Inorganic Material Or Elemental Component Thereof, E.g., S, Metal, Etc. Patents (Class 106/14.21)
  • Patent number: 11827808
    Abstract: Polyurethane-based coatings which exhibit superior erosion and heat resistance combined with antifouling and chemical resistance that are useful for protection of metal components are provided. The coatings are characterized by enhanced particle erosion resistance and enhanced heat resistance and are derived from specific multicomponent slurry compositions.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 28, 2023
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Mark W Perpall, Irina Belov
  • Patent number: 11591243
    Abstract: The present invention refers to an industrial process and system that is efficient and advantageous for inactivation of liquid wastes contaminated by mutagenic, genotoxic and/or teratogenic substances arising from high potency APIs production using inactivation chemical agents and excluding ozone, heat or UV light source.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 28, 2023
    Assignee: CRISTALIA PRODUTOS QUIMICOS FARMACEUTICOS LTDA.
    Inventors: Ogari Pacheco, Vincenzo De Sio, Marcelo Secatto, Wellington Camarotto, Marcelo Da Silva
  • Patent number: 11499237
    Abstract: The present invention relates to a method for the anti-corrosion treatment of components produced from aluminum, in particular casting parts such as vehicle rims, comprising a pretreatment stage and subsequent coating, wherein the pretreatment stage in turn includes a pickle on the basis of sulfuric acid aqueous solutions containing water-soluble compounds of the element Ti and at least one ?-hydroxycarboxylic acid which is carried out upstream of an acidic conversion treatment on the basis of an acidic aqueous solution containing water-soluble compounds of the elements Zr and/or Ti.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: November 15, 2022
    Inventors: Volker Geick, Kathrin Schaeuble
  • Patent number: 11427904
    Abstract: A method of coating includes applying a metallic coating slurry without a filler to a component; draining the metallic coating slurry; drying the metallic coating slurry to drive off the organic binder; and heat treating the component.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 30, 2022
    Assignee: Raytheon Technologies Corporation
    Inventors: Michael N Task, Brian T Hazel, Kevin L Collins, Michael J Minor
  • Patent number: 11408077
    Abstract: A composition for application to a substrate comprising a carrier, a permanganate ion source, and a corrosion inhibitor comprising a rare earth ion, an alkali metal ion, an alkaline earth metal ion, and/or a transition metal ion is disclosed. A substrate or article including the composition for application to a substrate, and a method of treating a substrate comprising applying the composition to a substrate to form a permanganate treated surface of the substrate, and applying a lithium containing composition on the permanganate treated surface are also disclosed.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: August 9, 2022
    Assignee: PRC-DESOTO INTERNATIONAL, INC.
    Inventors: Eric L. Morris, Jane B. Moon
  • Patent number: 11261135
    Abstract: Hexavalent chromium-free slurries are provided that are capable of achieving a full cure at temperatures as low as 330-450 degrees F., thus making the coatings especially suitable for application on temperature sensitive base materials. The slurries are suitable in the production of protective coating systems formed by novel silicate-based basecoats that are sealed with novel phosphate-based topcoats. The coating systems exhibit acceptable corrosion and heat resistance and are capable of replacing traditional chromate-containing coating systems.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: March 1, 2022
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Irina Belov, Thomas F. Lewis, III
  • Patent number: 11155928
    Abstract: This invention is directed to a process of coating metal in a trivalent chromium conversion-electrolyte coating wherein the metal anode or cathode is subjected to a current density ranging up to about 3.0 amperes per square foot for a period ranging up to 60 minutes.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 26, 2021
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig Matzdorf, Alan Grieve, Alexander Westbrook, Jeremy Mattison
  • Patent number: 10662338
    Abstract: Composition and process for preparing corrosion-resistant passive coatings on bulk-aluminum alloys and aluminum powder-pigments; said coatings derived from an acidic aqueous composition consisting essentially of potassium hexafluorozirconate, basic chromium sulfate and potassium tetrafluoroborate.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 26, 2020
    Assignee: The United States of America as represented by the secretary of the Navy
    Inventors: Craig Matzdorf, Joshua Walles, Kaitlyn Thompson
  • Patent number: 10634962
    Abstract: The present invention discloses a manufacturing method of a graphene electrode. In the manufacturing method of the present invention, a carbon source which is patterned is formed on the metal substrate with photoresist, or as metal layer which is patterned is formed on the carbon source. The metal substrate or metal layer after heating is used to catalyze the carbon source in direct contact therewith into graphene, and thus to form the graphene which is patterned to be used as a graphene electrode which is patterned in a display device. Apparently, the manufacturing method of the graphene electrode according to the present invention can simplify the manufacturing process and can reduce the difficulty of patterning the graphene electrode and the processing cost. The present invention further provides a liquid crystal display panel, comprising the graphene electrode manufactured by the foregoing method.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 28, 2020
    Assignee: TCL China Star Optoelectronics Technology Co., Ltd.
