Patents Issued in January 2, 2024
  • Patent number: 11860260
    Abstract: A system for estimating a receiver position with high integrity can include a reference station observation monitor configured to: receive a set of reference station observations associated with a set of reference stations, detect a predetermined event, and mitigate an effect of the predetermined event; a modeling engine configured to generate corrections; a reliability engine configured to validate the corrections; an observation monitor configured to: receive a set of satellite observations from a set of global navigation satellites corresponding to at least one satellite constellation; detect a predetermined event; and mitigate an effect of the predetermined event; a carrier phase determination module configured to determine a carrier phase ambiguity of the set of satellite observations; and a position filter configured to estimate a position of the receiver.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: January 2, 2024
    Assignee: Swift Navigation, Inc.
    Inventors: Sebastien Carcanague, Fergus MacPherson Noble
  • Patent number: 11860261
    Abstract: A communication device including a clock, a memory, and at least one processor is disclosed. The at least one processor is configured to execute instructions stored in the memory that cause the at least one processor to perform operations including receiving at least one message from a second communication device of a plurality of communication devices over a preconfigured time duration, determining a first local time of the clock of the communication device at which the at least one message from the second communication device is received, and determining a sync-time of the second communication device based on the at least one message from the second communication device. The operations include mapping the sync-time of the second communication device based on the first local time and the determined sync-time of the second communication device and adjusting a sync-time of the communication device based on the second local time.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: January 2, 2024
    Assignee: Sonitor Technologies AS
    Inventors: Endre Bakka, Wilfred Edwin Booij
  • Patent number: 11860262
    Abstract: A system for generating a three dimension (3D) imaging of an object, the system comprising: an electromagnetic transducer array such as an RF (radio-frequency) antenna array surrounding the object said array comprising: a plurality of electromagnetic transducers; a transmitter unit for applying RF signals to said electromagnetic transducer array; and a receiver unit for receiving a plurality of RF signals affected by said object from said electromagnetic transducers array; a Radio Frequency Signals Measurement Unit (RFSMU) configured to receive and measure said plurality of plurality of affected RF signals and provide RF data of the object; and at least one processing unit, configured to process said RF data to identify the dielectric properties of said object and construct a 3D image of said object.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 2, 2024
    Assignee: VAYYAR IMAGING LTD
    Inventors: Raviv Melamed, Damian Hoffman, Jonathan Rosenfeld, Ronen Tur
  • Patent number: 11860263
    Abstract: A system for detecting and estimating a property of an object based on radar includes a signal generator configured to generate a code sequence for a plurality of transmitters configured to emit radar signals over a selected time frame, the code sequence including a plurality of codes, each code of the plurality of codes having a different code length, each code repeated in the code sequence according to a repetition frequency, and each transmitter configured to emit a radar signal based on the code sequence. The system also includes a receiver configured to detect return signals from reflections of the emitted radar signal, and a processing device configured to estimate a property of an object based on the detected return signals.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 2, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Amnon Jonas
  • Patent number: 11860264
    Abstract: A ranging apparatus of an embodiment is a ranging apparatus adopting communication type ranging by a phase detection scheme. The ranging apparatus including: a transmitting circuit configured to be able to transmit by a plurality of channels used for data communication and configured to transmit a transmission signal obtained by modulating transmission data; and a control circuit configured to control the transmission circuit to cause a plurality of continuous waves having mutually different frequencies to be generated in a same channel as continuous waves used for ranging by the phase detection scheme.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: January 2, 2024
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Hiroshi Yoshida, Masaki Nishikawa, Shoji Ootaka, Katsuya Nonin, Masayoshi Oshiro
  • Patent number: 11860265
    Abstract: A method for extracting spatial resolution and/or velocity resolution of a single-input single-output radar acquiring raw radar data with a frequency scanning antenna is provided. The method includes steering a radar beam with the aid of the frequency scanning antenna with respect to an area to be illuminated by the radar, and dividing the area into at least two angular sectors. In this context, the at least two angular sectors are configured in a manner that the at least two angular sectors overlap with respect to each other.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: January 2, 2024
    Assignee: Stichting IMEC Nederland
    Inventors: Rainer Oliver Hornung, Peng Zhang, Marco Mercuri, Paul Mateman, Lichen Yao
  • Patent number: 11860266
    Abstract: A method of detecting a life includes receiving an echo signal including an in-phase component and a quadrature component, performing a preprocessing procedure on the echo signal to generate a preprocessed signal, generating, according to the preprocessed signal, complex conjugate data associated with the in-phase component and the quadrature component, performing a first time-domain-to-frequency-domain transform on the complex conjugate data to generate Doppler spectrogram data comprising a plurality of positive velocity energies and a plurality of negative velocity energies, generating combined Doppler spectrogram data according to the plurality of positive velocity energies and the plurality of negative velocity energies, performing a second time time-domain-to-frequency-domain transform on the combined Doppler spectrogram data to generate spectrum data, and determining whether a life is detected according to the spectrum data.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: January 2, 2024
    Assignee: RichWave Technology Corp.
    Inventors: Keng-Hao Liu, Han-Jieh Chang, Hsiang-Feng Chi
  • Patent number: 11860267
    Abstract: A method for interpolated virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; interpolating signal instances; calculating a first target angle; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: January 2, 2024
    Assignee: Ambarella International LP
    Inventors: Lang Hong, Steven Hong
  • Patent number: 11860268
    Abstract: A system and method for determining a number of occupants at a location using multiple modalities. The method includes gathering a first data set with a motion sensor of the lighting system. A second data set is gathered with a transceiver of an RF subsystem. First and second estimates are calculated from the second data set using first and second algorithms. The first estimate and the second estimate are fused to create a fused occupant estimate. The first algorithm, the second algorithm, or both the first algorithm and the second algorithm are trained by inputting the second occupant estimate and/or the second set of data to recalibrate parameters of the first algorithm and/or inputting the first occupant estimate and/or the first set of data to recalibrate parameters during training of the second algorithm. A building control system can operated in response to the fused occupant estimate.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 2, 2024
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Abhishek Murthy, Rohit Kumar, Yuting Zhang, Chingiz Kabytayev, Eric Bertrand Shen
  • Patent number: 11860269
    Abstract: A centralized object detection sensor network system comprises a central unit configured to generate one or more probing signals for detecting one or more objects in an environment, and one or more transponders configured to receive the one or more probing signals and convert them into free space waves for detecting the one or more objects in the environment. The one or more transponders are communicatively coupled to the central unit through one or more communication links.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: January 2, 2024
    Assignee: Perceptive Inc.
    Inventor: Alberto Stochino
  • Patent number: 11860270
    Abstract: In an embodiment, a method for completing measurements for a uniform linear array from measurements from a sparse linear array is provided. The method includes: receiving a first set of measurements for a sparse linear array by a computing device; generating a second set of measurements for a uniform linear array from the first set of measurements by the computing device; and using matrix completion to determine values for a plurality of missing elements of the generated second set of measurements for the uniform linear array by the computing device.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 2, 2024
    Assignee: The Board of Trustees of The University of Alabama
    Inventor: Shunqiao Sun
  • Patent number: 11860271
    Abstract: The present disclosure relates to spherical dual-polarization phased array weather radar. The spherical dual-polarization phased array weather radar comprises a spherical crown phased array antenna module, a digital transceiver module and a signal processing module, wherein the spherical crown phased array antenna module comprises a spherical support frame and a plurality of dual-polarization micro-strip radiation units; the dual-polarized micro-strip radiation units are tightly arranged on the spherical support frame; the spherical crown phased array antenna module is used for detecting weather; wireless transmission is carried out between the digital transceiver module and the spherical crown phased array antenna module; the digital transceiver module is used for generating a frequency modulation signal or a phase coding signal required for detecting meteorological targets and receiving an echo signal reflected by the target; and the signal processing module is connected with the digital transceiver module.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 2, 2024
    Assignee: Meteorological Observation Centre of China Meteorological Administration
    Inventors: Yuchun Gao, Chen Li, Yubao Chen, Hu Chen, Changxing Li, Jianbing Lu, Haihe Liang, Xiaopeng Wang, Yingchun Chen, Zhichao Bu, Xu Han, Nan Shao, Jie Liu
  • Patent number: 11860272
    Abstract: An ultrasonic touch sensor includes: a covering having a contact face configured to receive a touch; a first ultrasonic transducer element; a first semiconductor chip comprising the first ultrasonic transducer element; a second ultrasonic transducer element; and an acoustic barrier formed between the first ultrasonic transducer element and the second ultrasonic transducer element.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: January 2, 2024
    Assignee: Infineon Technologies AG
    Inventors: Klaus Elian, Christoph Steiner, Horst Theuss, Matthias Eberl, Fabian Merbeler
  • Patent number: 11860273
    Abstract: Techniques, systems, and devices are disclosed for spatial and temporal encoding of transmission in full synthetic transmit aperture imaging to achieve optimal spatial and contrast resolution and large signal-to-noise ratio for medical imaging applications with fewer signal transmissions, which can be equal to or less than the number of array elements within the aperture. In some aspects, a method of signal transmission is disclosed that includes a sequence of one or more sets of transmissions on a plurality of elements with unique, random, and/or optimized combinations of waveforms using amplitude and phase, and/or delay encoding. Sets of echoes corresponding to the sequence are beamformed such that fewer transmissions are needed than the number of array elements within the aperture, while maintaining complete spatial sampling of the aperture as if sampled according to a full set of synthetic transmit aperture transmissions on the same aperture.
