cabinet x-ray incorporating an x-ray tube, an x-ray detector, and a real-time camera, either high definition or standard resolution, for the production of organic and non-organic images. The computing device can receive video data from the camera and the x-ray detector and determines, based on the video data, an overlay of the captured x-ray image with the captured real-time image or display images adjacently i.e. Picture-In-Picture (PIP). In particular, the disclosure relates to a system and method with corresponding apparatus for capturing a real-time image simultaneously with the x-ray image allowing a cabinet x-ray unit to attain and optimize images with exact orientation of the 2 images.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Kub Technologies Inc
    Inventors: Vikram Butani, Yan Chen, Edwin Divakaran Maria-Selvaraj, Chester Lowe, Roberto Velasco
  • Patent number: 10670546
    Abstract: A process fluid temperature calculation system includes a first temperature sensor disposed to measure an external temperature of a process fluid conduit. The process fluid temperature calculation system has a stem portion having a known thermal impedance. A second temperature sensor is spaced from the first temperature sensor by the stem portion. Measurement circuitry is coupled to the first and second temperature sensors. A microprocessor is coupled to the measurement circuitry to receive temperature information from the measurement circuitry and to provide an estimate of temperature of process fluid within the process fluid conduit using a heat flux calculation.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: June 2, 2020
    Assignee: Rosemount Inc.
    Inventors: Jason H. Rud, Yury Nickolayevich Kuznetsov, Sait Saitovich Garipov, Aleksey Aleksandrovich Krivonogov, Sergey Andreyevich Fomchenko, Vladimir Victorovich Repyevsky
  • Patent number: 10670547
    Abstract: A nanostructured environmental sensor includes a silicon based substrate, a structural base located above the substrate, and a sensor portion suspended above the structural base. A top surface of the sensor portion is formed from nickel oxide using atomic layer deposition. The nanostructured thin film nickel oxide environmental sensor is provided in a housing to form an environmental sensor package for sensing attributes of the environment to which the environmental sensor package is exposed.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 2, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Ashwin Samarao
  • Patent number: 10670548
    Abstract: A sensor module has a first sensor element and a second sensor element. The first sensor element and the second sensor element are accommodated in a common housing of the sensor module. The sensor module includes a conductor structure that comprises an electrode structure and a separate connection structure. The connection structure is connected in an electrically conductive manner to the first sensor element and the electrode structure is allocated to the second sensor element.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: June 2, 2020
    Assignee: EPCOS AG
    Inventors: Bernhard Ostrick, Peter Balzer
  • Patent number: 10670549
    Abstract: A nanopore measurement circuit includes a first analog memory configured to store a first electrical value corresponding to a first measurement sample of a nanopore and a second analog memory configured to store a second electrical value corresponding to a second measurement sample of the nanopore. The nanopore measurement circuit also includes a measurement circuitry configured to provide an output indicating a difference between the first electrical value of the first analog memory and the second electrical value of the second analog memory.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: June 2, 2020
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Bill Maney, Hui Tian, Santiago Fernandez-Gomez
  • Patent number: 10670550
    Abstract: In one illustrative embodiment, a test strip with a first planar substrate has coplanar electrodes on a first planar surface and a second planar substrate (which opposes the first surface of the first planar substrate) has coplanar electrodes on a second planar surface. The first planar surface of the first planar substrate having a first sensing area electrically connected to a first electrical contact. The second planar surface of the second planar substrate having a second electrical contact electrically connected to the first electrical contact via a conductive element, the conductive element extending between the first surface of the first planar substrate and the second surface of the second planar substrate without passing through the first planar substrate, the second planar substrate, or any intermediate layers.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: June 2, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Jennifer A. Samproni
  • Patent number: 10670551
    Abstract: The present invention relates to a system and method useful for determining the voltage of biological tissues and therefore to detect whether such tissues are cancerous.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: June 2, 2020
    Assignee: Imperial College of Science, Technology and Medicine
    Inventors: Christina Fotopoulou, Emmanuel Drakakis, Hani Gabra, Martyn Boutelle
  • Patent number: 10670552
    Abstract: A gas sensor, which includes a solid electrolyte layer including positive charge carriers to which detection-target gas coordinates, an electrode arranged on part of a plane of the solid electrolyte layer, and a unit configured to accelerate movements of the positive charge carriers.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: June 2, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Satoru Momose, Osamu Tsuboi, Ikuo Soga
  • Patent number: 10670553