    Inventor: Haijun Wang
  • Patent number: 10428593
    Abstract: A threaded end (1; 2) of a tubular component for drilling or working hydrocarbon wells, said end comprising a threaded zone (3; 4) produced on its external or internal peripheral surface depending on whether the threaded end is male or female in type, at least a portion of the end (1; 2) being coated with a dry film comprising an organic matrix in which ion exchange pigments are dispersed in proportions in the range 3% to 30% by weight; and a connection resulting from connecting two corresponding ends by makeup.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: October 1, 2019
    Assignees: VALLOUREC OIL AND GAS FRANCE, NIPPON STEEL CORPORATION
    Inventors: Eric Gard, Eliette Pinel, Mikael Petit
  • Patent number: 10278395
    Abstract: This invention is directed to the preparation and applications of internally and/or externally functionalized environmentally benign nanoparticles (EbNPs), which are produced by a three step procedure: (1) synthesis of native EbNPs, (2) functionalization with active agents, and (3) additional surface property customization via one or more modifier(s).
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: May 7, 2019
    Assignee: North Carolina State University
    Inventors: Orlin D. Velev, Alexander P. Richter
  • Patent number: 9909202
    Abstract: Methods for deposition of an aluminide coating on an alloy component positioned within a coating compartment of a retort chamber are provided. According to the method, the coating compartment is purged with an inert gas via a first gas line; a positive pressure is created within the coating compartment utilizing the inert gas; the coating compartment is heated to a deposition temperature; and at least one reactant gas is introduced into the coating compartment while at the positive pressure and the deposition temperature to form an aluminide coating on a surface of the alloy component. Retort coating apparatus are also provided.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: March 6, 2018
    Assignee: General Electric Company
    Inventors: Liming Zhang, Jere Allen Johnson, Jr.
  • Patent number: 9845526
    Abstract: The present invention relates to a slip for producing an aluminum diffusion layer which comprises an Al-containing powder and an Si-containing powder and a binder, the slurry further comprising an Al-containing powder the powder particles of which are coated with Si. The invention further relates to a process for producing an aluminum diffusion layer, comprising the following steps: providing a slurry according to any one of the preceding claims, applying the slurry to a component surface on which the aluminum diffusion layer is to be created, drying and/or curing by way of a heat treatment at a first temperature, and diffusion annealing at a second temperature.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 19, 2017
    Assignee: MTU AERO ENGINES AG
    Inventors: Martin Stapel, Natividad Lopez Lavernia, Horst Pillhoefer, Max Morant, Max Niegl
  • Patent number: 9394448
    Abstract: A novel chromate-free multi-layer coating system composed of a lithium-doped potassium silicate binder based basecoat composition that is sealed with an aluminum phosphate-based top coat composition is described. The multi-layer coating system exhibits superior corrosion and heat oxidation resistance which can replace traditional chromate-containing coating systems.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 19, 2016
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 9322101
    Abstract: A composition based on a certain chromium-free silicate-based binder is described. The one-part slurry composition is an aqueous solution of lithium-doped potassium silicate in combination with an aluminum or aluminum alloy powder. The one-part slurry composition produces a corresponding coating exhibiting improved performance at a reduced coating thickness.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 26, 2016
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 9284460
    Abstract: Disclosed is a zirconium-based metal pretreatment coating composition that includes a metal chelator that chelates copper in the metal pretreatment coating composition and thereby improves adhesion of paints to a metal substrate coated with the pretreatment coating composition. The pretreatment coating composition has a longer pot life than one without the metal chelator and therefore can accommodate a wide latitude of application times. The chelating agent is present in a sufficient amount to ensure that in the deposited pretreatment coating on the metal substrate the average total atomic % of copper to atomic % of zirconium is equal to or less than 1.1. The pretreatment coating composition is useful for treating a variety of metal substrates.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 15, 2016
    Assignee: Henkel AG & Co. KGaA
