Patents Issued in July 14, 2020
  • Patent number: 10711329
    Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 14, 2020
    Assignee: QuesTek Innovations LLC
    Inventors: James A. Wright, Abhijeet Misra
  • Patent number: 10711330
    Abstract: Magnesium-aluminum corrosion-resistant alloys are provided and include magnesium, aluminum, germanium, small amounts of cathodic reaction active site impurities such as iron, copper, nickel, and cobalt, manganese, and optionally tin. The alloy can include up to about 0.75% germanium, at least about 2.5% aluminum, up to about 2.25% tin, at most 0.0055% iron impurities, and at most 0.125% silicon impurities. The ratio of germanium to iron can be less than 150. The ratio of manganese to iron can be at least 75. The alloy can comprise one or more intermetallic complexes, including magnesium-germanium, magnesium-aluminum, and aluminum-manganese intermetallic complexes.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yang Guo, Ming Liu, Anil K. Sachdev
  • Patent number: 10711331
    Abstract: The present disclosure relates to a polycrystalline diamond compact (PDC) including a gradient interfacial layer between a thermally stable diamond (TSP) table and a base, such as a substrate or an earth-boring drill bit body. The gradient interfacial layer has a gradient of coefficients of thermal expansion between that of the diamond and the base. The disclosure also relates to methods of forming a gradient interfacial layer and a PDC containing such a layer.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: July 14, 2020
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Andy Cheng Chang, Gagan Saini, Qi Liang, Paul B. Lively, William Brian Atkins
  • Patent number: 10711332
    Abstract: A material for shaping is provided, with which it is possible to more effectively shape a shaped article that has high density while containing a ceramic. The present invention provides a material for shaping in order for use in powder additive manufacturing. This material for shaping includes a first powder that is a granulated powder containing a ceramic, and a second powder containing a metal. The second powder constitutes 10-90% by mass (exclusive) of the total of the first powder and the second powder.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: July 14, 2020
    Assignee: FUJIMI INCORPORATED
    Inventors: Hiroyuki Ibe, Junya Yamada
  • Patent number: 10711333
    Abstract: Disclosed is a steel sheet having a predetermined chemical composition and a steel microstructure that contains, in area ratio, 15% or more and 55% or less of polygonal ferrite and 15% or more and 30% or less of martensite, and that contains, in volume fraction, 12% or more of retained austenite, in which the polygonal ferrite, the martensite, and the retained austenite have a mean grain size of 4 ?m or less, 2 ?m or less, and 2 ?m or less, respectively, and each have a mean grain aspect ratio of 2.0 or less, and in which a value obtained by dividing an Mn content in the retained austenite in mass % by an Mn content in the polygonal ferrite in mass % equals 2.0 or more.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: July 14, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshiyasu Kawasaki, Hiroshi Matsuda, Takeshi Yokota, Takako Yamashita, Kazuhiro Seto
  • Patent number: 10711334
    Abstract: A method and process for at least partially forming a medical device. The present invention is generally directed to a medical device that is at least partially made of a novel alloy having improved properties as compared to past medical devices. The novel alloy used to at least partially form the medical device improves one or more properties (e.g., strength, durability, hardness, biostability, bendability, coefficient of friction, radial strength, flexibility, tensile strength, tensile elongation, longitudinal lengthening, stress-strain properties, improved recoil properties, radiopacity, heat sensitivity, biocompatibility, improved fatigue life, crack resistance, crack propagation resistance, etc.) of such medical device.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: July 14, 2020
    Assignee: MIRUS LLC
    Inventors: Udayan Patel, Noah Roth
  • Patent number: 10711335
    Abstract: A bubble pump is provided. The bubble pump has an interior formed from a material that is resistant to attack by molten aluminum. The interior surface may be formed from a ceramic. The ceramic may be selected from the following: alumina, magnesia, silicate, silicon carbide, or graphite, and the mixtures thereof. The ceramic may be a carbon-free, 85% Al2O3 phosphate bonded castable refractory.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: July 14, 2020
    Assignee: ARCELORMITTAL INVESTIGACIÓN Y DESARROLLO, S.L.