    Abstract: A sensor system, device, and methods for determining the concentration of an analyte in a sample is described. Gated voltammetric pulse sequences including multiple duty cycles of sequential excitations and relaxations may provide a shorter analysis time and/or improve the accuracy and/or precision of the analysis. The disclosed pulse sequences may reduce analysis errors arising from the hematocrit effect, variance in cap-gap volumes, non-steady-state conditions, mediator background, a single set of calibration constants, under-fill, and changes in the active ionizing agent content of the sensor strip.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: June 2, 2020
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Huan-Ping Wu
  • Patent number: 10670554
    Abstract: A gas sensing device includes a dielectric substrate, a heater integrated into a first side of the substrate and an insulating dielectric formed over the heater. A gas sensing layer is formed on a second side of the substrate opposite the first side. Contacts are formed on the gas sensing substrate. A noble material is formed on a portion of the gas sensing layer between the contacts to act as an ionizing catalyst such that, upon heating to a temperature, adsorption of a specific gas changes electronic properties of the gas sensing layer to permit detection of the gas.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: S. J. Chey, Hendrik F. Hamann, Levente Klein, Siyuan Lu, Roland Nagy
  • Patent number: 10670555
    Abstract: A meter is adapted for measuring concentrations of a chemical in a flowing solution. The meter has a barrier that shields a sensor from the high turbulence of the solution flow. One or more membranes can be employed to selectively filter out various ions or other chemicals.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 2, 2020
    Assignee: SENTIENT TECHNOLOGIES, INC.
    Inventor: Frederick Quincy Johnson
  • Patent number: 10670556
    Abstract: An electrochemical gas sensor biasing module may include a main housing, a battery that is contained in and/or extending from the main housing, and a sensor connector extending from a portion of the main housing. The sensor connector is configured to removably connect to an electrochemical gas sensor so that energy from the battery is delivered to the electrochemical gas sensor in order to maintain the electrochemical gas sensor in a biased state.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 2, 2020
    Assignee: Teledyne Detcon, Inc.
    Inventor: Nicholas Anthony DeBlasio
  • Patent number: 10670557
    Abstract: A gas detector includes a measurement control section that controls a voltage application section, obtains an output current flowing between a first electrode and a second electrode of an electrochemical cell, and detects a concentration of sulfur oxides in exhaust gas based on the output current. The measurement control section uses a minimum value of the output current obtained by using a current detection section in a period in which lowering sweep is executed and in which an applied voltage is a voltage within a detection voltage range that is equal to or lower than a decomposition initiation voltage of sulfur oxides as a parameter used for detection of the concentration of sulfur oxides.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 2, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Wakao, Keiichiro Aoki, Kazuhisa Matsuda
  • Patent number: 10670558
    Abstract: The present disclosure describes an apparatus including a waste compartment, a membrane compartment on the waste compartment, and a wash buffer reservoir on the membrane compartment. The membrane compartment includes a membrane compartment outlet aperture and is configured to hold at least one membrane, and the membrane compartment outlet aperture fluidly connects the membrane compartment and the waste compartment. The wash buffer reservoir comprises a wash buffer reservoir outlet aperture, and the wash buffer reservoir outlet aperture fluidly connects the wash buffer reservoir and the membrane compartment. The apparatus may be used to wash membranes used in analytic techniques, such as membranes for gel electrophoresis.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: June 2, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Brett Anderson, Reuben Harris
  • Patent number: 10670559
    Abstract: An electrical detector is provided that comprises a nanofluidic channel with an integrated nanoscale charge sensor. The charge sensor can be an unfunctionalized nanowire, nanotube, transistor or capacitor and can be of carbon, silicon, carbon/silicon or other semiconducting material. The nanofluidic channel depth is on the order of the Debye screening length. Methods are also provided for detecting charged molecules or biological or chemical species with the electrical detector. Charged molecules or species in solution are driven through the nanofluidic channel of the electrical detector and contact the charge sensor, thereby producing a detectable signal. Methods are also provided for detecting a local solution potential of interest. A solution flowing through the nanofluidic channel of the electrical detector contacts the charge sensor, thereby producing a detectable local solution potential signal.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 2, 2020
    Assignee: Cornell University
    Inventors: John T. Mannion, Harold G. Craighead
  • Patent number: 10670560
    Abstract: Devices, systems, and methods of using them are disclosed that position an end of a capillary electrophoresis tube within an internal tapered nozzle region of an inkjet print head or other microfluidic pump. The capillary electrophoresis tube can extend through an inlet of the microfluidic pump and leave space for a sheath liquid to enter the pump and mix with separated analytes eluted from the capillary electrophoresis tube. The small volume of mixed sheath liquid and analyte can then be jetted through the nozzle at a moving surface, either continuously or as discrete droplets. Relative positions on the surface can indicate separation distances of dispensed analytes.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: June 2, 2020
    Assignee: LI-COR, INC.