    Inventors: Donald R. Vonk, Edis Kapic, Michael L. Sienkowski
  • Patent number: 9039821
    Abstract: The present invention relates to methods and compositions for coating aluminum substrates. In an embodiment, the invention includes a method of applying a coating on an aluminum substrate including contacting the aluminum substrate with a first solution. The first solution can include a zinc metal salt, a sugar acid or alkali metal salt thereof, and an alkali metal hydroxide. The method can also include contacting the aluminum substrate with a second solution. The second solution can include a molybdate salt, an alkanolamine, and a fluorine acid. Other embodiments are also included herein.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: May 26, 2015
    Assignee: BIRCHWOOD LABORATORIES LLC
    Inventors: William V. Block, David J. Halverson, John T. Nguyen
  • Patent number: 9017464
    Abstract: A composition based on a certain chromium-free silicate-based binder is described. The one-part slurry composition is an aqueous solution of lithium-doped potassium silicate in combination with an aluminum or aluminum alloy powder. The one-part slurry composition produces a corresponding coating exhibiting improved performance at a reduced coating thickness.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 9011586
    Abstract: The invention relates to a binding agent comprising an aqueous, film-forming, polymeric siloxane. The invention also relates to a coating agent that is produced using said binding agent and to a workpiece that is coated with said coating agent.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: April 21, 2015
    Assignee: Ewald Dörken AG
    Inventors: Thomas Kruse, Bettina Werner, Gerhard Reusmann
  • Publication number: 20150090154
    Abstract: A composition based on a certain chromium-free silicate-based binder is described. The one-part slurry composition is an aqueous solution of lithium-doped potassium silicate in combination with an aluminum or aluminum alloy powder. The one-part slurry composition produces a corresponding coating exhibiting improved performance at a reduced coating thickness.
    Type: Application
    Filed: November 9, 2012
    Publication date: April 2, 2015
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 8951363
    Abstract: The invention refers to a process for producing an anticorrosive coating in which a surface to be treated is brought into contact with an aqueous treatment solution containing chromium(III) ions and at least one phosphate compound and an organosol. The corrosive protection of metal surfaces, in particular those containing zinc and zinciferous surfaces with conversion layers is improved. The decorative and functional properties of the surfaces are retained or improved. In addition, the well-known problems associated with the use of compounds containing chromium(VI) or with multi-stage processes are avoided in which a passivation layer containing chromium ions and a sealing are applied one after the other.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: February 10, 2015
    Assignee: Atotech Deutschland GmbH
    Inventors: Udo Hofmann, Hermann Donsbach, Joerg Unger, Volker Krenzel
  • Patent number: 8946323
    Abstract: The present invention relates to an acidic aqueous particulate composition containing, in addition to iron(III) ions, fluoride ions and at least one water-insoluble, dispersed organic binder, a water-insoluble, dispersed oxide pigment with elevated resistance to agglomeration for the autophoretic deposition of organic-inorganic hybrid layers onto metal surfaces, the composition additionally containing at least one anionic wetting agent which comprises functional groups selected from sulfonates, phosphonates and/or carboxylates. The invention furthermore comprises the use of such a composition for the autodeposition of a film-forming organic-inorganic hybrid coating onto metal surfaces which are at least in part selected from surfaces, the main constituents of which are iron, zinc and/or aluminum.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 3, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: Ulrike Schmidt-Freytag, Ute Herrmann
  • Publication number: 20140106176
    Abstract: The present invention relates to a composition comprising a specific binder containing at least one cocondensate based on at least one ?-glycidyloxyalkylalkoxysilane and a bis(alkoxyalkylsilyl)amine, water, alcohol in an amount of less than 3% by weight, based on the composition, at least one addition selected from the group consisting of particulate metals, metal alloys and metal compounds and optionally at least one additive, where the pH of the composition is from 1 to 14 and the dry residue of the binder is from 1 to 50% by weight, based on the binder used, a process for the production thereof and also the use thereof for coatings, in particular for the protection of metals against corrosion.