    Inventors: Yong M. Lee, James M. Costino, Igor Komarovskiy, Jerome S. Cap, Ramadeva C. Shastry
  • Patent number: 10711336
    Abstract: Provided is an alloyed hot-dip galvanized steel sheet including a base steel sheet, the base steel sheet containing a given amount of C, Si, Mn, and other elements. The alloyed hot-dip galvanized steel sheet is provided with an alloyed hot-dip galvanized layer on a surface of the base steel sheet, the alloyed hot-dip galvanized layer containing, in mass %, Fe: more than or equal to 5% and less than or equal to 15%, and having a thickness of more than or equal to 3 ?m and less than or equal to 30 ?m.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 14, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Soshi Fujita, Shintaro Yamanaka
  • Patent number: 10711337
    Abstract: A system and method of cladding a carbon steel piece with stainless steel according to which the carbon steel piece is cleaned, heated, coated with the stainless steel, and strengthened. In an exemplary embodiment, coating the carbon steel piece with the stainless steel includes melting the stainless steel, atomizing the melted stainless steel, and spraying the atomized stainless steel so that at least a portion of the atomized stainless steel is deposited on the carbon steel piece to thereby coat the carbon steel piece with the stainless steel.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: July 14, 2020
    Assignee: COMMERCIAL METALS COMPANY
    Inventor: Timothy P. Zeien
  • Patent number: 10711338
    Abstract: A vapor deposition mask including a metallic substrate provided with a plurality of openings for passing vapor deposition particles, wherein at least a portion of the plurality of openings are structured by one or more opening groups in which the plurality of openings are repeatedly arranged in accordance with a constant rule, and a plurality of protrusions of identical height are arranged to support the entire substrate from one side, and are provided only outside the opening group formation region.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: July 14, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Shinichi Kawato, Manabu Niboshi, Eiji Koike, Satoshi Inoue, Tsuyoshi Inoue, Yuhki Kobayashi
  • Patent number: 10711339
    Abstract: A method deposits a metal alloy coating on a substrate using a vacuum deposition facility. The facility is equipped with a vapour generator/mixer comprising a vacuum chamber enclosure provided with an inlet and an outlet for the substrate. The enclosure includes a vapour deposition head and an ejector is provided to create a jet of metal alloy vapour of sonic velocity towards the surface of the substrate and perpendicular thereto. The ejector is in sealed communication with a separate mixer device, which is itself connected upstream to at least two crucibles respectively, these containing different metals in liquid form, each crucible being connected to the mixer by its own pipe. The method uses a series of partitions to create alternating layers of metal vapours. The metal vapours enter the mixer inlet of the mixer at a velocity from 5 to 50 m/s to provide better homogeneity.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 14, 2020
    Assignee: Arcelormittal France
    Inventors: Eric Silberberg, Luc VanHee, Bruno Schmitz, Maxime Monnoyer
  • Patent number: 10711340
    Abstract: The present disclosure provides a baffle device for an evaporation apparatus and the evaporation apparatus. The baffle device includes a baffle assembly, configured to separate an evaporation ejection source from a substrate when the substrate is being switched in the evaporation apparatus; and at least one collection device, provided below the baffle assembly, and configured to collect evaporation material falling down from the baffle assembly.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: July 14, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Da Zhou, Zailong Mo, Qun Ma
  • Patent number: 10711341
    Abstract: In these investigations, an attempt has been made to correlate the deposition parameters of the reactive cathodic arc evaporation with processes at the surface of the composite Al—Cr targets and the nucleation and phase formation of the synthesized Al—Cr—O layers. The oxygen partial pressure and the pulsed operation of the arc current influence the formation of intermetallic phases and solid solutions at the target surface. The nucleation of the ternary oxides at the substrate site appears to be, to some extent, controllable by the intermetallics or solid solutions formed at the target surface. A specific nucleation process at substrate site can therefore be induced by the free choice of target composition in combination with the partial pressure of the oxygen reactive gas. It also allows the control over the oxide island growth at the target surface which occurs occasionally at higher oxygen partial pressure.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: July 14, 2020
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Jürgen Ramm, Beno Widrig
  • Patent number: 10711342
    Abstract: A method of producing a secondary lens with hollow nano structures comprises the following steps (a) forming a polycrystalline seed layer on the surface of a lens; (b) growing a plurality of nano-rod structures over the polycrystalline seed layer in a random arrangement; (c) removing the portion of the seed layer where the nano-rod structure does not grow so that the surface of the lens therebeneath is exposed to outside; (d) sputtering a ceramic material layer over the plurality of nano-rod structures and the exposed surface portion of the lens; (e) removing the plurality of nano-rod structures and leaving a ceramic material layer having a plurality of hollow nano-rod structures in a random arrangement. A layer with hollow nano structures is formed on the surface of a lens wherein the hollow nano structures have the effect of scattering light and can improve the uniform illuminance of a secondary lens.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 14, 2020
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jian-Long Ruan, Shyh-Jer Huang, Yang-Kuo Kuo
  • Patent number: 10711343
    Abstract: A novel method, composition and storage and delivery container for using antimony-containing dopant materials are provided. The composition is selected with sufficient vapor pressure to flow at a steady, sufficient and sustained flow rate into an arc chamber as part of an ion implant process. The antimony-containing material is represented by a non-carbon containing chemical formula, thereby reducing or eliminating the introduction of carbon-based deposits into the ion chamber. The composition is stored in a storage and delivery vessel under stable conditions, which includes a moisture-free environment that does not contain trace amounts of moisture. The storage and delivery container is specifically designed to allow delivery of high purity, vapor phase antimony-containing dopant material at a steady, sufficient and sustained flow rate.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: July 14, 2020
    Assignee: Praxair Technology, Inc.
    Inventors: Aaron Reinicker, Ashwini K Sinha, Douglas C Heiderman
  • Patent number: 10711344
    Abstract: A process for making a composite product comprises the steps of: A. Circumferentially plating a carbon fiber core with an alloy film including a film of high entropy alloy and liquid metal alloy or a film of metallic glass to form a film-clad carbon fiber thread; B. Weaving a plurality of said film-clad carbon fiber threads to form an interlaced film-clad carbon fiber sheet; and C. Vibrationally thermally pressing a plurality of said interlaced film-clad carbon fiber sheets as superimposed with one another to form a composite product.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 14, 2020
    Assignee: Taichi Metal Material Technology Co., Ltd.
    Inventors: Kuan-Wei Chen, Po-Jen Wei
  • Patent number: 10711345
    Abstract: The present invention relates to a hard coating including an MT-TiCN layer and an ?-alumina layer which are formed by using a chemical vapor deposition method. A hard coating for cutting tools, which is a coating formed on a base material of a cutting tool formed of a hard material, the coating comprising: a TiCN layer; and an ?-alumina layer formed on the TiCN layer, wherein: the ?-alumina layer has a main peak (maximal strength peak) of (006) plane located between 20-40 degrees during a psi rocking analysis by an XRD; a residual stress in the ?-Al2O3 layer is ?0.9-0.4 GPa; the TiCN layer is composed of TiCxNyOz (x+y+z?1, x>0, y>0, z?0); a composition ratio of C/(C+N) is greater than or equal to 0.4 and smaller than 0.5; the ratio of TC(220)/TC(422) is smaller than 0.45; and the ratio of TC(220)/TC(311) is less than 0.45.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: July 14, 2020
    Assignee: KORLOY INC.
    Inventors: Seong-woo Cho, Dong-youl Lee, Jae-hoon Kang, Soon-yong Hong, Sun-yong Ahn, Young-heum Kim
  • Patent number: 10711346
    Abstract: A method for reducing an atom to a reduced oxidation state includes a step of providing a vapor of a first compound having an atom in an oxidized state. A vapor of a reducing agent is provided. The reducing agent is selected from the group consisting of compounds described by formulae I, II, and III: where R1, R2 R3, R4 are each independently H, C1-10 alkyl, C6-14 aryl, or C4-14 heteroaryl. The vapor of the first compound is reacted with the vapor of the reducing agent to form a second compound having the atom in a reduced state relative to the first compound.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 14, 2020
    Assignee: Wayne State University
    Inventor: Charles H. Winter
  • Patent number: 10711347
    Abstract: Processing chambers having a lid with a lower surface, a substrate support with an upper surface facing the lid and an inner baffle ring between the substrate support and the lid are described. Methods of using the processing chamber are described.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 14, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Dale R. DuBois, Karthik Janakiraman, Kien N. Chuc
  • Patent number: 10711348
    Abstract: Apparatus for improving substrate temperature uniformity in a substrate processing chamber are provided herein. In some embodiments, a cover plate for a substrate processing chamber includes: an outer portion; and a raised inner portion having a thermally emissive layer, wherein a thermal emissivity of the thermally emissive layer varies across the thermally emissive layer.