    Inventors: Michael D. Furtaw, Donald T. Lamb
  • Patent number: 10670561
    Abstract: Disclosed herein are embodiments of a system for selectively ionizing samples that may comprise a plurality of different analytes that are not normally detectable using the same ionization technique. The disclosed system comprises a unique split flow tube that can be coupled with a plurality of ionization sources to facilitate using different ionization techniques for the same sample. Also disclosed herein are embodiments of a method for determining the presence of analytes in a sample, wherein the number and type of detectable analytes that can be identified is increased and sensitivity and selectivity are not sacrificed.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: June 2, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Robert Ewing, Blandina Valenzuela, Eric Freeburg
  • Patent number: 10670562
    Abstract: A method includes positioning a coil antenna in a first pipe concentrically arranged within a second pipe, the coil antenna having a first terminal, a second terminal, and one or more wires that exhibit a winding density proceeding radially between the first and second terminals according to a given function. The first and second terminals are then excited with an alternating current or voltage, and a signal is measured between the first and second terminals. A characteristic of at least one of the first and second pipes is then calculated based on the signal.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 2, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Burkay Donderici, Luis Sanmartin
  • Patent number: 10670563
    Abstract: A calibration system for an electromagnetic (EM) tool includes a processor. The processor employs the EM tool to measure responses at each of a plurality of channels. The processor records the measured responses at each of the channels in an EM data log for the channel. The processor determines a nominal value of each of the channels, as being equal to a histogram peak of the EM data log. The processor selects one or more calibration points from the EM data log for a particular channel, based on a difference between the nominal value of the particular channel and the measured response at the calibration point being greater than a particular threshold. The processor determines a plurality of parameters by reducing a misfit between synthetic data and both the nominal values of the channels and the measured responses of the channels at the selected one or more calibration points.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: June 2, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ahmed E. Fouda, Burkay Donderici, Luis Emilio San Martin, Reza Khalaj Amineh
  • Patent number: 10670564
    Abstract: A photoacoustic detector for detecting a gas which includes a resonant cavity having an inner wall capable of absorbing electromagnetic radiation and a passageway for circulating the gas through the resonant cavity. The detector also includes an electromagnetic source for generating an electromagnetic energy and an optical window associated with the electromagnetic source for introducing the electromagnetic energy into the resonant cavity towards the absorbing inner wall surface, thereby preventing the electromagnetic energy from radiating throughout the whole length of the resonant cavity. A pressure sensor is provided for detecting a pressure signal inside the resonant cavity which is representative of the gas being detected. A method is also provided for detecting a gas using the photoacoustic detector.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: June 2, 2020
    Assignee: 9334-3275 QUEBEC INC.