    Type: Grant
    Filed: October 27, 2018
    Date of Patent: January 2, 2024
    Assignee: DECISION SCIENCES MEDICAL COMPANY, LLC
    Inventor: Dustin E. Kruse
  • Patent number: 11860274
    Abstract: An object detection device includes: a transmitter transmitting a transmission wave to an outside including a road surface; a receiver receiving a reflected wave of the transmission wave being reflected by an object as a reception wave; a CFAR processor acquiring a CFAR signal at a predetermined detection timing by CFAR processing based on a value of a first processing target signal based on a reception wave received at the detection timing and an average value of values of second processing target signals based on the reception waves received in predetermined sections before and after the detection timing; and an estimator estimating an absorption and attenuation value corresponding to the average value based on a road surface reflection estimation expression that defines a relation between the average value and the absorption and attenuation value in advance.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: January 2, 2024
    Assignee: AISIN CORPORATION
    Inventors: Ippei Sugae, Shingo Fujimoto, Kosuke Wakita
  • Patent number: 11860275
    Abstract: An object detection device includes: a transmission and reception unit configured to transmit a transmission wave including an ultrasonic wave having directivity in a direction parallel or substantially parallel to a traveling direction of a movable body, and receive a reflected wave from an object; a determination unit configured to determine presence or absence of an abnormality based on a predetermined reference distance and a downward distance between the transmission and reception unit and an object present below the transmission and reception unit in a vertical direction, the downward distance being calculated based on a reflected wave of an ultrasonic wave of the transmission wave traveling downward in the vertical direction from the transmission and reception unit; and an output unit configured to output information regarding the abnormality.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: January 2, 2024
    Assignee: AISIN CORPORATION
    Inventors: Kosuke Wakita, Ippei Sugae
  • Patent number: 11860276
    Abstract: A three-dimensional (3D) coordinate measurement device and method of operating combines tracker and scanner functionality. The method includes selecting an operating mode on the coordinate measurement device. A first light is emitted from the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector, wherein the second light is a reflection of the first light off of the retroreflector or the surface. A distance is determined based at least in part on the selected mode, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of at least one point in the environment are determined based at least in part on the measuring of the at least two angles and the determination of the distance.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 2, 2024
    Assignee: FARO Technologies, Inc.
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker
  • Patent number: 11860277
    Abstract: A LIDAR system is configured to output a system output signal and to receive a system return signal. The system return signal includes light that was included in the system output signal and that was reflected by an object located outside of the LIDAR system. A time delay occurs between the light being output from the LIDAR system and returning to the LIDAR system. The LIDAR system also includes electronics that use a portion of the system return signal that returns to the LIDAR system during a data window to generate LIDAR data that indicates a radial velocity and/or distance between the LIDAR system and the object. The electronics tune the duration of the data window in response to the amount of the time delay.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 2, 2024
    Assignee: SiLC Technologies, Inc.
    Inventor: Majid Boloorian
  • Patent number: 11860278
    Abstract: Embodiments herein describe a robotic system that uses range sensors to identify a vector map of an environment. The vector map includes lines that outline the shape of objects in the environment (e.g., shelves on the floor of a warehouse). The system identifies one or more line segments representing the boundary or outline of the objects in the environment using range data acquired by the range sensors. The robotic system can repeat this process at different locations as it moves in the environment. Because of errors and inaccuracies, line segments formed at different locations may not clearly align even when these line segments correspond to the same object. To account for this error, the robotic system match line segments identified at a first location with line segments identified at a second location. The matched line segments can be merged into a line that is stored in the vector map.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: January 2, 2024
    Assignee: Amazon Technologies, Inc.
    Inventors: Samer Nashed, Jong Jin Park, Joseph Durham
  • Patent number: 11860279
    Abstract: An image sensing device and a photographing device including the same are disclosed. The image sensing device includes a pixel array configured to have a first pixel and a second pixel that are different from each other in terms of at least one of an effective measurement distance, temporal resolution, spatial resolution, and unit power consumption, and a timing controller configured to determine whether a distance to a target object is equal to or less than a predetermined threshold distance, and selectively activate any one of the first pixel and the second pixel according to the result of determination.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: January 2, 2024
    Assignee: SK hynix Inc.
    Inventors: Hyung June Yoon, Dong Jin Lee
  • Patent number: 11860280
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with a highly integrated LIDAR measurement device are described herein. In one aspect, the illumination source, detector, and illumination drive are integrated onto a single printed circuit board. In addition, in some embodiments, the associated control and signal conditioning electronics are also integrated onto the common printed circuit board. Furthermore, in some embodiments, the illumination drive and the illumination source are integrated onto a common Gallium Nitride substrate that is independently packaged and attached to the printed circuit board. In another aspect, the illumination light emitted from the illumination source and the return light directed toward the detector share a common optical path within the integrated LIDAR measurement device. In some embodiments, the return light is separated from the illumination light by a beam splitter.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 2, 2024
    Assignee: Velodyne Lidar USA, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Mathew Noel Rekow
  • Patent number: 11860281
    Abstract: Method and device for processing LIDAR sensor data are disclosed. The method includes (i) receiving from the LIDAR sensor a first dataset having a plurality of first data points representative of respective coordinates and associated with respective normal vectors, (ii) determining an uncertainty parameter for a given first data point based on a normal covariance of the normal vector of the given first data point where the normal covariance takes into account a measurement error of the LIDAR sensor when determining the respective coordinates of the given first data point, (iii) in response to the uncertainty parameter being above a pre-determined threshold, excluding the given first data point from the plurality of first data points, (iv) using the filtered plurality of first data points, instead of the plurality of first data points, for merging the first dataset of the LIDAR sensor with a second dataset of the LIDAR sensor.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 2, 2024
    Assignee: DIRECT CURSUS TECHNOLOGY L.L.C
    Inventors: Mikhail Vladimirovich Korobkin, Dmitry Andreevich Kovalenko, Andrey Anatolevich Minin
  • Patent number: 11860282
    Abstract: A light detection and ranging (LIDAR) system, includes an optical source to generate a frequency modulated continuous wave (FMCW) optical beam, a memory, and a processor, operatively coupled to the memory, to identify energy peaks in a frequency domain of a range-dependent baseband signal that corresponds to a return signal from a reflection of the FMCW optical beam and identify an obstruction of the LIDAR system based on a comparison of a frequency of the energy peaks to a threshold frequency.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: January 2, 2024
    Assignee: Aeva, Inc.
    Inventors: Jose Krause Perin, Kumar Bhargav Viswanatha, Rajendra Tushar Moorti, Mina Rezk
  • Patent number: 11860283
    Abstract: An aircraft and non-transitory computer-readable medium for detecting the spoofing of a signal from a satellite in orbit. A receiver on the aircraft to receive an apparent satellite signal. A computer for determining at least two characteristic signatures of the signal including a power level, and indicating the apparent satellite signal is a spoofed satellite signal.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: January 2, 2024
    Assignee: GE Aviation Systems Limited
    Inventor: Stefan Alexander Schwindt
  • Patent number: 11860284
    Abstract: A system having a global navigation satellite system (GNSS) receiver having a GNSS receiver battery receptacle for housing a battery therein, and a handheld receptacle which has an insertion portion which is shaped as an outer portion of the battery and which is adapted for insertion into the battery receptacle of the GNSS receiver instead of the battery, wherein the handheld receptacle has a handheld receptacle battery receptacle to receive the battery therein. The battery can be swapped from the GNSS receiver and the handheld receptacle. A socket can be provided on the handheld receptacle for mounting a computing device thereon in communication with the GNSS receiver. A pole-mount adapter can be used for connecting the GNSS receiver onto a pole below the GNSS battery receptacle and can be mounted and dismounted even when the handheld receptacle is inserted in the GNSS receiver.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: January 2, 2024
    Assignee: EOS POSITIONING SYSTEMS INC.
    Inventor: Jean-Yves Lauture
  • Patent number: 11860285
    Abstract: A method for assisting the navigation of a fleet of vehicles including main vehicle and a secondary vehicle movable relative to the main vehicle includes receiving data acquired by one or more sensors, the received data including relative kinematic data between the main vehicle and the secondary vehicle, and estimating a navigation state of the fleet of vehicles by an invariant Kalman filter using the received data as observations. The navigation state includes first variables representative of a first rigid transformation linking a frame attached to the main vehicle to a reference frame, and second variables representative of a second rigid transformation linking the frame attached to the main vehicle to a frame attached to the secondary vehicle. The invariant Kalman filter uses as binary operation an operation including a term-by-term composition of the first rigid transformation and of the second rigid transformation.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 2, 2024
    Assignee: SAFRAN
    Inventor: Axel Barrau
  • Patent number: 11860286
    Abstract: A navigation system includes: a communication circuit configured to: receive a base station data including an actual location and a satellite provided reference location from a base station, and transfer the base station data to an artificial intelligence (AI) correction calculator, already trained; a control circuit, coupled to the communication circuit, configured to: transfer a pseudorange, of a satellite, from the AI correction calculator; calculate a real-time kinematics (RTK) correction based on the pseudorange; and enable the communication circuit to transmit the RTK correction by an over the air (OTA) communication to the base station including the base station transferring the RTK correction to a device for correcting the satellite provided reference location to a real-world location and displaying on the device.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: January 2, 2024
    Assignee: Telenav, Inc.
    Inventor: Shane-Woei Lee
  • Patent number: 11860287
    Abstract: An system and/or method for detecting outliers in satellite observations can include: receiving satellite observations associated with one or more satellite constellations; receiving sensor data; determining a GNSS positioning solution using a filter to process the satellite observations; determining a fused positioning solution; detecting whether outliers are present in the satellite observations; and when outliers are detected, updating the GNSS positioning solution and/or the fused positioning solution using a set of outlier mitigated satellite observations.
    Type: Grant
    Filed: March 1, 2023
    Date of Patent: January 2, 2024
    Assignee: Swift Navigation, Inc.
    Inventors: Joseph Angelo, Christian Reimer, Sébastien Carcanague
  • Patent number: 11860288
    Abstract: Methods, apparatus, systems, and articles of manufacture to detect the location of sound sources external to computing devices are disclosed. An apparatus, to determine a direction of a source of a sound relative to a computing device, includes a cross-correlation analyzer to generate a vector of values corresponding to a cross-correlation of first and second audio signals corresponding to the sound. The first audio signal is received from a first microphone of the computing device. The second audio signal is received from a second microphone of the computing device. The apparatus also includes a location analyzer to use a machine learning model and a set of the values of the vector to determine the direction of the source of the sound.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 2, 2024
    Assignee: INTEL CORPORATION
    Inventors: Hector Cordourier Maruri, Adam Kupryjanow, Karol Duzinkiewicz, Jose Rodrigo Camacho Perez, Paulo Lopez Meyer, Julio Zamora Esquivel, Alejandro Ibarra Von Borstel, Jonathan Huang
  • Patent number: 11860289
    Abstract: The described technology is generally directed towards user equipment geolocation. Network measurement data associated with user equipment can be separated into static periods in which the user equipment was not moving, and moving periods in which the user equipment was moving. Static location processing can be applied to determine static locations from the static period network measurements, and moving location processing can be applied to determine moving locations from the moving period network measurements. Resulting static location information and moving location information can then be merged in order to improve the accuracy of both the static and the moving location information. The enhanced accuracy location information can be stored and used for any desired application.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: January 2, 2024
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Jie Chen, Wenjie Zhao, Abraham George
  • Patent number: 11860290
    Abstract: A method and system for determining a position using a rotatable antenna array is provided. The method and system may include receiving first location information at a first stopping point by one or more antenna of a rotatable antenna array, the first stopping point of each of the one or more antenna being different, rotating the one or more antenna from the first stopping point to a second stopping point using the rotatable antenna array, receiving second location information at the second stopping point by the one or more antenna of the rotatable antenna array, the second stopping point of each of the one or more antenna being different, and determining an average location using the first location information and the second location information.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: January 2, 2024
    Assignee: Lazer Layout, LLC
    Inventors: Michael A Luebke, Kevin R. Hicken
  • Patent number: 11860291
    Abstract: In a method for determining a location of an electronic device, a plurality of beacon signals are received from a plurality of beacon devices at the electronic device, wherein each beacon signal of the plurality of beacon signals includes an identity of a beacon device transmitting a respective beacon signal, and each beacon device of the plurality of beacon devices has a known location. A received signal strength for each beacon signal of the plurality of beacon signals is measured. A distance of the electronic device from each beacon device for which the plurality of beacon signals is received is determined, wherein the distance of the electronic device from a beacon device is based at least in part on the received signal strength of the beacon signal transmitted by the beacon device. A location of the electronic device is determined based at least on part on the distance of the electronic device from each beacon device for which the plurality of beacon signals is received.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: January 2, 2024
    Assignee: Embarcadero Technologies, Inc.
    Inventors: Michael L. Swindell, Diego Navarro, Jorge Alcalde, Ivan Gracia Maciá
  • Patent number: 11860292
    Abstract: A detector for object authentication includes first and second illumination sources. The first illumination source projects an illumination pattern including a plurality of illumination features onto a surface of an object. The second illumination source projects an illuminating light beam onto the object. The detector also includes an image capture device for determining a first image including a plurality of reflection features generated by the surface of the object in response to the illumination pattern and for determining a second image including two dimensional information associated with the surface of the object generated in response to the illuminating light beam. The detector also includes an evaluation device for evaluating the first image and the second image, identifying a geometrical feature of the object, determining a material property of the object, and comparing the two dimensional information to data stored in a database for authentication of the object.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: January 2, 2024
    Assignee: TRINAMIX GMBH
    Inventors: Michael Eberspach, Thomas Ohmer, Robert Send, Christian Lennartz, Christopher Hahne, Stefan Hengen, Sebastian Valouch, Christoph Lungenschmied, Ingmar Bruder, Wilfried Hermes, Celal Mohan Oeguen, Christian Daniel Schildknecht, Peter Schillen, Patrick Schindler, Peter Fejes
  • Patent number: 11860293
    Abstract: A device (112, 130) is configured to communicate data (108) on a radio channel (101, 105, 106) according to a radio access technology. The radio access technology comprises pilot signals and transmission blocks for the data (108). The device (112, 130) is further configured to participate in the radar probing (109) employing at least some of the pilot signals as radar probe pulses of the radar probing (109).
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: January 2, 2024
    Assignee: Sony Group Corporation
    Inventors: Zhinong Ying, Thomas Bolin, Peter C. Karlsson, Erik Bengtsson
  • Patent number: 11860294
    Abstract: Techniques and apparatuses are described that implement electromagnetic vector sensors (EMVS) for a smart-device-based radar system. Instead of including an antenna array of similar antenna elements, the radar system includes two or more electromagnetic vector sensors. At least one of the electromagnetic vector sensors is used for transmission and at least another of the electromagnetic vector sensors is used for reception. Each electromagnetic vector sensor includes a group of antennas with different antenna patterns, orientations, and/or polarizations. An overall footprint of the two electromagnetic vector sensors (e.g., one for transmission and one for reception) can be smaller than antenna arrays used by other radar systems, thereby enabling the radar system to be implemented within space-constrained devices.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 2, 2024
    Assignee: Google LLC
    Inventors: Luzhou Xu, Jiang Zhu, Jaime Lien, David J. Weber
  • Patent number: 11860295
    Abstract: An enclosure for electronics comprises a shell. The shell defines an exterior of the enclosure and accommodated a main chamber inside the shell. The enclosure comprises a partition defining a relief chamber extending inwardly of the shell. The partition has a relief aperture communicating between the relief chamber and the main chamber. The partition has a gas-permeable barrier membrane arranged to cover the aperture. The shell has an opening communicating between the relief chamber and the exterior of the enclosure. The enclosure is suitable for vehicle-mounted radar sensor electronics. The enclosure may provide IP6K6K environmental sealing.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: January 2, 2024
    Assignee: Aptiv Technologies Limited
    Inventors: Grzegorz Tkaczyk, Maciej Adamczyk
  • Patent number: 11860296
    Abstract: A radar arrangement includes a printed circuit board (PCB), an electronic component, and an antenna. The electronic component is arranged on the PCB and is used to generate a high-frequency signal. The PCB has at least four electrically conductive layers separated from one another by at least three electrically insulating layers. A first conductive inner layer is adjacent to a first conductive outer layer, and a second conductive inner layer is adjacent to a second conductive outer layer. The electronic component is arranged on the first conductive outer layer. The antenna is formed at least partially in the second outer layer. The signal generated by the electronic component is transmitted to the antenna, which is formed at least partially in the second conductive outer layer of the PCB, through a region of the conductive inner layers and insulating inner layers of the PCB.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 2, 2024
    Inventors: Thomas Convent, Christoph Dahl, Michael Gerding, Christian Schulz, Michael Vogt
  • Patent number: 11860297
    Abstract: A radar system and method include and employ a plurality of substantially identical transceiver sets establishing respective substantially identical, overlapping virtual antenna arrays. A first sub-array of widely spaced virtual antennas provides high angular resolution but high angular ambiguity. A second sub-array of narrowly spaced virtual antennas provides low angular ambiguity but low angular resolution.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 2, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Oded Bialer, Amnon Jonas
  • Patent number: 11860298
    Abstract: A method and electronic device for updating a leakage response for leakage cancelation. The electronic device includes a radar transceiver, a memory, and a processor. The processor is configured to determine whether an object is within proximity of and within a field of view of the radar transceiver, obtain a leakage measurement for the radar transceiver in response to determining that no object is proximate to and within the field of view of the radar transceiver, and update the leakage response for leakage cancelation based on the leakage measurement.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Vutha Va, Wenxun Qiu, Boon Loong Ng
  • Patent number: 11860299
    Abstract: A method for measuring an elevation angle and/or azimuth angle with an antenna array. Identical transmitted signals that are formed of successive linear-frequency-modulated ramps are transmitted through the transmitting antennas of the antenna array using time division multiplexing, wherein the time division multiplexing is achieved through alternating attenuation of the signals transmitted by the transmitting antennas. Echoes of the transmitted signals are received by the receiving antennas and are down-converted to a baseband and sampled. The down-converted and sampled echoes are transformed by an FFT into a 2D image domain. Phase differences are determined from the image data, and, in order to compensate for a systematic error present because of the lack of separation of the two transmitted signals, an error-compensated elevation angle and/or an error-compensated azimuth angle is determined by means of a compensation.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: January 2, 2024
    Assignee: Hella GmbH & Co. KGaA
    Inventor: Tobias Breddermann
  • Patent number: 11860300
    Abstract: A vehicle radar inspection system and method are provided for inspecting a mounting state of a radar sensor mounted to a vehicle. The vehicle radar inspection system includes a centering portion that aligns a position of the vehicle by driving rollers, displacement sensors that are respectively disposed at front and rear sides of the centering portion, an array antenna that measures propagation intensity of a radar signal transmitted from the radar sensor, and a server that connects wireless communication with a wireless terminal of the vehicle, calculates a mounting position of the radar sensor, and detects a mounting error of the radar sensor with reference to a normal reference mounting specification.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: January 2, 2024
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION
    Inventors: Jihoon Park, David Oh
  • Patent number: 11860301
    Abstract: A testing device for testing a distance sensor that operates using electromagnetic waves includes: a receiving element for receiving an electromagnetic free-space wave as a receive signal (SRX); and a radiating element for radiating an electromagnetic output signal (STX). In a test mode, a test signal unit generates a test signal (Stest), and the radiating element is configured to radiate the test signal (Stest) or a test signal (S?test) derived from the test signal (Stest) as the electromagnetic output signal (STX). In the test mode, an analysis unit is configured to analyze the receive signal (SRX) or the derived receive signal (S?RX) in terms of its phase angle (Phi) and/or amplitude (A) and store a determined value of phase angle (Phi) and/or amplitude (A) synchronously with the radiation of the test signal (Stest) or of the derived test signal (S?test) as the electromagnetic output signal (STX).