    Type: Application
    Filed: February 27, 2012
    Publication date: April 17, 2014
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Philipp Albert, Eckhard Just
  • Patent number: 8663376
    Abstract: A surface treatment solution for autodeposition coating treatment of a metallic material, which is an aqueous solution comprising at least one tannin, at least one crosslinking agent having a crosslinking group capable of thermosetting reaction with a phenolic hydroxyl group and/or a phenolic nucleus, ferric ions, soluble type elemental fluorine, and an oxidizing agent, wherein the solids mass concentration ratio of the tannin to the crosslinking agent is in the range of from 1:1 to 1:10, the molar concentration of the soluble type elemental fluorine is at least 3-fold the molar concentration of the ferric ions, and the pH of the solution is from 2 to 6.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: March 4, 2014
    Assignee: Henkle AG & Co. KGaA
    Inventors: Takaomi Nakayama, Hideki Takakuwa, Takahiro Fujino
  • Patent number: 8641925
    Abstract: The subject of the present invention is the use of at least one element chosen from among yttrium, zirconium, lanthanum, cerium, praseodymium and neodymium, in the form of oxides or salts, as reinforcing agent for the anticorrosion properties of an anticorrosion coating composition containing a particulate metal, in aqueous or organic phase, for metal parts.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: February 4, 2014
    Assignee: NOF Metal Coatings Europe
    Inventors: Jean-Marie Poulet, Alain Chesneau, Carmen Delhalle
  • Publication number: 20130295292
    Abstract: The present invention relates to an aqueous composition for pretreating a metallic surface before further coating or for treating said surface. The aqueous composition is obtained by adding a) at least [one] sodium, potassium, and/or ammonium water glass and b) at least one silane to water. The quantity ratio of a) to b), in each case including the resulting reaction products, is preferably in the range of 0.1:1 to 2:1.
    Type: Application
    Filed: October 26, 2011
    Publication date: November 7, 2013
    Applicant: CHEMETALL GMBH
    Inventors: Saule Bukeikhanova, Mathias Komander
  • Publication number: 20130011565
    Abstract: A processing solution for forming an oxidation resistant film on a surface-coated cermet member is provided, wherein the processing solution is capable of easily forming an oxidation resistant film improving the oxidation resistance while maintaining the excellent performance of a titanium sintered body. The composition of the processing solution of the present invention includes a metal salt which creates a complex oxide by reacting with a titanium compound and 20 mass % or more of a solvent. It is preferable that the metal salt is a transition metal of divalent iron ion. An oxidation resistant film 12 containing a complex oxide can be formed by heating the processing solution of the present invention after applying it to a cermet base material 11.
    Type: Application
    Filed: February 1, 2011
    Publication date: January 10, 2013
    Applicant: SHOWA DENKO K.K.
    Inventor: Kimihisa Hiramoto
  • Patent number: 8349092
    Abstract: A method for treating or pre-treating parts, profiled-pieces, strips, sheet metals or wires having metallic surfaces, in which at least 5% of these surfaces consists of aluminum or of at least one aluminum alloy with an acid aqueous solution which contains fluoride, zinc and phosphate and which has the following dissolved contents in the phosphatizing solution: sodium virtually none, from 0.04 to less than 2 g/L; potassium virtually none or in a concentration ranging from 0.025 to 2.5 g/L; sodium and potassium in a concentration ranging from 0.025 to 2.5 g/L as sodium, whereby the potassium content is converted to sodium on a molar basis; zinc 0.2 to 4 g/L zinc, 5 to 65 g/L calculated as PO4; 0.03 to 0.5 g/L phosphate free fluoride wherein the total fluoride is present in a concentration ranging from 0.1 to 5 g/L. A zinc-containing phosphate layer is thereby deposited onto the metallic surfaces with a layer weight ranging from 0.5 to 10 g/m2.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Chemetall GmbH
    Inventors: Jürgen Specht, Peter Schubach, Rüdiger Rein, Peter Claude
  • Patent number: 8323390
    Abstract: An improved sprayable aqueous slurry for inhibiting corrosion in sewer pipe lines comprising an aqueous mixture of about 100% by volume of a metal hydroxide and/or a metal dioxide selected from a class consisting of magnesium hydroxide and titanium dioxide and less than about 1% by volume of sodium hydroxide, the metal hydroxide and the metal dioxide having mixing rates of about 50 to 60% by volume with about 50 to 40% by volume of water and the sodium hydroxide having a mixing rate of about 50% by volume with about 50% of water and the slurry having a pH of 13.0 or more and a useful life of about 15 to about 24 months.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: December 4, 2012
    Inventor: Choonghee Rhee
  • Patent number: 8268096
    Abstract: A method for producing colored layers on zinc, aluminum, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 18, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
  • Publication number: 20120060721
    Abstract: Slurry coating composition for selectively enriching surface regions of a metal-based substrate, for example, the under-platform regions of a turbine blade, with chromium. The slurry coating composition contains metallic chromium, optionally metallic aluminum in a lesser amount by weight than chromium, and optionally other constituents. The composition further includes colloidal silica, and may also include one or more additional constituents, though in any event the composition is substantially free of hexavalent chromium and sources thereof. The coating composition can be used in a process that entails applying the coating composition to a surface region to form a slurry coating, and then heating the coating to remove any volatile components of the coating composition and thereafter cause diffusion of chromium from the coating into the surface region to form a chromium-rich diffusion coating.
    Type: Application
    Filed: August 3, 2007
    Publication date: March 15, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lawrence Bernard Kool, Brian Thomas Hazel, Michael Howard Rucker
  • Publication number: 20120052294
    Abstract: The subject of the present invention is the use of at least one element chosen from among yttrium, zirconium, lanthanum, cerium, praseodymium and neodymium, in the form of oxides or salts, as reinforcing agent for the anticorrosion properties of an anticorrosion coating composition containing a particulate metal, in aqueous or organic phase, for metal parts.
    Type: Application
    Filed: November 10, 2011
    Publication date: March 1, 2012
    Applicant: DACRAL
    Inventors: Jean-Marie Poulet, Alain Chesneau, Carmen Delhalle
  • Publication number: 20120024428
    Abstract: Provided is a chromium-free chemical conversion treatment technique that makes it possible to form a conversion layer excellent in corrosion resistance and appearance without using fluorine and hydrogen peroxide. The chemical conversion treatment liquid is for forming a conversion layer on zinc or zinc alloy and free of chromium, hydrogen peroxide and fluorine, includes 0.5 g/L to 38 g/L of magnesium, 0.5 g/L to 3.5 g/L of silicon, and 0.36 g/L or more of nitrate ion, contains the silicon as a water-soluble silicate, optionally further includes cobalt at a concentration of 5 g/L or less, and has an aluminum content of 0.08 g/L or less.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicants: MORIMURA BROS., INC., MURATA CO., LTD.
    Inventors: Yusuke OHTANI, Megumi Sugioka, Takashi Hasegawa
  • Patent number: 8080176
    Abstract: The subject of the present invention is the use of at least one element chosen from among yttrium, zirconium, lanthanum, cerium, praseodymium and neodymium, in the form of oxides or salts, as reinforcing agent for the anticorrosion properties of an anticorrosion coating composition containing a particulate metal, in aqueous or organic phase, for metal parts.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: December 20, 2011
    Assignee: NOF Metal Coatings Europe
    Inventors: Jean-Marie Poulet, Alain Chesneau, Carmen Delhalle
  • Patent number: 8075709
    Abstract: A method for the surface treatment of aluminum or an aluminum alloy which comprises soaking aluminum or an aluminum alloy in a treating fluid containing ammonium silicofluoride and another aluminum-free fluorine compound to form a film thereon, wherein the treating fluid comprises an aqueous solution further containing at least one substance selected from the group consisting of aluminum fluoride, aluminum hydroxide, aluminum silicate, magnesium aluminate metasilicate and powdered aluminum.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: December 13, 2011
    Assignee: Suzuki Motor Corporation
    Inventor: Makoto Mihoya
  • Patent number: 8057642
    Abstract: This invention relates to a process for reducing the corrosion rate of iron-containing vessels within an ethylene glycol distillation system. The inventive process includes the addition of an additive component of sodium nitrite and sodium hypophosphite into such iron-containing vessels, to thereby react with iron of the inside walls and form a protective coating thereon. This process reduces the corrosion rate in iron-containing vessels of the apparatus, and reduces the catalytic effects of iron corrosion products within the system. Thus, not only is the on-stream time of the vessels extended, but also product quality is improved by reducing the aldehyde content of the final ethylene glycol product.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: November 15, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Barry Billig, James Mann
  • Patent number: 8025725
    Abstract: According to the present invention, there is provided a temperature-sensitive aluminum phosphate solution, characterized in that, composition of the aluminum phosphate is within such ranges that 3Al2O3/P2O5 (molar ratio) is from 1.2 to 1.5, M2O/P2O5 (molar ratio) (M is an alkali metal) is from 0.02 to 0.15 and concentration of Al2O3 is from 2 to 8% by mass and the sensing temperature is within a temperature range of from 20 to 100° C. The solution is particularly useful as an antioxidant for carbon materials.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: September 27, 2011
    Assignee: Taki Chemical Co., Ltd.