    Inventor: Stefan Voinea
  • Patent number: 10670565
    Abstract: A method and system for inspecting a structure. The method may comprise sending a pulsed wave signal into the structure from a transmitter array. The method may detect a response signal in response to sending the pulsed wave signal into the structure at a group of receivers in a receiver array. The method may identify a group of time delays between sending the pulsed wave signal and may detect the response signal generated in response to the pulsed wave signal at the group of receivers. The method may identify a group of intensities for the response signal detected at the group of receivers. The method may determine a distance to a reflector within the structure using the group of time delays and the group of intensities.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: June 2, 2020
    Assignee: The Boeing Company
    Inventors: Keith Daniel Humfeld, Scott D. Hartshorn
  • Patent number: 10670566
    Abstract: A system for and method of antimicrobial susceptibility testing includes detecting a resonance peak of a sensor provided with live microbes on a surface thereof; applying a substance to the live microbes; detecting a resonance peak of said sensor after application of said substance; determining a width of a top of each of said resonance peaks before and after application of the substance from one of: (1) a phase angle versus frequency plot where the phase angle is the phase angle of the electrical impedance of said sensor. (2) a real part of a plot of an electrical impedance versus frequency of said sensor.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 2, 2020
    Assignee: Drexel University
    Inventors: Wan Y. Shih, Wei-Heng Shih, Christopher Emery, Xin Xu, Suresh Joshi, Wei Wu
  • Patent number: 10670567
    Abstract: A testing system and methods for using the same are provided. The testing system can include a sensor and a radiofrequency (RF) tag mounted on the sensor. The RF tag can be configured to store sensor information regarding the sensor and to wirelessly communicate at least a portion of the sensor information to a portable computing device upon request. The portable computing device can be configured to allow an operator to obtain selected sensor information from the RF tag and display it on the portable computing device. The portable computing device can also be configured to retrieve additional sensor information from external sources, such as a sensor manufacturer, via a network. Thus, sensor information can be retrieved in the field by the portable computing device for use in operating the testing system.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: June 2, 2020
    Assignee: General Electric Company
    Inventor: Torsten Behrendt
  • Patent number: 10670568
    Abstract: Described are a method and a system for injecting a sample into a flow of a liquid chromatography system. The method includes combining a flow of a sample and a flow of a mobile phase to create a diluted sample in the system flow. The volumetric flow rate of the sample is controlled to be at a value that yields a desired dilution ratio for the diluted sample. The particular value at which the volumetric flow rate is maintained can be determined from the desired value of the dilution ratio and the volumetric flow rate of the mobile phase. System embodiments include a syringe that can be used to provide a sample solution at a controllable volumetric flow rate for combination with a high pressure mobile phase.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: June 2, 2020
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Michael R. Jackson, Sylvain G. Cormier
  • Patent number: 10670569
    Abstract: Disclosed is a fluid path network (100) comprising plural fluid paths (110) interconnected by plural nodal chambers (120), three or more of said plural paths opening into each of said chambers, and said chambers being adapted the accept a removable fluid path modifying insert (130/140/150 FIGS. 3a-3c). The network is employed in a chromatography system described herein.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 2, 2020
    Assignee: GE Healthcare Bio-Sciences AB
    Inventor: Bjorn Markus Olovsson
  • Patent number: 10670570
    Abstract: A method of analysing gas chromatography data is described. During the method, a first response factor data set acquired from a gas chromatograph (GC) apparatus during a procedure on a calibration or reference gas sample at a first time is received. One or more additional response factor data sets acquired from the gas chromatograph apparatus during a procedure on a calibration or reference gas sample from one or more later times are received. The method comprises calculating a measure of uncertainty for at least one compound of the reference gas sample from the first and additional response factor data sets. The one or more later times are during an operational period of the gas chromatograph apparatus. The measure of uncertainty may be used to, for example, identify the necessity to perform a maintenance action in the GC or to assess whether the GC is in a healthy or unhealthy condition.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: June 2, 2020
    Assignee: I-Vigilant Technologies Limited
    Inventor: Anwar Sutan
  • Patent number: 10670571
    Abstract: A biological gas detection device acquires a reference output value that is an output value outputted from a semiconductor gas sensor in a reference air sample, the semiconductor gas sensor having sensitivity to an interfering gas and a target gas contained in a biological gas, acquires a target gas concentration that is a concentration of the target gas measured based on a first output value, the first output value being outputted from the semiconductor gas sensor during measurement of the biological gas, corrects the target gas concentration based on a second output value and the reference output value, the second output value being outputted from the semiconductor gas sensor in an air sample prior to measurement of the biological gas; and outputs information according to the corrected target gas concentration.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 2, 2020
    Assignee: Tanita Corporation
    Inventors: Ayumi Kusama, Yasuhiro Kasahara, Naotaka Minagawa, Miyuki Kodama
  • Patent number: 10670572
    Abstract: Systems, apparatuses, and methods for monitoring an environment are provided. These systems, apparatus, and methods may include a monitoring unit positioned within the environment that includes an air quality sensor configured to generate particle data, a communications unit configured to directly or indirectly transmit data between the monitoring unit and a remote computing unit, and a controller with instructions to cause the air quality sensor to generate particle data about particles in the environment, and transmit the particle data to the remote computing unit. The remote computing unit may be positioned outside the environment, and include a second processor, another communications unit, and another non-transitory memory device with instructions to receive and store the particle data, and determine, based on the received particle data generated by the air quality sensor, whether a first exposure threshold has been exceeded for the monitoring unit.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: June 2, 2020
    Assignee: Applied Particle Technology, Inc.
