Abstract: A method for storing energy in a device upon acceleration of the device. The method including: permitting a first movable member configured to be movable in one direction relative to a base; biasing the first movable member in a second direction opposed to the first direction; permitting a plurality of second movable members, to be each movable towards an engagement surface of the first movable member when subjected to a predetermined acceleration event in a direction offset from the first direction; and sequentially engaging a portion of the engagement surface, which when pressed causes a movement of the first movable member in the one direction against a biasing force of the first biasing member, upon an increasing acceleration of the base such that energy is stored in the first biasing member.
Abstract: An energy storage device including: a first movable member configured to be movable in one direction relative to a base; a first biasing member configured to bias the first movable member in a second direction opposed to the first direction; a plurality of second movable members, each movable towards an engagement surface of the first movable member when subjected to a predetermined acceleration event in a direction offset from the first direction; and wherein the engagement surface having a portion which when pressed causes a movement of the first movable member in the one direction against a biasing force of the first biasing member; and the plurality of second movable members are configured to sequentially engage the engagement surface upon an increasing acceleration of the base such that energy is stored in the first biasing member.
Abstract: A perforating gun assembly includes a body having an axial length extending between a first axial end and a second axial end, an outer radial surface extending between the first axial end and the second axial end, and an inner bore and at least one explosive charge extending from the outer radial surface to the inner bore. The at least one explosive charge includes a charge casing and a cavity liner mounted within the charge casing. The charge casing and the cavity liner define a charge cavity there between. The at least one explosive charge further includes an explosive material retained within the charge cavity. The at least one explosive charge further includes a deactivation composition retained within the charge cavity.
Abstract: The disclosed embodiments include pressure-activated firing heads, perforating gun assemblies, and methods to set off a downhole explosion. A pressure-activated firing head includes a first chamber and a second chamber having an energy storage element disposed within the second chamber. The pressure-activated firing head also includes a port fluidly connecting the first chamber and the second chamber. The pressure-activated firing head further includes a flow restrictor that restricts fluid flow from the second chamber to the first chamber. The pressure-activated firing head further includes a firing pin shiftable from a first position to a second position to strike an initiator. The pressure-activated firing head further includes a shear pin that holds the firing pin in the first position and configured to shear in response to a threshold pressure applied to the shear pin to release the firing pin from the first position.
Type:
Grant
Filed:
April 29, 2020
Date of Patent:
May 31, 2022
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Christopher C. Hoelscher, Mark D. Macek
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead including destructive elements and a guidance section with a seeker configured to guide the weapon to a target. The seeker includes a detector configured to receive a distorted signal impinging on an objective lens from the target, memory configured to store target criteria and a correction map, and a processor configured to provide a correction signal based on the distorted signal, the target criteria and the correction map to guide the weapon to the target.
Abstract: A downhole setting tool and method of using the setting tool, the setting tool including a firing head, an igniter, a housing connected to the firing head, a power charge positioned within a chamber of the housing, and a connector connecting a portion of the power charge to the firing head. The connector may be connected to the uphole end of the power charge. The connector may connect the power charge to an adapter that connects the power charge to the firing head. The connector may be a ring having an outer engagement feature that engages the adapter and an inner engagement feature that engages the power charge. The connector may be a collet including an outer engagement feature that engages the adapter and a plurality of fingers that engage the power charge. The ignitor is used to detonate the power charge to set a device within a wellbore.
Type:
Grant
Filed:
July 12, 2017
Date of Patent:
September 10, 2019
Assignee:
Baker Hughes, a GE company, LLC
Inventors:
Kevin Edgar Harrington, Gregory Hern, Kent Meyer
Abstract: The invention relates to an artillery projectile (1) which is intended to have a trajectory comprising a ballistic phase and a piloted phase. This projectile (1) has at least one means ensuring its aerodynamic stabilization on part or all of its trajectory and a means (9) intended to ensure a piloting during the piloted phase. This projectile is characterized in that the aerodynamic stabilization means comprises a wing system having at least two wings (16) which are able to positioned with respect to the axis (26) of the projectile, at least during the piloted phase, with their sweepback angles being negative, that is, with the free ends (16b) of the wings (16) being oriented towards the front of the projectile (1).
Type:
Grant
Filed:
September 28, 2016
Date of Patent:
September 3, 2019
Assignee:
NEXTER MUNITIONS
Inventors:
Christian Trouillot, Geoffroy Deschatre
Abstract: A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
Type:
Grant
Filed:
May 9, 2017
Date of Patent:
June 11, 2019
Assignee:
Orbital Research Inc.
Inventors:
Michael Jankowski, Anthony Opperman, Gerard Skebe
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead including destructive elements and a guidance section with a seeker configured to guide the weapon to a target. The seeker includes a detector configured to receive a distorted signal impinging on an objective lens from the target, memory configured to store target criteria and a correction map, and a processor configured to provide a correction signal based on the distorted signal, the target criteria and the correction map to guide the weapon to the target.
Abstract: Method and system that permits explosive operations to be conducted concurrently with drilling and other wellsite operations involving an electrical top drive mechanism or other components that utilize electricity are disclosed. A platform is placed at a location where subterranean operations are to be performed. A first well bore is drilled in a formation using drilling equipment on the platform by activating a top drive. Concurrently with drilling the first well bore, a perforating operation is performed in a second well bore extending from the platform. The perforating operation is performed using a perforating gun that comprises at least one of an electric isolator and an explosive isolator. The perforating gun is activated when the perforating gun reaches a safe depth.
Type:
Grant
Filed:
September 13, 2012
Date of Patent:
March 14, 2017
Assignee:
Halliburton Energy Services, Inc.
Inventors:
Jim T. Hill, Clinton C. Quattlebaum, John D. Burleson, Tony F. Grattan
Abstract: A non-pyrotechnic disseminator includes a body portion with a cover; a first compartment that holds disseminating materials; a spring-loaded piston; a cable connecting the piston to a base of the body portion: a second compartment adjacent to the first compartment; a control mechanism; and an initiator mechanism. The control mechanism sets a delay timing countdown for initiation of dissemination of the disseminating materials out of the body portion. The initiator mechanism begins the delay timing countdown. The second compartment includes a delay fuze module; and a cutting mechanism in contact with the cable. The delay fuze module processes the delay timing countdown, and upon expiration of the countdown, sends a signal to the cutting mechanism to cut the cable. When the cable cuts, the spring uncoils and pushes the piston, which forces the disseminating materials out of the body portion by rupturing the cover.
Type:
Grant
Filed:
September 29, 2015
Date of Patent:
March 7, 2017
Assignee:
The United States of America as Represented by the Secretary of the Army
Inventors:
Elias W. Yoon, Daniel G. Wise, Daniel J. Weber
Abstract: Provided is a shell including: a shell body; a steering wing including a drive shaft and that mounted on an external surface of the shell body; an auxiliary wing including a shaft connection portion which is connected to the drive shaft and moving in the lengthwise direction of the drive shaft within the drive shaft to be inserted into and be spread outward from within the steering wing; an auxiliary-wing holding unit including a holding protrusion which is fixedly arranged in a direction of intersecting the shaft connection portion to selectively hold the auxiliary wing in place; and an auxiliary-wing spreading unit installed within the drive shaft, and that provides driving force for spreading the auxiliary wing outward from within the steering wing when the holding protrusion is disengaged with the shaft connection portion.
Abstract: A non-lethal projectile for firing by a firearm by discharging a conventional bullet (5), the non-lethal projectile comprising a body (7), the interior of which contains a bullet trap (15, 22) for the bullet (5) which uses up a considerable part of the kinetic energy of the bullet by friction and deformation and converts a fraction of the kinetic energy into kinetic energy of the projectile. For that purpose the bullet trap consists of a plug (22) and a catching piece (15), wherein the rear part of the plug (22) is a peg (23) that can be inserted into the mouth of the barrel (4). The catching piece (15) is a hollow cylinder, which has a blind bore (17) closed at the front face of the hollow cylinder, the hollow cylinder being pressed for a part of the length thereof into a blind bore (10) of the body (7) that is closed at the front.
Abstract: The invention relates to a safety arming system for an explosive charge. According to the invention, the system comprises: an arming actuator (4) for moving a sleeve (19), supporting a detonator (20), from a fixed safety position to a fixed armed position; and a disarming actuator (5) arranged opposite the arming actuator (4) and capable of returning the sleeve (19) from the fixed arming position to the fixed safety position.
Type:
Application
Filed:
May 21, 2013
Publication date:
April 2, 2015
Applicant:
MBDA FRANCE
Inventors:
Patrick Barthelemy, Jean Caillard, Laurent Carton, Vincent Rafin
Abstract: The safing system employs a multi-axis accelerometer system and multi-axis gyroscope system and a processor that is programmed to iteratively read acceleration data from the accelerometer system and apply a multi-axis rotation on the acceleration data using gyroscope data iteratively read from the gyroscope system to generate rotationally corrected acceleration data and further programmed to calculate a cumulative distance measure using the rotationally corrected acceleration data. The processor then compares the cumulative distance measure with a predetermined reference measure and to issue a control signal to enable arming of the device when the cumulative distance measure exceeds the reference measure.
Abstract: An explosive tool comprises a body structure, a charge, a detonator to ignite the charge via propagation of thermal energy, a pressure actuated safety to prevent propagation of sufficient thermal energy to ignite the charge when the pressure actuated safety is subjected to a surface pressure and to not prevent propagation of sufficient thermal energy to ignite the charge when the pressure actuated safety is subjected to at least a predefined pressure threshold, and a temperature actuated safety to prevent propagation of sufficient thermal energy to ignite the charge when the temperature actuated safety is subjected to a surface temperature and to not prevent propagation of sufficient thermal energy to ignite the charge when the temperature actuated safety is subjected to at least a predefined temperature threshold. The charge, the detonator, the pressure actuated safety, and the temperature actuated safety are contained within the body structure.
Abstract: A Safe-and-Arm system for the prevention of unintentional operation of an explosive device by interrupting a detonation train, the system employing an interruptive transfer assembly made of silicon and suitable for implementing in a MEMS device, the assembly including a silicon based transfer charge carrier on a porous explosive passageway made by etching, the passageway extending between at least two ports on the circumference of the transfer assembly, and a drive means that can mechanically bring about at least one armed state of a detonation train.
Abstract: A micro-machined or micro-engraved safety and arming device for a projectile pyrotechnic train, said device comprising a substrate onto which a shutter is positioned to ensure the blocking of a channel, said shutter being mobile in translation on said substrate, said shutter being held immobile in the safety position by at least one acceleration lock that is released further to the application of the axial acceleration imparted to said projectile during firing, wherein said acceleration lock is constituted by at least one breakable tongue linking said shutter to said substrate, said tongue being oriented and dimensioned such that the axial inertial stresses developed during firing and exerted on said shutter cause said tongue to break.
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead including destructive elements and a guidance section with a target sensor configured to guide the weapon to a target. The target sensor includes a front lens configured to provide a cover to protect the target sensor from an environment and a fast fresnel lens behind the front lens to provide a multi-lens focusing system for the target sensor. In a related embodiment, the weapon includes an aft section including a tail fin having a modifiable control surface area thereby changing an aspect ratio thereof.
Type:
Grant
Filed:
February 24, 2011
Date of Patent:
May 21, 2013
Assignee:
Lone Star IP Holdings, LP
Inventors:
Steven D. Roemerman, Joseph Edward Tepera
Abstract: A multi-stage inertial switch including: a housing having a first electrical contact; two or more members disposed in the housing, at least one end of each of the two or more members being sequentially movable upon a different level of acceleration of the housing; and a movable member movable within the housing by the sequential movement of the two or more members, the movable member having a second electrical contact capable of engagement with the first electrical contact to one of open or close an electrical circuit between the first and second electrical contacts upon an occurrence of a predetermined magnitude and/or duration acceleration event.
Abstract: An explosive tool is disclosed. The explosive tool comprises a body structure, a charge, a detonator to ignite the charge via propagation of thermal energy, a pressure actuated safety to prevent propagation of sufficient thermal energy to ignite the charge when the pressure actuated safety is subjected to a surface pressure and to not prevent propagation of sufficient thermal energy to ignite the charge when the pressure actuated safety is subjected to at least a predefined pressure threshold, and a temperature actuated safety to prevent propagation of sufficient thermal energy to ignite the charge when the temperature actuated safety is subjected to a surface temperature and to not prevent propagation of sufficient thermal energy to ignite the charge when the temperature actuated safety is subjected to at least a predefined temperature threshold. The charge, the detonator, the pressure actuated safety, and the temperature actuated safety are contained within the body structure.
Abstract: A safety and arming unit for a fuse includes a firing chain having first and second firing devices defining an intermediate space therebetween and a barrier blocking the intermediate space in a safe position. The firing chain is brought into an armed position by a releasing movement vacating the intermediate space. First and second mutually independent securing devices lock the barrier in the safe position and execute an unlocking action based on two mutually independent physical arming parameters. A compact and very reliable safety and arming unit can be achieved in this way.
Type:
Grant
Filed:
November 5, 2008
Date of Patent:
February 26, 2013
Assignee:
Junghans Microtec GmbH
Inventors:
Karl Glatthaar, Reiner Hennig, Gerhard Heussler, Karl Kautzsch, Frank Martin Kienzler, Alexander Zinell
Abstract: A small arms projectile for a small arms weapon is provided within a cartridge cover (1). A release element (15) is provided for preventing movement of the projectile's initiator (11) into an armed position. A channel (5) is formed between the initiator (11) and the projectile's explosive charge (8) and a slidable shield (6) is provided therein. An insert element (10) is also located in the channel for preventing movement of the shield (6) into its armed position. The insert element (10) is held in place by the cartridge cover (1). When the projectile exits the cartridge cover (1) following firing, the insert element (10) is configured to move out of the channel (5) to allow the shield (6) to move into its armed position.
Abstract: A Safe-and-Arm system for the prevention of unintentional operation of an explosive device by interrupting a detonation train, the system employing an interruptive transfer assembly made of silicon and suitable for implementing in a MEMS device, the assembly including a silicon based transfer charge carrier on a porous explosive passageway made by etching, the passageway extending between at least two ports on the circumference of the transfer assembly, and a drive means that can mechanically bring about at least one armed state of a detonation train.
Type:
Application
Filed:
December 25, 2011
Publication date:
August 9, 2012
Inventors:
Shai Rahimi, Evgenia Golda Fradkin, Shefer Melzer, Tali Nachmias
Abstract: Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.
Abstract: A safety and arming unit for a fuze of a projectile has a rotor for interruption of a firing chain. The rotor can rotate from a safe position to an armed position. In order to allow the safety and arming unit to be designed to be physically compact and such that it can be assembled easily, it is proposed that it has a first and a second rotor safety device which each engage in the rotor in order to block rotor rotation to the armed position, wherein the first rotor safety device is designed to carry out a release movement by virtue of its inertia during a launch acceleration of the projectile, and the second rotor safety device has a pyrotechnic charge for producing a release movement.
Type:
Grant
Filed:
November 19, 2009
Date of Patent:
April 24, 2012
Assignee:
Junghans Microtec GmbH
Inventors:
Andreas Schellhorn, Frank Martin Kienzler, Martin Leonhardt
Abstract: An escapement fuze self-destruct mechanism for a projectile includes a drive weight that maintains a biasing member in a compressed state by centrifugal force when a projectile's RPM speed is above a preselected threshold. When the RPM speed falls below the preselected threshold, the biasing member exerts sufficient counter-rotational force to overcome the centrifugal force exerted by the drive weight. The biasing member expands to an uncompressed state and displaces the drive weight into position for mechanically implementing self-destruction of the projectile if a rotor is fully armed or for rendering the projectile “safe” if the rotor is in any position other then fully armed.
Abstract: A safety and arming unit for a fuze of a projectile has a firing device for transferring the firing energy to another firing device and a barrier for interrupting the transfer. The barrier is locked in a locking state by a safety that triggers an unlocking action due to a physical arming parameter. The arming parameter of the novel device is an apogee parameter, effected by the projectile flying through the apogee of its projectile trajectory. A physical arming parameter independent of a launch parameter can be used to unlock the safety without needing to pull out a safety pin.
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead having destructive elements. The weapon also includes a folding lug switch assembly that provides a mechanism to attach the weapon to a delivery vehicle and is configured to close after launching from the delivery vehicle, thereby satisfying a criterion to arm the warhead. The weapon still further includes a guidance section including an antenna configured to receive mission data before launching from the delivery vehicle and further configured to receive instructions after launching from the delivery vehicle to guide the weapon to a target.
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead including destructive elements and a guidance section with a target sensor configured to guide the weapon to a target. The target sensor includes a front lens configured to provide a cover to protect the target sensor from an environment and a fast fresnel lens behind the front lens to provide a multi-lens focusing system for the target sensor. In a related embodiment, the weapon includes an aft section including a tail fin having a modifiable control surface area thereby changing an aspect ratio thereof.
Type:
Grant
Filed:
February 15, 2007
Date of Patent:
March 1, 2011
Assignee:
Lone Star IP Holdings, LP
Inventors:
Steven D. Roemerman, Joseph Edward Tepera
Abstract: A safe and arm device includes a booster base assembly having a booster base housing and a barrier. The booster base housing includes a shaft port extending substantially in line with a longitudinal axis, at least three initiator ports disposed about the axis, and a matching number of explosive transfer paths in respective communication with the at least three initiator ports. The barrier includes a matching number of fire-train transfer ports and a drive shaft. The drive shaft of the barrier is coupled within the shaft port of the booster base housing allowing the barrier to be selectively rotationally positioned about the axis into at least one of a safe position and an arm and fire position, allowing the fire-train transfer ports to be substantially aligned with the explosive transfer paths when the barrier is positioned in the arm and fire position. A booster basket assembly is also provided.
Type:
Application
Filed:
July 23, 2010
Publication date:
January 13, 2011
Applicant:
ALLIANT TECHSYSTEMS INC.
Inventors:
Derek R. DeVries, Brent D. Madsen, Scott R. Jamison
Abstract: A representative embodiment of the invention provides a MEMS-based safety and arming (S&A) device having a shuttle movably connected to a frame by one or more bowed springs. The device has an electrical path adapted to electrically connect the frame and a contact pad. In the initial state, the electrical path has an electrical break. If the inertial force acting upon the shuttle (e.g., during launch) reaches or exceeds a first threshold value, then displacement of the shuttle with respect to the frame causes the electrical break to close. If the inertial force reaches or exceeds a second threshold value greater than the first threshold value, then a latching mechanism employed in the S&A device latches to keep the electrical break irreversibly closed thereafter.
Abstract: An ammunition firing device incorporating a firing pin intended to impact a pyrotechnic composition to activate its ignition, wherein said firing pin incorporates a rod that slides when said ammunition is fired through the effect of the firing acceleration from a starting position to a deployed position, able to be locked in said deployed position, said rod being integral with a percussion tip occupying a fixed position in contact with said pyrotechnic composition, said rod being located fully inside said tip in said starting position and protruding from said tip in its deployed position, said device further incorporating a hammer to strike said rod during the impact of said ammunition on a target to cause the ignition of said composition.
Abstract: Electronic time delay apparatuses and methods of use are disclosed. An explosive or propellant system, which may be configured as a well perforating system includes an electronic time delay assembly comprising an input subassembly, an electronic time delay circuit, and an output subassembly. The input subassembly is activated by an external stimulus, wherein an element is displaced to activate an electronic time delay circuit. The electronic time delay circuit comprises a time delay device coupled with a voltage firing circuit. The electronic time delay circuit counts a time delay, and, upon completion, raises a voltage until a threshold firing voltage is exceeded. Upon exceeding the threshold firing voltage, a voltage trigger switch will break down to transfer energy to an electric initiator to initiate an explosive booster within the output subassembly.
Type:
Grant
Filed:
October 23, 2007
Date of Patent:
September 7, 2010
Assignee:
Alliant Techsystems, Inc.
Inventors:
Francois X. Prinz, John A. Arrell, Jr., Ronald S. Borja, William J. Slade
Abstract: A weapon and weapon system, and methods of manufacturing and operating the same. In one embodiment, the weapon includes a warhead having destructive elements. The weapon also includes a folding lug switch assembly that provides a mechanism to attach the weapon to a delivery vehicle and is configured to close after launching from the delivery vehicle, thereby satisfying a criterion to arm the warhead. The weapon still further includes a guidance section including an antenna configured to receive mission data before launching from the delivery vehicle and further configured to receive instructions after launching from the delivery vehicle to guide the weapon to a target.
Abstract: In accordance with an embodiment of the invention, a submunition is contemplated having a submunition body, an explosive payload housed within said submunition body and an elongated delay member housed within the submunition body, the elongated delay member coated with at least one reactive material that provides a controlled time delay between submunition impact and detonation of the explosive payload. The submunition may also comprise an elongated pendulum having a hollow core sized to receive said elongated delay member, the elongated pendulum adapted to be movable between a locked position that mitigates likelihood of inadvertent detonation of the explosive payload and an unlocked position that enables detonation of the explosive payload.
Abstract: A safety and arming unit (11) which is designed in particular for an electrical fuze circuit (27) does not reliably respond just to lateral loads on one side, but responds only to centrifugal forces produced by the spin during free flight, in that two contact pairs (22-23, 22-23) which are connected electrically in parallel with one another via rings (14, 15) and are arranged diametrically opposite one another on a cross-sectional plane of the fuze (12) are both no longer electrically conductively bridged at the same time by the bolt (17) because, just by virtue of the centrifugal force, both bolts (17) are simultaneously moved radially outwards from their short-circuit safety positions in their blind holes (16), which are oriented transversely with respect to the rotation axis (13).
Type:
Grant
Filed:
September 20, 2007
Date of Patent:
February 16, 2010
Assignee:
Junghans Microtec GmbH
Inventors:
Alexander Zinell, Reiner Hennig, Alfred Boos
Abstract: A safe and arm (S&A) device is disclosed. The device utilizes a no-fire separation distance and a mechanical configuration of primary explosive/booster explosive and secondary explosive to establish a safe mode. While in safe mode, the device would allow no more than 1 in 1 million detonation transfers to occur from primary to secondary. In armed mode, the no-fire separation distance is taken away, allowing reliable detonation transfer. Two arming environments, which occur after launch and safe separation, are used to move the S&A device to armed mode. The first environment is the release event of the projectiles from their packed state in a dispenser. The second environment is a target sense mechanism. If either arming environment returns to its original state, the mechanism returns to safe mode. The S&A device will not allow inadvertent packing into the dispenser of explosive devices in the armed state.
Type:
Application
Filed:
February 28, 2005
Publication date:
February 11, 2010
Applicant:
LOCKHEED MARTIN CORPORATION
Inventors:
Matthew A. Michel, Joseph R. Mayersak, Lance Benedict
Abstract: A projectile fuze (12) having fuze electronics in which the time of flight (T) can be programmed, having a timer/counter which counts up to the programmed time of flight (T)—minus a defined time value (?t)—and then charges an electrical firing circuit, and having a mechanical safety and arming unit (16) which switches a firing chain to the armed position after a specific time interval. The firing chain has an electrical detonator (24), a fuze needle (20), a piercing detonator (22) and a booster charge (26). The projectile fuze (12) has a pyrotechnic force element (14), which is interconnected with the fuze electronics and mechanically blocks the safety and arming unit (16) until the time of flight (T) minus the predetermined time value (?t) is reached, after which the electrical firing circuit is charged and the safety and arming unit (16) is unlocked to the armed position by initiation of the force element (14).
Type:
Grant
Filed:
September 19, 2007
Date of Patent:
November 10, 2009
Assignee:
Junghans Microtech GmbH
Inventors:
Frank Kienzler, Wolfgang Schillinger, Wolfgang Zehnder, Reiner Hennig, Esther Laufer, Siegfried Paulini
Abstract: A fuse for a projectile has a primary firing assembly and a secondary firing assembly. The secondary firing assembly, which is separated from the primary firing assembly by a barrier, has a firing relay with a relay explosive in a sleeve component and a firing booster. When using insensitive explosive for the secondary firing assembly, little energy should be lost in the relay from the primary to the secondary firing assembly, with enhanced safety against inadvertent firing in the secondary firing assembly. For that purpose, the sleeve component forms a gas-tight seal for the secondary firing assembly with respect to the primary firing assembly.
Type:
Application
Filed:
February 24, 2009
Publication date:
October 22, 2009
Applicant:
JUNGHANS MICROTEC GMBH
Inventors:
Markus Kopf, Frank Weisser, Frank Martin Kienzler
Abstract: An inertia igniter including a mechanical delay mechanism having two or more members which are movable under different acceleration conditions to sequentially move a movable member upon sequential movement of the two or more members and an ignition member actuatable by the movable member such that movement of the movable member by the two or more members ignites the ignition member. The movable member can be movable by one of translation and rotation. The inertia igniter can further comprise an impact mass releasably movable in the housing, wherein the impact mass is released and movable by movement of the movable member to impact the ignition member. The inertia igniter can also further comprise a stop member for preventing movement of the impact mass until the movable member has moved a predetermined distance.
Type:
Grant
Filed:
August 2, 2007
Date of Patent:
September 15, 2009
Inventors:
Jahangir S. Rastegar, Richard Murray, Thomas Spinelli
Abstract: A safety and arming unit for a fuze of a projectile has a firing means for transferring the firing energy to another firing means and a barrier for interrupting the transfer. The barrier is locked in a locking state by a safety that triggers an unlocking action due to a physical arming parameter. The arming parameter of the novel device is an apogee parameter, effected by the projectile flying through the apogee of its projectile trajectory. A physical arming parameter independent of a launch parameter can be used to unlock the safety means without needing to pull out a safety pin.
Abstract: A safety and arming unit for a fuse includes a firing chain having first and second firing devices defining an intermediate space therebetween and a barrier blocking the intermediate space in a safe position. The firing chain is brought into an armed position by a releasing movement vacating the intermediate space. First and second mutually independent securing devices lock the barrier in the safe position and execute an unlocking action based on two mutually independent physical arming parameters. A compact and very reliable safety and arming unit can be achieved in this way.
Type:
Application
Filed:
November 5, 2008
Publication date:
May 21, 2009
Applicant:
JUNGHANS MICROTEC GMBH
Inventors:
Karl Glatthaar, Reiner Hennig, Gerhard Heussler, Karl Kautzsch, Frank Martin Kienzler, Alexander Zinell
Abstract: A safe and arm device includes a booster base assembly having a booster base housing and a rotatable barrier. The booster base housing includes a shaft port extending substantially inline with a longitudinal axis, at least three initiator ports disposed about the axis, and a matching number of explosive transfer paths in respective communication with the at least three initiator ports. The barrier includes a matching number of fire-train transfer ports and a drive shaft. The drive shaft of the barrier is coupled within the shaft port of the booster base housing allowing the barrier to be selectively rotationally positioned about the axis into at least one of a safe position and an arm and fire position, allowing the fire-train transfer ports to be substantially aligned with the explosive transfer paths when the barrier is positioned in the arm and fire position. A booster basket assembly is also provided.
Type:
Application
Filed:
November 1, 2007
Publication date:
May 7, 2009
Applicant:
ALLIANT TECHSYSTEMS INC.
Inventors:
Derek R. Devries, Brent D. Madsen, Scott R. Jamison
Abstract: A MEMS inertial delay device having a substrate layer, an intermediate layer and a device layer. A plurality of freely moveable interlocking masses are formed in the device layer along with springs which connect the masses to first and second supports. Movement of a first one of the interlocked masses, due to a shock event, allows subsequent masses to move, with a last mass including an activation member, movement of which causes operation of a mechanism, such as movement of a lock in a safe/arm arrangement in a munition round.
Type:
Grant
Filed:
January 6, 2005
Date of Patent:
February 24, 2009
Assignee:
The United States of America as represented by the Secretary of the Navy
Abstract: The invention relates to a firing safety device for a pyrotechnic device which incorporates a barrier blocking a transmission channel connecting an igniter and a pyrotechnic charge wherein the barrier comprises at least two elements able to move with respect to one another by the action of motor means between a safety position in which they cooperate to block the transmission channel and an armed position in which they free at least partially one part of the transmission channel, each barrier element alone being unable to block the channel.
Abstract: An explosive device includes a firing train, an explosive charge and a shock activated neutralizer configured to disable activation of the explosive charge by the firing train. The neutralizer includes a housing and a rupturable fluid barrier configured to selectively permit mixing of disabling material constituents to interact with the firing train to disable the same. A method of neutralizing an explosive device includes rupturing the fluid barrier, at least in part by applying a shock to the explosive device, and interacting the disabling material with the firing train to disable the same.
Abstract: The invention relates to a firing safety device for a pyrotechnic device, such device incorporating at least one barrier to block a transmission channel connecting an igniter and a pyrotechnic charge, wherein the barrier is made in the form of at least one micro-machined or micro-engraved element, applied to or made on at least one substrate board, the board being integrated on its edge such that it is substantially parallel to the transmission channel which thus opens out opposite the barrier at its thick part, the pyrotechnic charge and igniter thus lying on either side of the barrier and opposite the thickness of the barrier.
Abstract: An electronic safety and arming unit comprises a micro electromechanical system (MEMS) shutter device. The shutter (18) is suspended by thin lightweight arms and hinges, all formed by silicon processing of SOI substrates and includes holding latches for holding the shutter (18) in the closed position. The holding latches may be released by an electrothermal actuator. The shutter (18) separates an initiator section from an explosive train (6) of munitions such as shells, thereby providing safety until the shell is fired and away from its start point. After firing, the shutter (18) is opened ready for the main explosive to be detonated by the initiator (3). The shutter (18) may be suspended by a compliant displacement multiplier and may include an electrothermal actuator such as an electrically heatable bent beam. Heating of the beam causes movement of a shutter blade from a shut condition covering a firing aperture to an open condition.
Abstract: A two-stage acceleration sensing apparatus is disclosed which has applications for use in a fuze assembly for a projected munition. The apparatus, which can be formed by bulk micromachining or LIGA, can sense acceleration components along two orthogonal directions to enable movement of a shuttle from an “as-fabricated” position to a final position and locking of the shuttle in the final position. With the shuttle moved to the final position, the apparatus can perform one or more functions including completing an explosive train or an electrical switch closure, or allowing a light beam to be transmitted through the device.
Type:
Grant
Filed:
March 22, 2006
Date of Patent:
June 10, 2008
Assignee:
Sandia Corporation
Inventors:
David R. Koehler, Darren A. Hoke, Louis S. Weichman, George E. Vernon, Randy J. Shul, Michael H. Beggans