    Inventors: Shohei Matsuda, Hiroaki Hani, Koji Yamada, Hiroyuki Moriya, Shinichiro Orai
  • Patent number: 8007576
    Abstract: A chrome-free corrosion inhibitor composition includes: titanium chloride; a stabilizer including a mixture of hydrogen peroxide and at least a compound selected from nitric acid, persulfate, nitrate, and chlorate; and a film-forming enhancer selected from monosaccharide, oligosaccharide, polysaccharide, derivatives of saccharide, and combinations thereof.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 30, 2011
    Assignee: Ya Thai Chemical Co., Ltd.
    Inventors: Jyh-Rong Liang, Po-Ya Hsu, Ming-Chuan Wang, Chia-Chih Ou, Wen-Chieh Lin, I-Lin Cheng
  • Patent number: 7993438
    Abstract: An aqueous phosphoric bonding solution consists essentially of phosphoric acid, a source of magnesium ions, and a leachable corrosion inhibitor. The bonding solution is stable with respect to inorganic metal particles, such as aluminum, which are admixed to the bonding solution for the preparation of a coating slurry. Metal parts coated with the coating compositions have very satisfactory properties such as heat and corrosion resistance.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 9, 2011
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Mark F. Mosser, Kevin Eddinger, Eileen Fox, Thomas F. Lewis, III
  • Patent number: 7989075
    Abstract: Provided is a chromium-free, low-temperature curable, metal-surface treatment composition comprising 5 to 30 parts by weight of a silane compound having an epoxy group and a silane compound having an amino group or a hydrolytic condensate thereof; 0.1 to 5 parts by weight of a vanadium compound; 0.1 to 5 parts by weight of a magnesium compound; 1 to 10 parts by weight of organic/inorganic acids; 0.05 to 2 parts by weight of a crosslinking accelerating and coupling agent; 0.01 to 1 part by weight of an antifoaming agent; 1 to 2 parts by weight of a wetting agent; and the balance of water and ethanol, based on 100 parts by weight of the total solution. In addition, a steel sheet coated with the above-described metal-surface treatment composition is low-temperature curable and provides anticorrosiveness while containing no chromium components.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: August 2, 2011
    Assignees: POSCO, Daehan Parkerizing Co., Ltd.
    Inventors: Yeong-Sool Jin, Sung-Mun Keom, Jin-Tae Kim
  • Patent number: 7988775
    Abstract: The present invention provides an aluminum white rust inhibiting composition containing alkali metal metasilicate and alkali metal hydroxide as essential components. The composition described by the present invention can provide an anti-corrosion function to vehicle aluminum parts without a separate surface process, thus reducing the manufacturing cost by reducing the number of processes and improving the durability of the vehicle aluminum parts.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: August 2, 2011
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Houghton Corporation
    Inventors: Ji Yong Lee, Dong Ho Kwak, Byung Jun Jung, Sung Hyun Park, Chul Hee Hong, Kwang Soon Kim
  • Patent number: 7968007
    Abstract: A trace amount of a tungstate added together with an ortho-phosphate and/or phosphonite is disclosed for inhibiting corrosion by a nitrogen fertilizer solution. In particular, an ammonium nitrate fertilizer solution is in contact with ferrous metal storage tanks, piping, and equipment surfaces. Tungstate added with an iron stabilizer including a dispersant polymer is also effective for inhibiting corrosion.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 28, 2011
    Assignee: Nalco Company
    Inventors: Craig W. Myers, Steven R. Hatch, Donald A. Johnson, Phillip E. Bureman
  • Patent number: 7964030
    Abstract: A vanadate solution for conversion treating of surface of a magnesium alloy workpiece contains 8.20×104 to 8.20×10?2 mol/liter of metavanadate ion, 1.18×104 to 1.18×10?2 mol/liter of a polyhydroxylated aromatic compound, and balance of water. The pH value of the vanadate solution exceeds 1 and is less than 4. A method for preparing the vanadate solution is also provided.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: June 21, 2011
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Isao Nakatsugawa, Wu-Bin Li, Bin-Lung Ou
  • Patent number: 7910024
    Abstract: Compositions and methods are described for inhibiting corrosion of corrodible metals present in contact with water in cooling water and other water storage systems. The compositions include concentrated stannous salts and agents to solubilize such salts.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 22, 2011
    Assignee: A.S. Inc.
    Inventors: William E. Stapp, Gary Westlund
  • Publication number: 20100297354
    Abstract: Methods and compositions that serve to both darken a zinc or other active metal surface and impart corrosion-resistant properties thereto, are disclosed. The compositions include an aqueous solution containing about 0.1 percent to about 5 percent ammonium chloride and about 0.1 percent to about 5 percent ammonium molybdate. The compositions utilize particular ratios of concentrations of ammonium chloride and ammonium molybdate.
    Type: Application
    Filed: November 19, 2009
    Publication date: November 25, 2010
    Applicant: METAL COATINGS INTERNATIONAL INC.
    Inventors: Michelle R. Pearce, Brian G. Straka, Donald J. Guhde, Terry E. Dorsett
  • Patent number: 7828911
    Abstract: A method for producing coloured layers on zinc, aluminium, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80 ° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 9, 2010
    Assignee: Henkel AG & Co. KGaA
    Inventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
  • Patent number: 7819989
    Abstract: A composition for surface treatment of aluminium, aluminum alloys, magnesium or magnesium alloys and the treating solutions being diluted to the desired concentration are defined. The composition contains (1) compound A containing at least one metal element selected from the group consisting of Hf(IV), Ti(IV) and Zr(IV), (2) a fluorine-containing compound of sufficient amount to make fluorine exist in the composition in an amount of at least 5 times the molarity of the total molarity of the metal contained in the above-mentioned compound A, (3) at least one metal ion B selected from the group of alkaline earth metals, (4) at least one metal ion C selected from the group consisting of Al, Zn, Mg, Mn and Cu, and (5) nitric ion and the mol concentration of compound A is 0.1-50 mmol/L as the metal element of Hf(IV), Ti(IV) and Zr(IV). A metal treated with the treating method of the present invention solution has an excellent resistance to various corrosive environments.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: October 26, 2010
    Assignees: Nihon Parkerizing Co., Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Ishikura, Michiro Kurosawa, Takaomi Nakayama, Hiroyuki Sato, Tadashi Matsushita, Eisaku Okada, Fumiya Yoshida, Katsuhiro Shiota
  • Patent number: 7815751
    Abstract: The invention provides a method and composition for coating a ferrous metal surface with a zirconium/vanadium conversion coating which is substantially free of an organic film forming composition and tannins. The method is a low temperature method which contemplates an aqueous conversion coating composition which is low in phosphates and which comprises zirconium, vanadium, fluoride, as well as phosphate ions in a ratio and a concentration effective for providing a conversion-coated ferrous metal surface.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: October 19, 2010
    Assignee: Coral Chemical Company
    Inventors: Joseph D. Pemberton, John P. Jandrists
  • Patent number: 7811391
    Abstract: This invention comprises an acidic aqueous solution for treating metal substrates to improve the adhesion bonding and corrosion protection of the metal surface which comprises effective amounts of water soluble trivalent chromium compounds, fluorozirconates, effective amounts of at least one corrosion inhibitors such as benzotriazole, fluorometallic compounds, zinc compounds, thickeners, surfactants, and at least about 0.001 mole per liter of the acidic solution of a polyhydroxy and/or carboxylic compound as a stabilizing agent for the aqueous solution.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 12, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Craig A. Matzdorf, William C. Nickerson, Jr.
  • Patent number: 7789953
    Abstract: An aqueous phosphoric bonding solution consists essentially of phosphoric acid, a source of magnesium ions, and a leachable corrosion inhibitor. The bonding solution is stable with respect to inorganic metal particles, such as aluminum, which are admixed to the bonding solution for the preparation of a coating slurry. Metal parts coated with the coating compositions have very satisfactory properties such as heat and corrosion resistance.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 7, 2010
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Mark F. Mosser, Kevin Eddinger, Eileen Fox, Thomas F. Lewis, III