    Inventors: Tandeep Singh Chadha, Jiaxi Fang, Pratim Biswas
  • Patent number: 10670573
    Abstract: An embodiment provides a method for measuring ions in a solution, including: preparing a measurement device comprising an active indicator, wherein the active indicator comprises a silver complex; introducing the measurement device to a solution, wherein the silver complex reacts with the solution and generates a precipitation comprising one of the elements selected from the group consisting of: silver chloride, silver sulfide, and mixtures thereof; and measuring an amount of one of the elements selected from the group consisting of: chloride and sulfide, in the solution, wherein the measuring comprises identifying a peak of the precipitation on a portion of the measurement device and comparing the peak to a measurement chart.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: June 2, 2020
    Assignee: HACH COMPANY
    Inventor: Arnold Bertron Kidd, IV
  • Patent number: 10670574
    Abstract: An NMR-based system (10) to analyze one or more of the following: (i) crude oil property, (ii) crude oil rheology of crude oil, comprising an NMR device (11) for providing time and/or batch resolved NMR analysis and/or crude oil rheological profile, said NMR having a crude oil inflow pipe (13), and is in a fluid connection (14) with a crude oil refinery facility (12); wherein said system further comprising a computer readable medium configured to store a retrievable crude oil NMR analysis and/or crude oil rheological profile of a desired crude oil product (standard crude oil product, SCOP), thereby providing said system means to compare NMR analysis and/or crude oil rheological profile of said SCOP with said time or batch resolved crude oil.
    Type: Grant
    Filed: January 17, 2016
    Date of Patent: June 2, 2020
    Assignee: ASPECT INTERNATIONAL (2015) PRIVATE LIMITED
    Inventors: Uri Rapoport, Tal Cohen
  • Patent number: 10670575
    Abstract: Multiphase flowmeters and related methods having asymmetrical flow therethrough are disclosed. An example method includes configuring an inlet manifold, a first flowline, and a second flowline to decrease a gas fraction in a first fluid flow through the first flowline and increase a gas fraction in a second fluid flow through the second flow line; flowing the first fluid flow through the first flowline and flowing the second fluid flow through the second flow line; and determining at least one of 1) a first water liquid ratio of the first fluid flow through the first flowline; 2) a first liquid flow rate of the first fluid flow through the first flow line; or 3) a first gas flow rate of the first fluid flow through the first flow line.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 2, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Florian Hollaender, Alexander Tuborg Vilstrup, Muhammad Fuad Mohamed Zain, Guillaume Jolivet
  • Patent number: 10670576
    Abstract: The present invention refers to a device for measuring impedance in organotypic tissue comprising at least one recording chamber with a liquid permeable membrane supporting the organotypic tissue, at least one bottom electrode and at least one top electrode, wherein the liquid permeable membrane divides the recording chamber into a top chamber and a bottom chamber, wherein at least the bottom chamber contains culture medium for the organotypic tissue, and the bottom electrode(s) is/are located in the bottom chamber and the top electrode(s) is/are located in the top chamber, and wherein the organotypic tissue is located between the bottom electrode(s) and the top electrode(s). The present invention also refers to the use of the device according to the present invention for measuring impedance in organotypic tissue.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: June 2, 2020
    Assignee: Universität Leipzig
    Inventors: Andrea Robitzki, Andrée Rothermel, Heinz-Georg Jahnke, Ina Sternberger, Frank Striggow, Till Mack
  • Patent number: 10670577
    Abstract: The present specification discloses a dialysis system having a reservoir module with a reservoir housing defining an internal space, a surface located within the internal space for supporting a container that contains dialysate, and a conductivity sensor located within the internal space, where the conductivity sensor has a coil, a capacitor in electrical communication with the coil, and an energy source in electrical communication with the circuit.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: June 2, 2020