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 2, 2024
    Assignee: DSPACE GMBH
    Inventor: Jeffrey Paul
  • Patent number: 11860302
    Abstract: A concept of characterizing an object based on measurement samples from one or more location sensors, the measurement samples having a first spatial resolution. The measurement samples are quantized to a grid map of weighted cells having a second spatial resolution lower than the first spatial resolution, wherein a measurement sample contributes to a weight coefficient of one or more weighted cells depending on a measurement accuracy. Parameters of one or more lines fitting the weighted cells are computed to obtain a characterization of the object.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 2, 2024
    Assignee: Bayerische Motorenwerke Aktiengesellschaft
    Inventor: Dominik Kellner
  • Patent number: 11860303
    Abstract: A sensor for motion or gesture sensing may be configured to emit radio frequency signals such as for pulsed range gated sensing. The sensor may include a radio frequency transmitter configured to emit the pulses and a receiver configured to receive reflected ones of the emitted radio frequency signals. The received pulses may be processed by a motion channel and/or a gesture channel. The gesture channel may produce signals for further processing for identification of one or more different motion gestures such as by calculating and evaluating features from any of the amplitude, phase and frequency of the output signals of the gesture channel. The sensing apparatus may optionally serve as a monitor for evaluating user activities, such as by counting activities. The sensor may optionally serve as a user control interface for many different devices by generating control signal(s) based on identification of one or more different motion gestures.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: January 2, 2024
    Inventors: Stephen McMahon, Emma Marie Meade, Redmond Shouldice
  • Patent number: 11860304
    Abstract: A system and method for processing a 3D point cloud to generate a segmented point cloud in real time are disclosed, the method includes: receiving a sparse 3D point cloud captured by a detection and ranging sensor mounted to a vehicle, the 3D point cloud comprising a plurality of data points, each data point in the 3D point cloud having a set of coordinates in a coordinate system of the detection and ranging sensor; generating, from the 3D point cloud, a range map comprising a plurality of elements, each of the plurality of data points of the 3D point cloud occupying a respective element of the plurality of elements; labelling the data point in each respective element of the range map as one of a pole-like data point or a vertical-plane-like data point; and generating the segmented point cloud including one or more of the labeled data points.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 2, 2024
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yuan Ren, Bingbing Liu, Ran Cheng
  • Patent number: 11860305
    Abstract: Described herein is a LIDAR device that may include a transmitter, first and second receivers, and a rotating platform. The transmitter may be configured to emit light having a vertical beam width. The first receiver may be configured to detect light at a first resolution while scanning the environment with a first FOV and the second receiver may be configured to detect light at a second resolution while scanning the environment with a second FOV. In this arrangement, the first resolution may be higher than the second resolution, the first FOV may be at least partially different from the second FOV, and the vertical beam width may encompass at least a vertical extent of the first and second FOVs. Further, the rotating platform may be configured to rotate about an axis such that the transmitter and first and second receivers each move based on the rotation.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 2, 2024
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, Caner Onal, William McCann, Bernard Fidric, Vadim Gutnik, Laila Mattos, Rahim Pardhan
  • Patent number: 11860306
    Abstract: A side looking occupancy sensor is incorporated in a conventional wall switch mounted into a switch box adjacent to a door. The side-looking proximity sensor preferably is mountable to either side of the doorjamb to make the side-looking proximity sensor face the door opening. During operation, the side-looking sensor monitors the door movement or senses the passage of a person for indication that a person is entering or leaving the space. Entry and exit determination is made based on activation of the side-looking sensor.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: January 2, 2024
    Assignee: The Watt Stopper, Inc.
    Inventor: Louia Weidman
  • Patent number: 11860307
    Abstract: In one embodiment, an apparatus includes a first stage and a second stage. The first stage may include a micro light-directing unit that is operable to receive a light beam from a light source and direct the light beam along one dimension to discrete input locations of a second stage. The second stage may be operable to receive the light beam from the first stage at the discrete input locations along the one dimension and direct the light beam through two dimensions to discrete output locations of the second stage to scan a three-dimensional space.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 2, 2024
    Assignee: Woven by Toyota, U.S., Inc.
    Inventors: Farzad Cyrus Foroughi Abari, Nathan Rolander, Romain Clément
  • Patent number: 11860308
    Abstract: An integrated chip packaging for a LIDAR sensor mounted to a vehicle includes a laser assembly configured to output a beam, an optical amplifier array chip configured to amplify a beam, and a transceiver chip coupled to the laser assembly and the optical amplifier array chip. The transceiver chip may be configured to emit the beam with reference to a first surface of the transceiver chip through an optical window and receive a reflected beam from a target through the optical window. The integrated chip packaging for the LIDAR sensor defines the configuration of optical components for providing a path for the optical signal to travel in and out of the LIDAR sensor and dissipating the heat generated by the optical components for improved performance.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Aurora Operations, Inc.
    Inventors: Colin Delaney, James Ferrara, Stefan Heinemann, Amir Hosseini, Pruthvi Jujjavarapu, Yongxuan Liang, Parth Panchal, Zhizhong Tang
  • Patent number: 11860309
    Abstract: A 3D imaging system includes a light source arranged to illuminate a scene with at least one optical pulse including light of at least two discrete wavelengths; an optical detector including an array of detection elements; and an optical modulator interposed in the optical path between the scene and the optical detector, the modulator being arranged to differentially amplitude modulate the two wavelengths in the reflected portion of the optical pulse as a function of time.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: January 2, 2024
    Assignee: TRW Limited
    Inventors: Adam John Heenan, Martin Thompson, Roger Hazelden, Rob Pinnock