    Type: Grant
    Filed: March 7, 2015
    Date of Patent: July 14, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Cheng-Hsiung Tsai, Youqun Dong, Manjunatha Koppa
  • Patent number: 10711349
    Abstract: Apparatus for treating and/or coating the surface of substrate components by deposition from the gas phase. A plurality of substrate carriers and a plurality of coating and/or treating units are arranged in a deposition or treatment chamber which can be evacuated. The system can be equipped in a modular fashion such that the substrate components introduced into the system in a batch can be subjected to different treatments. Method for treating and/or coating the surface of substrate components. The procedure comprises: a) compiling coating and/or treating units and shielding elements from modules in the deposition or treatment chamber; b) equipping the substrate carriers with those substrate components that are to be subjected to the same treatment; c) closing the deposition or treatment chamber; and d) carrying out the individual treatment or coating programs for the substrate components combined in groups on the substrate carriers in one batch.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: July 14, 2020
    Assignee: Guehring KG
    Inventor: Mario Fiedler
  • Patent number: 10711350
    Abstract: Implementations described herein generally relate to materials and coatings, and more specifically to materials and coatings for aluminum and aluminum-containing chamber components. In one implementation, a process is provided. The process comprises exposing an aluminum-containing component to a moisture thermal treatment process and exposing the aluminum-containing component to a thermal treatment process. The moisture thermal treatment process comprises exposing the aluminum-containing component to an environment having a moisture content from about 30% to about 100% at a first temperature from about 30 to about 100 degrees Celsius. The thermal treatment process comprises heating the aluminum-containing component to a second temperature from about 200 degrees Celsius to about 550 degrees Celsius to form an alumina layer on the at least one surface of the aluminum-containing component.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: July 14, 2020
    Assignee: APPLIED MATERICAL, INC.
    Inventors: Ren-Guan Duan, Jianhua Zhou, Juan Carlos Rocha-Alvarez
  • Patent number: 10711351
    Abstract: An article includes an electroless deposited aluminum layer. The aluminum layer is deposited in an electroless plating composition. The composition includes an aluminum ionic liquid, a reducing agent, and an additive selected from the group consisting of a catalyst, an alloying element, and a combination thereof.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: July 14, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Joanna A. Kolodziejska, John J. Vajo, Jason A. Graetz, Christopher S. Roper
  • Patent number: 10711352
    Abstract: Provided herein is a reductive solution for preventing rouge formation on stainless steel, said solution comprising complexing anions, Fe2+, and, optionally, one or more pH modifiers. Further provided are methods for manufacturing said solution, methods for prevention of rouge formation on stainless steel surfaces, and related uses of the aforementioned reductive solution.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: July 14, 2020
    Assignee: TECHNOCHIM SA
    Inventors: Frédéric Groulard, François Tosar
  • Patent number: 10711353
    Abstract: To prevent over-pickling of a steel strip during pickling pause, and shorten the time required to switch between pickling operation and pickling pause, a pickling device includes: a pickling tank for storing acid solution and for pickling a steel strip by allowing the steel strip to travel therethrough while the steel strip is immersed in the acid solution; a heat exchanger for heating the acid solution in the pickling tank; a circulation tank for storing the acid solution, provided separately from the pickling tank; an acid-solution circulation unit configured to circulate the acid solution between the pickling tank and the acid-solution storage tank; and a control device configured to control the acid-solution circulation device to maintain a liquid level of the acid solution in the pickling tank at a level below a traveling height of the steel strip.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: July 14, 2020
    Assignee: PRIMETALS TECHNOLOGIES JAPAN, LTD.
    Inventors: Ryusuke Nakatsuka, Kosei Tsuji, Hideaki Suemori, Koichi Nakamura
  • Patent number: 10711354
    Abstract: The present invention relates to an electrolysis apparatus for collecting a nitrogen compound using ferric-ethylenediaminetetraacetic acid (Fe-EDTA), and more particularly, to an electrolysis apparatus for collecting a nitrogen compound in exhaust gas by supplying electric energy to cause a redox reaction of Fe-EDTA.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 14, 2020
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong-In Han, Dongyeon Kim, Nara Lee
  • Patent number: 10711355
    Abstract: A spacer for an electrolyzer cell of substantially annular shape comprises: a peripheral part having two parallel principal faces opposite each other, the distance separating the two principal faces defining a thickness of the spacer, and an internal part having a thickness strictly less than the thickness of the spacer, the peripheral part and the internal part being in one piece and connected to each other forming an internal annular shoulder so that the internal part has a substantially annular intermediate face extending in a plane parallel to the two principal faces of the peripheral part and situated between the two principal faces.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: July 14, 2020
    Assignee: AREVA H2GEN
    Inventors: Francois Laridant, Eric Gernot, Fabien Aupretre
  • Patent number: 10711356
    Abstract: The invention relates to an oxygen-consuming electrode, in particular for use in chloralkali electrolysis, comprising a novel catalyst coating based on carbon nanotubes and a silver-based cocatalyst, and to an electrolysis device. The invention further relates to a method for producing said oxygen-consuming electrode and to the use thereof in chloralkali electrolysis or fuel cell technology.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 14, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Andreas Bulan, Jürgen Kintrup
  • Patent number: 10711357
    Abstract: The present invention relates to a graphite electrode and manufacturing process thereof, and a carbon dioxide generator, wherein the graphite electrode comprises the following in weight percentage: graphite powder 50%-90%; adhesive 10%-40%; first additive 1%-30%; second additive 0.1%-10%; wherein the adhesive comprises at least one of phenolic resin, bisphenol A epoxy resin and urea formaldehyde resin; the first additive is selected from at least one of the following: polylactic acid, carbonate, monosaccharide, oligosaccharide and polymethacrylates; the second additive is selected from at least one of the following: carbon black, carbon nanotubes, silicon carbide, boron nitride, silicon oxide, aluminium oxide, zinc oxide, iron oxide, titanium dioxide, calcium carbonate, stearic acid, zinc stearate and calcium stearate. The carbon dioxide concentration of the gas obtained by the electrolysis of the present invention reaches 10 v % or more, and the gas produced is stable in quantity.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 14, 2020
    Inventor: Jun Zheng
  • Patent number: 10711358
    Abstract: Provided is low alpha-ray emitting bismuth having an alpha dose of 0.003 cph/cm2 or less. Additionally provided is a method of producing low alpha-ray emitting bismuth, wherein bismuth having an alpha dose of 0.5 cph/cm2 or less is used as a raw material, the raw material bismuth is melted in a nitric acid solution via electrolysis to prepare a bismuth nitrate solution having a bismuth concentration of 5 to 50 g/L and a pH of 0.0 to 0.4, the bismuth nitrate solution is passed through a column filled with ion-exchange resin to eliminate polonium contained in the solution by an ion-exchange resin, and bismuth is recovered by means of electrowinning from the solution that was passed through the ion-exchange resin. Recent semiconductor devices are of high density and high capacity, and therefore are subject to increased risk of soft errors caused by the effects of alpha rays emitted from materials in the vicinity of semiconductor chips.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: July 14, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventor: Yu Hosokawa
  • Patent number: 10711359
    Abstract: The invention concerns non-ferrous metallurgy, particularly an anode for electrolytically obtaining aluminum by the electrolysis of fluoride melts. The anode for obtaining aluminum by means of the electrolysis of melts at a temperature of less than 930° C. consists of a base executed of an alloy containing 65-96%wt of iron, less than 35%wt of copper, less than 20%wt of nickel, and one or several additives from molybdenum, manganese, titanium, tantalum, tungsten, vanadium, zirconium, niobium, chromium, aluminum (less than 1%wt) cobalt, cerium, yttrium, silicon, and carbon totaling less than 5%, and a protective oxide layer comprising iron oxides and complex oxides of iron, copper, and nickel. The protective oxide layer on the anode surface is obtained by preliminary oxidation in air at a temperature of 850-1050° C. or subsequently in the electrolysis process by oxidation with oxygen evolving at the anode.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 14, 2020
    Assignee: UNITED COMPANY RUSAL ENGINEERING AND TECHNOLOGY CENTRE LLC
    Inventors: Dmitriy Aleksandrovich Simakov, Aleksandr Olegovich Gusev
  • Patent number: 10711360
    Abstract: Nickel electroplating compositions containing copolymers of arginine and a bisepoxide enable the electroplating of nickel deposits which have uniform bright surfaces over wide current density ranges.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 14, 2020
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventor: Michael Lipschutz
  • Patent number: 10711361
    Abstract: Disclosed herein is a method of coating, comprising providing an article having an internal passage therein to be coated; electrolytically applying a first layer that comprises chromium or a chromium alloy onto a surface of the internal passage; electrolytically applying a second layer comprising aluminum or an aluminum alloy onto the first layer; and heat treating the article to promote interdiffusion between the first layer and the second layer.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 14, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Lei Chen, Lesia V. Protsailo, Michael N. Task
  • Patent number: 10711362
    Abstract: An anodic oxide film forming treatment agent for forming an anodic oxide film on a substrate made of aluminum or an aluminum alloy is made of a viscous substance obtained by increasing the viscosity of an electrolytic solution by a nonionic surfactant. A method of forming an anodic oxide film in which the anodic oxide film forming treatment agent is used includes a contacting step of bringing the anodic oxide film forming treatment agent into contact with the substrate, and an energizing step of using the substrate as an anode, and carrying out conduction of electricity between the substrate and a cathode provided in the anodic oxide film forming treatment agent.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 14, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Yuki Furukawa
  • Patent number: 10711363
    Abstract: A process is disclosed for minimizing the difference in thermal expansivity between a porous anodic oxide coating and its corresponding substrate metal, so as to allow heat treatments or high temperature exposure of the anodic oxide without thermally induced crazing. A second phase of higher thermal expansivity than that of the oxide material is incorporated into the pores of the oxide in sufficient quantity to raise the coating's thermal expansion coefficient. The difference in thermal expansion between the anodic oxide coating and underlying metal substrate is reduced to a level such that thermal exposure is insufficient for any cracking to result. The second phase may be an electrodeposited metal, or an electrophoretically deposited polymer. The second phase may be uniformly deposited to a certain depth, or may be deposited at varying amounts among the pores.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: July 14, 2020
    Assignee: APPLE INC.
    Inventors: James A. Curran, William A. Counts, Zechariah D. Feinberg
  • Patent number: 10711364
    Abstract: Apparatuses and methods are provided for depositing a metal layer on a wafer. A secondary weir is positioned at a region below the primary weir such that overflowed plating solution over the primary weir during electroplating flows in a substantially azimuthally uniform manner. Methods are provided for electroplating wafers by increasing flow rate between wafer processes while plating solution flows over a primary weir, remains in contact with the overflowing plating solution, and flows onto the secondary weir such that overflow is substantially azimuthally uniform.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: July 14, 2020
    Assignee: Lam Research Corporation
    Inventors: Daniel Mark Dinneen, Jingbin Feng
  • Patent number: 10711365
    Abstract: A plating apparatus includes a plating tank and a plating unit that performs electrolytic plating on an object. The plating unit includes a workpiece passage region including a partition wall that allows passage of the plating solution but does not allow passage of the object, the workpiece passage region passing the object from above toward below, an injection unit that injects the plating solution from below toward above, a mixing unit that mixes the plating solution injected by the injection unit and the object to be plated passing through the workpiece passage region, an anode outside the workpiece passage region, a cathode inside the workpiece passage region including a hollow region through which a mixed fluid of the plating solution and the object to be plated passes from below toward above, and a guidance unit that guides the mixed fluid to the workpiece passage region.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: July 14, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takao Hosokawa
  • Patent number: 10711366
    Abstract: In one example, an electroplating system comprising a bath reservoir having a first inlet for feeding fresh electrolyte solution into the bath reservoir and a first outlet for bleeding used electrolyte solution out of the bath reservoir, a second inlet for receiving recycled electrolyte solution into the bath reservoir, and a second outlet for discharge of electrolyte solution from the bath reservoir. A plating cell is providing for electroplating an object, the plating cell has an inlet in direct or indirect fluid communication with the bath reservoir, and an outlet for discharge of electrolyte solution from the plating cell. An extraction column extracts by-products generated by the plating cell and has an inlet in direct or indirect fluid communication with the outlet of the plating cell, and an outlet for discharge of electrolyte solution from the extraction column.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Lam Research Corporation
    Inventors: Tighe A. Spurlin, Jonathan D. Reid
  • Patent number: 10711367
    Abstract: An induction furnace assembly comprising a chamber having a mold; a primary inductive coil coupled to the chamber; a layered susceptor comprising at least two layers of magnetic field attenuating material surrounding the chamber between the primary inductive coil and the mold to nullify the electromagnetic field in the hot zone of the furnace chamber.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 14, 2020
    Assignee: Raytheon Technoiogies Corporation
    Inventors: Joseph V. Mantese, Ryan C. Breneman, Thomas Anthony Rebbecchi, Andrew Boyne, John Joseph Marcin, Dustin W. Davis, David Ulrich Furrer, James Tilsley Auxier
  • Patent number: 10711368
    Abstract: A manufacturing method of monocrystalline silicon includes: melting silicon housed in a quartz crucible into a silicon melt by heating the quartz crucible with a heating unit; dipping a seed crystal into the silicon melt in the quartz crucible to bring the seed crystal into contact with the silicon melt; and pulling up the seed crystal to grow monocrystalline silicon. In the pulling-up, a formation of a straight body of the monocrystalline silicon is started at a power consumption of the heating unit being equal to or more than 10000 kWh to grow an entirety of the monocrystalline silicon.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: July 14, 2020
    Assignee: SUMCO CORPORATION
    Inventor: Tegi Kim
  • Patent number: 10711369
    Abstract: The present invention provides a method for producing an SiC single crystal, enabling obtaining an SiC single crystal substrate in which a screw dislocation-reduced region is ensured in a wide range, and an SiC single crystal substrate. The SiC single crystal substrate is produced using a seed crystal having an off angle in the off orientation from a {0001} plane by a production method wherein in advance of a growth main step of performing crystal growth to form a facet {0001} plane in the crystal peripheral part on the crystal end face having grown thereon the bulk silicon carbide single crystal and obtain more than 50% of the thickness of the obtained SiC single crystal, a growth sub-step of growing the crystal at a higher nitrogen concentration than in the growth main step and at a growth atmosphere pressure of 3.9 to 39.9 kPa and a seed crystal temperature of 2,100° C. to less than 2,300° C. is included.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: July 14, 2020
    Assignee: SHOWA DENKO K.K.
    Inventors: Shinya Sato, Tatsuo Fujimoto, Masakazu Katsuno, Hiroshi Tsuge, Masashi Nakabayashi
  • Patent number: 10711370
    Abstract: An epitaxial growing device to increase the speed of epitaxial deposition comprises a cavity comprising a reaction chamber, a gas supply unit, a vacuum pumping unit, a first electrode, a second electrode, and a carbon nanotube structure. A gas supply unit and the vacuum pumping unit are connected to the reaction chamber, the first electrode, the second electrode, and the carbon nanotube structure being located in the reaction chamber. The carbon nanotube structure is electrically connected to the first electrode and the second electrode and suspended through the first electrode and the second electrode and is heatable in itself. A method for growing an epitaxial layer using such device is also provided.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Peng Lei, Peng Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10711371
    Abstract: To provide a lithium niobate (LN) substrate which allows treatment conditions regarding a temperature, a time, and the like to be easily managed and in which an in-plane distribution of a volume resistance value is very small, and a method of producing the same. A method of producing an LN substrate by using an LN single crystal grown by the Czochralski process, in which an LN single crystal having a Fe concentration of 50 mass ppm or more and 1000 mass ppm or less in the single crystal and processed into a form of a substrate is buried in an Al powder or a mixed powder of Al and Al2O3, and heat-treated at a temperature of 450° C. or more and less than 500° C., to produce a lithium niobate single crystal substrate having a volume resistivity controlled to be within a range of 1×108 ?·cm or more to 1×1010 ?·cm or less.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 14, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Tomio Kajigaya
  • Patent number: 10711372
    Abstract: A silicon carbide epitaxial wafer manufacturing method includes: a stabilization step of nitriding, oxidizing or oxynitriding and stabilizing silicon carbide attached to an inner wall surface of a growth furnace; after the stabilization step, a bringing step of bringing a substrate in the growth furnace; and after the bringing step, a growth step of epitaxially growing a silicon carbide epitaxial layer on the substrate by supplying a process gas into the growth furnace to manufacture a silicon carbide epitaxial wafer.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: July 14, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akihito Ohno, Kenichi Hamano, Takashi Kanazawa
  • Patent number: 10711373
    Abstract: Provided is an SiC composite substrate 10 having a monocrystalline SiC layer 12 on a polycrystalline SiC substrate 11, wherein: some or all of the interface at which the polycrystalline SiC substrate 11 and the monocrystalline SiC layer 12 are in contact is an unmatched interface I12/11 that is not lattice-matched; the monocrystalline SiC layer 12 has a smooth obverse surface and has, on the side of the interface with the polycrystalline SiC substrate 11, a surface that has more pronounced depressions and projections than the obverse surface; and the close-packed plane (lattice plane 11p) of the crystals of the polycrystalline SiC in the polycrystalline SiC substrate 11 is randomly oriented with reference to the direction of a normal to the obverse surface of the monocrystalline SiC layer 12. The present invention improves the adhesion between the polycrystalline SiC substrate and the monocrystalline SiC layer.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 14, 2020
    Assignees: SHIN-ETSU CHEMICAL CO., LTD., CUSIC INC.
    Inventors: Yoshihiro Kubota, Shoji Akiyama, Hiroyuki Nagasawa
  • Patent number: 10711374
    Abstract: The present disclosure provides instrumentation and automated methods for creating cell surface display libraries, where the cells of the library display engineered peptides on their cell surfaces for identification of antigens that bind to T-cell receptors. The engineered peptides may be putative antigens or binding regions of the T-cell receptors.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: July 14, 2020
    Assignee: Inscripta, Inc.
    Inventors: Stephen Federowicz, Deanna Church, Michael Graige
  • Patent number: 10711375
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: July 14, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 10711376
    Abstract: Circular weaving machine for weaving a weaving core (1), including at least one shuttle (5) which has a weft yarn bobbin (7) and can be moved along a circular continuous track around the weaving core (1), and warp coil devices (10), each of which having a warp yarn bobbin (11). The warp coil devices (10) are designed to be movable, the travel path of the warp coil devices (10) with the warp yarn bobbin (11) extending through a weaving plane (6) enclosed by the circular continuous track (2, 23).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: July 14, 2020
    Assignee: INNOTEC LIGHTWEIGHT ENGINEERING & POLYMER TECHNOLOGY GMBH
    Inventor: Werner Hufenbach
  • Patent number: 10711377
    Abstract: Crochet hooks and knitting needles configured with devices and systems to assist a user in counting, tracking and following a crocheting or knitting pattern, either automatically or manually. A crochet hook or knitting needle is provided with an integrated electronic or manual counting system or device. The integrated counting systems and devices can include an electronic or manual display, a button/sensor and/or an accelerometer configured to detect a motion. The integrated counting systems and devices can also include an integrated computer, power source and software. The integrated counting systems and devices can also include wireless communication devices, optical devices, speakers, tactile signal devices and/or audio devices.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: July 14, 2020
    Inventor: Ruth Ann Christian
  • Patent number: 10711378
    Abstract: A protective textile sleeve and method of construction thereof is provided. The sleeve has a knit, tubular wall extending lengthwise along a central longitudinal axis between opposite ends. The knit wall has a first state with a decreased length, increased cross-sectional area, as viewed in cross-section taken generally transversely to the central longitudinal axis, and a second state with an increased length, decreased cross-sectional area, as viewed in cross-section taken generally transversely to the central longitudinal axis. The wall includes knit, heat-set yarns imparting a bias on the wall, wherein the bias causes the wall to remain substantially in the first and second states absent an externally applied force.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 14, 2020
    Assignee: Federal-Mogul Powertrain LLC
    Inventors: Michael Knudson, Tianqi Gao, Zhong Huai Zhang, Leigh Krauser