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Barry Neil Fulkerson, Mark Smith
  • Patent number: 10670578
    Abstract: Improved resolution and detection of nanoparticles are achieved when a nanopore connecting liquid compartments in a device running on the Coulter principle is provided with fluid coatings such as lipid walls. Fluid lipid walls are made of a lipid bilayer, and preferably include lipid anchored mobile ligands as part of the lipid bilayer. By varying the nature and concentration of the mobile ligand in the lipid bilayer, multifunctional coatings of lipids are provided.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: June 2, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Michael Mayer, Erik Yusko, Jerry Yang
  • Patent number: 10670579
    Abstract: A lab-on-chip device for the processing, in particular the separation, of a fluid mixture comprising two immiscible phases (liquid and/or solid), said device comprising a fluid line (1,2,5,6) which successively includes an inlet reservoir (1), a separation channel (2), a collection channel (5) and an outlet (6), said separation channel (2) being designed in a way as to allow a separation of the fluid mixture into said two phases.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: June 2, 2020
    Assignee: DBS System SA
    Inventors: Steve Béguin, Aurélien Thomas, Julien Déglon
  • Patent number: 10670580
    Abstract: A device for detecting a biomarker for inflammation in a respiratory system includes a sample collection and/or holding area to receive an exhaled breath condensate (EBC) sample obtained from a respiratory system; an electrode system coupled to the sample collection area, the electrode system including reduced graphene oxide (rGO); and circuitry coupled to the electrode system. The circuitry is configured to apply a voltage to the EBC sample in the sample collection area via the electrode system and to measure a current via the electrode system in response to the voltage applied, in order to determine a concentration of nitrite in the EBC sample based on the current measured. The concentration of nitrite is a biomarker for inflammation in the respiratory system.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 2, 2020
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Mehdi Javanmard, Azam Gholizadeh, Manish Chhowalla, Robert J. Laumbach, Howard M. Kipen, Clifford P. Weisel, Andrew J. Gow, Damien Voiry
  • Patent number: 10670581
    Abstract: The present invention provides oxygenized nanobubbles and their uses in imaging and cancer treatment when combined with therapeutic drugs and precise ultrasound beam steering.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: June 2, 2020
    Assignee: Purdue Research Foundation
    Inventors: Joseph Irudayaraj, Pushpak Bhandari
  • Patent number: 10670582
    Abstract: Described are methods and compositions for increasing islet-1 (Isl1) activity (e.g., biological activity) and or expression (e.g., transcription and/or translation) in a biological cell and or in a subject.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: June 2, 2020
    Assignee: Massachusetts Eye and Ear Infirmary
    Inventors: Mingqian Huang, Albena Kantardzhieva, Zheng-Yi Chen
  • Patent number: 10670583
    Abstract: A device includes an input chamber, an attractant chamber, a migration channel arranged in fluid communication between an outlet of the input chamber and inlet of the attractant chamber, a baffle arranged in fluid communication between the outlet of the input chamber and the migration channel or within the migration channel, and an exit channel in fluid communication with the migration channel at a point beyond the baffle and before the migration channel enters the inlet of the attractant chamber. The baffle is configured to inhibit movement of a first type of cell through the baffle to a greater extent than the baffle inhibits movement of a second type of cell through the baffle.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 2, 2020
    Assignee: The General Hospital Corporation
    Inventors: Daniel Irimia, Caroline Jones, Anh Hoang
  • Patent number: 10670584
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Firmenich Incorporated
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri