Spring Biased Piston Patents (Class 102/242)
  • Patent number: 9562755
    Abstract: A SAFE and ARM mechanism includes an elongated casing having a first end and a second end. A high-G force firing pin is arranged relatively near to the first end and a low-G force firing pin is arranged relatively near to the second end. A detonator is arranged between the high-G force firing pin and the first end. When a G-force within a first range of magnitudes is applied to the casing along its longitudinal axis, the low-G force firing pin is displaced to strike a portion of the high-G force firing pin, and if a G-force within a second range of magnitudes is applied to the casing along its longitudinal axis, the high-G force firing pin is displaced to strike the detonator. The device may become ARMED in response to a centrifugal force generated by spinning the casing on its longitudinal axis.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: February 7, 2017
    Assignee: Pacific Scientific Energetic Materials Company
    Inventor: Robert S. Ritchie
  • Patent number: 8464641
    Abstract: A forty millimeter caliber exercise bullet has been improved for properly exploding on a target, and securely maintaining the unloaded status during ordinary time. The improved exercise bullet is comprised of: a skirt (200), a striking pin (10), a safety device assembly (300) consisting of a detent cover (310) with a central mounting groove (311) and a pair of mounting grooves (312), a detent (320) for retaining the striking pin (10) by engaging or disengaging into the circumferential groove (11) by springs (323), a detonator cap (330) forming a hollow pocket (331) to insert a detonator trigger (20), a washer (30), a press-spring (332) for pressing a guiding cap (340), an explosion pipe (400), a smoke shell (500), and an ogive (600). When the bullet is fired, the rotation of the bullet generates centrifugal force to slide the retainer outward for disengaging the circumferential groove. Then, the striking pin moves upward to impact the detonator trigger when it hit on the target.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: June 18, 2013
    Assignee: Korea C.N.O. Tech Co. Ltd.
    Inventor: Se-Hong O
  • Patent number: 8443728
    Abstract: A fuze includes a shell, a plunger a firing pin unit, a spring, a receptacle, a plurality of detents, a detonation unit and a restraint unit. The plunger is movably provided in the shell. The firing pin unit is movably provided in the shell, in the vicinity of the plunger. The spring is compressed between the plunger and the firing pin unit. The receptacle is provided in the shell and movably connected to the firing pin unit. The detents are movably provided between the firing pin unit and the receptacle. The detonation unit is movably provided in the receptacle opposite to the detents. The restraint unit is provided in the shell and movably connected to the detonation unit.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 21, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Li-Tin Chiang, Chun-Wei Chiu, Kuei-Ju Lee
  • Publication number: 20100251918
    Abstract: A command to arm apparatus includes a housing having a hollow interior. A pivotally-mounted rotor is disposed in the hollow interior. The rotor has a first, safe position of rotational adjustment that prevents detonation of an explosive and a second, armed position of rotational adjustment that enables detonation of an explosive. A locking cam is pivotally mounted to the rotor and has a rotor-locking position of repose. The rotor is free to rotate from its safe position to its armed position when the locking cam is rotated out of the rotor-locking position by a piston that extends from a piston actuator. The rotor abuts a flat formed in a sidewall of the housing and can rotate no further when the device is in the armed configuration.
    Type: Application
    Filed: April 26, 2007
    Publication date: October 7, 2010
    Inventor: Norman C. Taylor
  • Patent number: 7762190
    Abstract: A MEMS mechanical initiator having a striker arm extending from a striker body. The tip of the striker arm is adjacent to, but does not touch, the side of a microdetonator. A cocking and release mechanism moves the striker body such that the striker arm pulls away from the side of the microdetonator against the action of a set of springs connected to the striker body. Thereafter the cocking and release mechanism releases the striker body such that the tip of the striker arm swipes the side of the microdetonator causing initiation thereof.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: July 27, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Gerald Laib, Daniel Jean, David Olson, Michael Beggans
  • Patent number: 7461596
    Abstract: A safety and arming unit (10) for a spinning projectile fuze, which has a fuze body (12) and a bearing body (14), which define a spherical cavity (16) between them, in which a spherical rotor (18) is mounted such that it can rotate, in which rotor (18) a detonator (20) is provided. In order to make the safety and arming unit suitable for fuzes in weapon systems with extremely fast munition feed units, the rotor (18) can be surrounded by a rotor locking ring (28) in the safe position, prevents the rotor (18) from rotating through an acceleration ring (30) and a spring element (32) which connects the acceleration ring (30) to the rotor locking ring (28) in an interlocking manner, with the rotor locking ring (28) being formed with a slot (36) in order that it can be spread open by rotation and centrifugal forces into an open space (34).
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: December 9, 2008
    Assignee: JUNGHANS Microtec GmbH
    Inventors: Alexander Zinell, Frank Kienzler, Martin Leonhardt, Ronald Ketterer, Günter Westphal
  • Patent number: 6564716
    Abstract: A fuze for a munition adapted to prevent unintended arming thereof. The fuze incorporates an arming screw having a keyed portion and a centrifugal locking mechanism for preventing rotation of the arming screw unless the fuze mechanism is in a rapidly spinning condition such as that experienced when the fuze and its associated munition are deployed from an airborne rocket or artillery shell, and thus spinning at a rate of at least several thousand rpm. The centrifugal locking mechanism includes a pair of locking members which are biased by biasing elements into engagement with the keyed portion of the arming screw. This prevents the arming screw from being accidentally unscrewed from an inertia weight within the fuze, thus placing the fuze in an unintended armed condition.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 20, 2003
    Assignee: KDI Precision Products, Inc.
    Inventors: Michael F. Steele, William Marc Schmidt, Ezra Stearns Waller