Recirculation Means Patents (Class 110/204)
  • Publication number: 20040103830
    Abstract: An apparatus for the cleaning of flue gases containing ash and sulfur dioxide produced by burning sulfur-containing coal in the combustion chamber of a circulating fluidized-bed firing system includes a system for delivering a particulate SO2 sorbent into the combustion chamber. A feed system feeds a mixture of the ash, the SO2 sorbent/SO2 reaction product, and unreacted SO2 sorbent from the combustion chamber to a mixing unit. A liquid supply system supplies water or an aqueous sodium-containing solution to the mixing unit, whereby the unreacted SO2 sorbent is converted into a hydration product. A discharge system returns the ash, the reaction product, and the hydration product from the mixing unit into the combustion chamber, where the hydration product is reactivated into an SO2 sorbent at a combustion temperature of 700° to 950° C.
    Type: Application
    Filed: October 29, 2003
    Publication date: June 3, 2004
    Inventors: Jean X. Morin, Joachim Seeber
  • Publication number: 20040074424
    Abstract: Plant for the hot treatment of waste gases from municipal waste incinerators or the like, comprising a first line of taking up hot waste gases for treating in an exit section of a municipal waste incinerator, a one stage or multiple stage fluid bed contained within one or several reactors and invested by the waste gases to be treated, at least one hopper for charging the solid granular material into the reactor or reactors, a cyclone separator at the outlet of the reactor or of the last of the reactors; the treated waste gases exiting from the reactor or reactors being first introduced into said separator and subsequently conveyed, by said first uptake line, toward a final discharge chimney; said first uptake line providing, downstream of said cyclone separator, a second recirculating line moving the waste gases treated by the reactor or reactors, upstream of the reactor or of the first of the reactors, so that by this second line said treated waste gases mix with the waste gases to be treated originating fro
    Type: Application
    Filed: October 1, 2003
    Publication date: April 22, 2004
    Inventor: Cesare Saccani
  • Patent number: 6715662
    Abstract: A continuous controlled atmosphere brazing system includes a dry-off oven for driving off moisture from materials to be brazed, a pre-heat section for pre-heating the material and a brazing furnace for brazing the materials. Heated gas produced in the pre-heat section and the brazing furnace is conveyed along a flowpath to the chamber of the dry-off oven to provide substantially the sole source of heat for the oven. The flowpath for the heated gas is defined by a series of tubes in communication with each component of the brazing system and intermediate manifolds disposed between components. The discharge mouths of the tubes open into the oven chamber at the suction side of recirculation fans operating within the oven. The overall temperature of the oven can be regulated by controllably mixing ambient air with the heated gas in relation to the oven temperature.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: April 6, 2004
    Assignee: Rogers Engineering & Manufacturing Co., Inc.
    Inventors: William A. Rogers, Donald A. Marangoni, Steven G. Dennis
  • Patent number: 6655304
    Abstract: An improved mass fuel combustion system can be designed in a variety of embodiments and alternatives, including designs which include independent gas feeds, independent gas pulsing, independently controllable vibration systems and an overall control system which can coordinate a host of parameters for optimal combustion. One design includes overlapping grate elements (50) through which combustion gas is introduced and may include apertures to introduce a pulsed mix gas as well as a separate temperature control gas. Efficient poppet designs (44) can be used to provide an economical and efficient combustion system.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: December 2, 2003
    Assignee: Barlow Projects, Inc.
    Inventor: James L. Barlow
  • Patent number: 6609907
    Abstract: A combustion apparatus and process for improved flue gas recirculation wherein the recirculation line penetrates into an exhaust duct, such as the exhaust stack for capturing and directing a portion of said flue gas through the recirculation line which is connected to an air fan inlet which provides induction of the flue gas into the combustion unit. The portion of the recirculation line that extends into the exhaust stack is preferably aerodynamically configured to capture a portion of a flue gas stream without detrimental impedance of the gas flow.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: August 26, 2003
    Assignee: Entropy Technology and Environmental Consultants, LP
    Inventors: Stephen C. Wood, Ravindra K. Agrawal
  • Patent number: 6604474
    Abstract: This invention discloses the synergistic integration of solid fuel combustion, low NOx control technologies (such as Low NOx Burners, reburning and Advanced Reburning) with partial in-duct gasification of coal or other solid fuels. For partial gasification, the solid fuel can be transported and injected by recycled flue gas stream at 600-800° F. in the reburning zone or in the upper section of the main combustion zone of a boiler. This allows the fuel to be preheated and partially pyrolyzed and gasified in the duct and then injected into the boiler as a mixture of coal, gaseous products, and char. Gasification increases coal reactivity and results in lower carbon-in-ash levels. As an option, the gaseous and solid products can be split using a cyclone separator. Splitting the gasified fuel stream will allow the volatile matter to be used for reburning and the fixed carbon to be injected into the high-temperature main combustion zone.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: August 12, 2003
    Assignee: General Electric Company
    Inventors: Vladimir Zamansky, Vitali Victor Lissianski, Peter Martin Maly, Yuri Mikhailovloh Mospan
  • Patent number: 6588349
    Abstract: System for drying a damp biofuel, includes a boiler (1) for combustion of the fuel. Further, the system includes a first heat drying chamber (2), a drying gas flow (3) heated by the thermal energy of the combustion gases from the boiler and/or by steam, the gas flow being passed into the first heat drying chamber, and a fuel supply (4) for passing the fuel into the first heat drying chamber. The system includes a second heat drying chamber (5), an intermediate heating unit (6) for heating the drying gas flow before the second heat drying chamber, an intermediate supply (7) for passing the fuel from the first heat drying chamber into the second heat drying chamber, a boiler supply (8) for passing the fuel from the final heat drying chamber into the boiler and an outlet (9) for passing the flow of drying gas from the final heat drying chamber into the boiler.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: July 8, 2003
    Inventors: Pekka Ahtila, Jukka-Pekka Spets
  • Patent number: 6532881
    Abstract: A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: March 18, 2003
    Assignees: L'Air Liquide - Societe' Anonyme a' Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation de Procedes Georges Claude, American Air Liquide
    Inventors: Ovidiu Marin, Oliver Charon
  • Patent number: 6470812
    Abstract: Method and apparatus to recover energy from waste by means of combustion of such waste in industrial furnaces, particularly of the rotary type, that has an external calciner, feeding such waste into the tertiary air duct of the calciner and burning the waste inside the duct itself, to efficiently make use of the energy produced by such combustion, as a contribution of the total cost of fuel necessary to operate the industrial furnace. The method and apparatus permit the elimination of hazardous wastes that are efficiently disassociated when burned sufficiently to produce effluents that are typically non-toxic, producing greatly reduced or even no atmospheric pollution nor environmental damage.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: October 29, 2002
    Assignee: Cemex, S.A. de C.V.
    Inventors: Jose Luis Arroyave-Garcia, Jorge Berrun-Castanon, Juan Manuel Diosdado, Luis Farias, Armando J. Garcia, Javier Garza-Ondarza, Simon Gonzalez-Guerra, Ignacio M. Mayoral-Rodriguez, Juan Jose Morales-Peregrina, Alejandro Padilla-Cortez
  • Patent number: 6457425
    Abstract: A system for combustion and removal of residual carbon within fly ash particles in which the fly ash particles are fed into a particulate bed within a reactor chamber. The fly ash particles are subjected to heat and motive air such that as the fly ash particles pass through the particulate bed, they are heated to a sufficient temperature to cause the combustion of the residual carbon within the particles. The fly ash particles thereafter are conveyed in a dilute phase for further combustion through the reactor chamber away from the particulate bed and exhausted to an ash capture. The fly ash is then separated from the exhaust air that conveys the ash in its dilute phase with the air being further exhausted and the captured fly ash particles being fed to a feed accumulator for re-injection to the reactor chamber or discharge for further processing.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: October 1, 2002
    Assignee: Consolidated Engineering Company, Inc.
    Inventors: Paul M. Crafton, James L. Lewis, William L. Thome
  • Patent number: 6457424
    Abstract: The present invention concerns a cremation system for corpses located in coffins. The system comprises a combustion chamber in whose wall is disposed at least one burner to which auxiliary energy can be supplied, a line for discharging flue gas from the combustion chamber, further lines for recirculating some of the flue gas branching off from the discharging line, and a mixer for mixing oxygen, up to at lest 90% pure with some of the recirculating flue gas. The mixture is then fed to the burners. The system is designed to be a mobile unit with two interconnected modules.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: October 1, 2002
    Assignee: Messer Griesheim GmbH
    Inventor: Herbert März
  • Patent number: 6453829
    Abstract: An incinerator device includes an incinerator for burning the garbage to generate a smoke, the smoke has a portion sent back to and retreated by the incinerator, and the other portion sent to and retreated by a furnace. The furnace may energize a steam boiler to actuate an electric generator and to generate electricity. A filtering device includes a serpentine conduit for receiving the smoke from the furnace, and disposed in a casing for heating the water in the casing and for supplying the heated water for family use or for use in swimming pool or the like.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: September 24, 2002
    Inventors: Wu Chin Tsai, Sin Hua Chen
  • Patent number: 6422160
    Abstract: Apparatus for the combustion of vanadium-containing fuels that makes use of the extremely high reactivity of the vanadium-containing fuels for combustion in a dust furnace. To avoid disadvantageous slag caking in a combustion area and in particular in the vicinity of the feed nozzles, e.g. for the pulverized fuel-air mixture and for combustion air, in a dust furnace, a top burner is placed in a roof of a combustion area and at least one dust nozzle is so positioned for the supply of the pulverized fuel-air mixture that a return flow of liquid slag particles to the top burner is prevented.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: July 23, 2002
    Assignee: Loesche GmbH
    Inventors: Holger Wulfert, Andre Michael Baetz, Klaus Goerner, Friedrich Schmaus
  • Publication number: 20020092449
    Abstract: An apparatus and method of creating a high combustion rate in a combustor used to burn combustible matter. The combustor comprising a cylindrical combustion chamber extending vertically with at least one side loading bin for loading combustible matter into the combustion chamber while combustion is ongoing. The combustor creates a high combustion rate by inducing an acoustic excitation and an ascending vortex in hot gases that is reflected by a conical surface, converting the ascending vortex to a descending vortex. The shear between the ascending and descending vortices increases mixing. The descending vortex acts to separate the small, fully-combusted particles from larger particles that are thrown by centrifugal force back into the combustion zone.
    Type: Application
    Filed: January 9, 2001
    Publication date: July 18, 2002
    Inventors: Ephraim J. Gutmark, Alyson K. Hubbs, Roberto Jimenez, Gary J. Leonards
  • Patent number: 6418865
    Abstract: A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 16, 2002
    Assignee: American Air Liquide
    Inventors: Ovidiu Marin, Oliver Charon
  • Patent number: 6415743
    Abstract: In a combustion installation for burning a fuel, which installation includes a hearth operating as a circulating fluidized bed, and in which installation at least a fraction of the flow of solid particles resulting from the combustion of the fuel in the hearth is returned to the hearth via a heat exchanger operating as a fluidized bed, the method of decreasing nitrogen oxide emissions consisting in the heat exchanger being fed with a fluidization gas which is considerably poorer in oxygen than air.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: July 9, 2002
    Assignee: ABB Alstom Power Combustion
    Inventors: François Malaubier, Eugène Guilleux
  • Patent number: 6401633
    Abstract: An apparatus for treating organic waste material characterized by high ash content is disclosed.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: June 11, 2002
    Assignee: Minergy Corporation
    Inventor: Thomas J. Baudhuin
  • Patent number: 6389995
    Abstract: A method of combustion and a combustion plant in which absorbent is regenerated is described herein. During the combustion of a fuel in a combustion chamber enclosing a fluidized bed, a fuel and an absorbent are supplied to the fluidized bed. The combustion gases generated during the combustion are collected and purified in a separating member by separation of solid material from the combustion gases. The separated solid material is recirculated to the fluidized bed through a channel, and a gaseous medium is supplied in a controlled manner to the separated solid material present in the channel in order to displace the combustion gases and provide a chemical reaction.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: May 21, 2002
    Assignee: ABB Carbon AB
    Inventors: Christopher Adams, Jim Anderson, Mats Andersson, Roine Brännström, John Weatherby
  • Patent number: 6382110
    Abstract: A method and installation for the cremation of bodies in coffins. The coffin is placed in a crematorium furnace in the wall of which at least one burner is disposed. Conbustion occurs in a chamber of the crematorium furnace without naturally-occurring air and with the burning of the coffin supplying energy along with part of the recirculated flue gas in which oxygen has been added. The flue gas fed back to the crematorium furnace is recirculated uncooled. The temperature at the crematorium furnace is maintained by the burning coffins and the oxygen-enriched recirculated flue gas.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: May 7, 2002
    Assignee: Messr. Griesheim GmbH
    Inventor: Herbert Marz
  • Patent number: 6314896
    Abstract: A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: November 13, 2001
    Assignees: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude, American Air Liquide
    Inventors: Ovidiu Marin, Oliver Charon
  • Patent number: 6293781
    Abstract: A method of and apparatus for decreasing attack of detrimental components of solid particle suspensions on heat transfer surfaces in a heat transfer chamber in a fluidized bed reactor. The method includes introducing solid particles into a first chamber, which is a dilution chamber, on top of a bed of solid particles therein through a dilution chamber inlet disposed in an upper part of the dilution chamber, and discharging solid particles from the dilution chamber through an outlet disposed in a lower part of the dilution chamber, into a heat transfer chamber, and introducing a flushing gas into at least a portion of the dilution chamber for performing at least one of inactivating in and separating from the bed of solid particles in the dilution chamber, impurities detrimental to heat transfer surfaces in the heat transfer chamber.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: September 25, 2001
    Assignee: Foster Wheeler Energia OY
    Inventor: Timo Hyppänen
  • Patent number: 6273008
    Abstract: A closed-loop process for incinerating chlorinated hydrocarbon-containing material without the emission of air borne pollutants. The chlorinated hydrocarbon-containing material is incinerated, preferably in the substantial absence of air, thereby producing a gaseous effluent containing hydrogen chloride and pollutants such as carbon dioxide, acid gases, and halogenated compounds. The gaseous effluent is passed through a hydrogen chloride purification system to remove hydrogen chloride from the gaseous effluent and to produce a concentrated anhydrous hydrogen chloride gaseous stream. The gaseous effluent is passed through at least one sorbent bed, such as a bed of activated carbon, to remove halogenated pollutants from the effluent. The pollutants are desorbed from the one or more sorbent beds and recycled to the incinerator where they are decomposed by combustion.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: August 14, 2001
    Inventor: Tommy G. Taylor
  • Patent number: 6261090
    Abstract: A combustor system provides high temperature, high-dwell combustion of emission products, as from charcoal kilns, with inner and outer combustion chambers. Multiple inlets receive emission products from multiple heat exchangers omnidirectionally extending for continuous heat exchange connection between the combustor and emission sources. Hot products of combustion are delivered to each heat exchanger, each with multiple ducts in mutual heat exchange relationship including at least a hot products of combustion duct for receiving at the proximal end hot products of combustion from an outlet of the outer chamber, and conveying the hot products of combustion to the distal end at a respective emission source, an emissions inlet duct for receiving emission products at the distal end from the emission source, and a return products of combustion duct for receiving at the distal end the hot products of combustion and returning them to the combustor.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: July 17, 2001
    Assignee: Independent Stave Company
    Inventors: John J. Boswell, Dale R. Eichmeyer
  • Publication number: 20010000863
    Abstract: A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler.
    Type: Application
    Filed: December 22, 2000
    Publication date: May 10, 2001
    Applicant: L'AIR LIQIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Ovidiu Marin, Oliver Charon
  • Patent number: 6213030
    Abstract: Apparatus for the treatment of volatile material(s) in contaminated material(s) including a retort assembly which includes a rotatable retort disposed at least partially within a combustion chamber with a heater to indirectly heat the contents of the rotatable retort. A feeder feeds the contaminated material(s) to the retort. The apparatus further includes a pathway for passing contaminated material(s) to the retort and a conduit for passing the combustion gases from an afterburner to the retort assembly to provide additional heat for heating the contaminated material in the retort. The apparatus may also include a high temperature filter which can filter the volatiles before entering the afterburner.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: April 10, 2001
    Assignee: Tox Free Systems
    Inventors: Struan Glen Robertson, Edward Elliott Finsten
  • Patent number: 6202574
    Abstract: A fossil fuel fired combustion apparatus and a method for operating the fossil fuel fired combustion apparatus are provided which offer the flexibility to use carbon dioxide (CO2) both as a desirable end product and as support to the combustion process. The method includes the step of introducing a substantially pure oxygen feed stream into the fossil fuel fired combustion apparatus and the step of combusting a fossil fuel in the presence of the substantially pure oxygen feed stream to produce a flue gas having carbon dioxide and water vapor as its two largest constituent elements by volume. The method also includes the step of passing the flue gas through an oxygen feed stream pre-heater at which heat from the flue gas is transferred to the oxygen feed stream. Furthermore, the method includes the step of separating the flue gas into an end product portion and a recycling portion.
    Type: Grant
    Filed: July 9, 1999
    Date of Patent: March 20, 2001
    Assignee: ABB Alstom Power Inc.
    Inventors: Gregory N. Liljedahl, Mark Palkes
  • Patent number: 6202577
    Abstract: A municipal or like refuse, from which large articles of metals have been removed, is mixed with an alkaline substance like limestone preferably in a triple screw mixer, and then advanced along the pyrolysis path in which the refuse mixture is subjected to heat from combustion gases from an incineration chamber therebelow. A portion of the pyrolyzed product is recycled to the upstream side of that path and the remainder of the pyrolyzed product is scrubbed with an aqueous medium, e.g. water and/or aqueous acetic acid and the washed pyrolyzed product is then incinerated to produce the combustion gas.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: March 20, 2001
    Inventors: Anatoly Boguslavsky, Yuriy Rabiner
  • Patent number: 6200128
    Abstract: A method and apparatus for recovering sensible heat from a hot exhaust gas having an oxygen concentration of less than 21 vol % in a fuel-air fired combustion device. An oxidant stream comprising a gas having an oxygen concentration of greater than 21 vol % is introduced into the combustion process to form an oxidant mixture comprising the hot exhaust gas, the oxidant and any air present, the mixture having an average combined oxygen concentration of less than 21 vol %.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: March 13, 2001
    Assignee: Praxair Technology, Inc.
    Inventor: Hisashi Kobayashi
  • Patent number: 6178899
    Abstract: An industrial waste and household waste is treated by a pyrolysis step for carbonizing waste containing organic substance in a condition sealed from an air so as to separate to a pyrolysis gas and a pyrolysis residue; a gas cracking step for introducing the pyrolysis gas after the pyrolysis step so as to react an oxide component in the pyrolysis gas through an oxidization reaction and thermally decompose high molecular hydrocarbon in the pyrolysis gas with a heat generated by the oxidization reaction so as to obtain a cracked gas containing low molecular hydrocarbon; a residue cooling step for cooling the pyrolysis residue generated in the pyrolysis step for solidification; a mechanical processing step for crushing and sorting the pyrolysis residue solidified in the residue cooling step so as to obtain a pyrolysis char essentially consisting of pyrolysed organic substance and inorganic components; and a smelting and gasifying step for burning the pyrolysis char obtained in the mechanical processing step at a
    Type: Grant
    Filed: April 7, 1999
    Date of Patent: January 30, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaki Kaneko, Masashi Yoshimori
  • Patent number: 6149876
    Abstract: A method and apparatus for reclamation of glycol based liquids used in gas dehydration. A first step involves providing an thermal oxidizer and a reboiler. A second step involves providing a dual stream valve having a first outlet, a second outlet and means for adjusting the relative flow through the first outlet and the second outlet. A third step involves placing the dual stream valve on an exhaust gas outlet of the thermal oxidizer and coupling the first outlet to an exhaust stack and the second outlet to the reboiler. The fourth step involves diverting through the second outlet of the dual stream valve such exhaust gases flowing through the exhaust gas outlet of the thermal oxidizer as may be required to provide heat necessary to operate the reboiler.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: November 21, 2000
    Assignee: Presson Manufacturing Ltd.
    Inventor: Anthony John Galloway
  • Patent number: 6067916
    Abstract: In a process for gasifying and burning waste materials, the waste materials are introduced into an incinerator (1) and end up on a burning grate (6) to which combustion air is conducted through various undergrate forced draft chambers (8a to 8e). In the first area combustion air is introduced at a superstoichiometric level in order to ignite the waste materials. Then, via the undergrate forced draft chambers (8c to 8e), oxygen is mixed into the air which is used for the gasification, thereby establishing a substoichiometric level which results in gasification of the waste materials. The combustible gases which result from this process pass via a waste gas flue (12) into a second furnace (2), in which the gases are burned at a superstoichiometric level through the introduction of combustion air. The resulting waste gases pass to a heat exchanger (3).
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: May 30, 2000
    Assignee: Martin GmbH fur Umwelt- und Energietechnik
    Inventors: Johannes Martin, Michael Busch
  • Patent number: 6067914
    Abstract: A method of operating a combustion unit of a coal-fired power plant operating according to a slag tap furnace firing method, which includes supplying a titanium-containing material in addition to coal to a melting chamber for accelerating coal burn-up, burning the titanium-containing material together with the coal in the melting chamber at a temperature above 1500.degree. C., and generating fly ash and molten ash as a result of combustion in the melting chamber. Additionally, a combustion unit for a coal-fired power plant, including a melting chamber that has a combustion zone for receiving coal. The combustion zone produces fly ash.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: May 30, 2000
    Assignees: Siemens Aktiengesellschaft, STEAG Aktiengesellschaft
    Inventors: Erich Hums, Horst Spielmann, Ralf Gilgen
  • Patent number: 6058858
    Abstract: A circulating fluidized bed (CFB) reactor or combustor having an internal impact type primary particle separator which provides for internal return of all primary collected solids to a bottom portion of the reactor or combustor for subsequent recirculation without external and internal recycle conduits. The CFB reactor enclosure or furnace is provided with plural furnace outlets. This construction permits increased furnace depths and reduced furnace widths, resulting in a compact design.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: May 9, 2000
    Assignee: The Babcock & Wilcox Company
    Inventors: Felix Belin, David E. James, David J. Walker, Kiplin C. Alexander
  • Patent number: 6058855
    Abstract: At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: May 9, 2000
    Assignee: D. B. Riley, Inc.
    Inventors: Terence Ake, Roderick Beittel, Robert A. Lisauskas, Eric Reicker
  • Patent number: 6035791
    Abstract: Apparatus for processing and recycling CCA (copper, chrome, arsenic) treated wood chips that includes a vertical reaction chamber into which a continuous stream of wood chips is poured. Hot gases at about 400.degree. C. are introduced into the bottom of the column to heat the chips below their ignition point. The combustion gases flow upwardly through the chips to progressively cool the gases and allow them to condense in the column. The condensate is deposited upon the surface of the chips and the gases, which are now free of heavy metals, are evacuated from the column.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: March 14, 2000
    Assignee: Beaumartin S.A.
    Inventor: Jean Sebastien Hery
  • Patent number: 6027330
    Abstract: An industrial fuel gas burner fired with a mixture of combustion air having up to about 45% flue gas which flows in a downstream direction along an annular combustion air conduit disposed about an axially movable core of the burner that terminates in an end cone that faces the combustion chamber of the furnace. Within the conduit and upstream of a discharge end thereof is a fuel gas discharge header formed by concentric, radially inner and outer tubular ring-shaped fuel gas headers which are concentrically disposed about an axis of the burner and in fluid communication with a source of pressurized fuel gas. The headers have a multiplicity of fuel gas discharge orifices which form three-dimensionally oriented gas streams directed into the combustion air-flue gas flow in the annular conduit. The orifices have a diameter of at least about 0.1 inch.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: February 22, 2000
    Assignee: Coen Company, Inc.
    Inventor: Vladimir Lifshits
  • Patent number: 6024032
    Abstract: A process for the production of heat energy from solid carbonaceous fuels is disclosed which comprises subjecting the carbonaceous fuel to substantially anaerobic pyrolysis in at least one first zone and thereafter transferring the char resulting from the pyrolysis to a second zone which is segregated from the first zone or zones. The char is subjected to gasification in the second zone by introduction of primary combustion air, optionally with steam and/or recycled exhaust gas. The off gases from the second zone and the pyrolysis gases from the first zone or zones are thereafter subjected to secondary combustion and the first zone or zones is heated by heat derived from the secondary combustion. Ash is removed from the bottom of the second zone.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: February 15, 2000
    Assignee: Compact Power Limited
    Inventor: John Ernest Elsom Sharpe
  • Patent number: 6024029
    Abstract: A system and a process for combusting hydrocarbons to recover energy and the carbon dioxide resulting from the combustion is provided. The process utilizes a two-stage combustion process, each stage utilizing water injection and a recirculation stream to increase the efficiency of combustion to generate larger proportions of carbon dioxide. An energy recovery boiler is used to recover heat energy from the combustion product. Combustion product is then cleaned and the carbon dioxide is separated and condensed into a useable liquid carbon dioxide product.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: February 15, 2000
    Inventor: Steve L. Clark
  • Patent number: 5957064
    Abstract: A multiple hearth furnace having a drying zone, a combustion zone and a cooling zone includes a recirculation loop that recycles exhaust gas from the drying zone to the cooling zone. In some embodiments, a first control loop including a temperature measurement device that measures temperature in the combustion zone controls fan speed of a recirculation fan that drives the recirculation loop. A second control loop monitors recirculation fan temperature and overrides the first control loop if the recirculation fan temperature exceeds a predetermined maximum. A third control loop controls air flow into the furnace.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: September 28, 1999
    Inventors: Louis T. Barry, Mark B. McCormick
  • Patent number: 5954851
    Abstract: A method and apparatus for efficiently preheating glass batch utilizing waste gas from a glass melting furnace is provided. In a method and apparatus for preheating glass batch utilizing hot waste gas discharged from a glass melting furnace before glass batch is inputted thereto, a heat exchanger 30A for heating heat medium gas located in a waste gas flue 12A and a glass batch preheater 20A located on the upstream side of a batch input port 11A are communicated by means of an inline duct 31A and an outline duct 32A to form a heat medium gas circulating circuit. Clean gas having heat radiation intensity in the infrared ray wavelength range such as carbon dioxide or water vapor is enclosed in the circuit as the heat medium and is forced to endlessly circulate and go round in the circuit by a blower 33A located in the outline duct thereby to preheat glass batch and, at the same time, to cool hot waste gas to appropriate temperature.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: September 21, 1999
    Inventor: Seiji Sakae
  • Patent number: 5954001
    Abstract: A fluidized bed reactor includes an axial recirculating fluidized bed and at least first and second lateral dense fluidized beds, respectively disposed along a first and a second wall of the jacket of the reactor. Waste is fed via at least one point on the first wall of the jacket of the reactor, above the first lateral dense fluidized bed. The reactor includes at least one duct for extracting non-fluidizable heavy elements at the base of the first lateral dense fluidized bed.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: September 21, 1999
    Assignee: GEC Alsthom Stein Industrie
    Inventor: Jean-Xavier Morin
  • Patent number: 5906806
    Abstract: A system and a process for combusting hydrocarbons to recover energy and the carbon dioxide resulting from the combustion is provided. The process utilizes a two-stage combustion process, each stage utilizing water injection and a recirculation stream to increase the efficiency of combustion to generate larger proportions of carbon dioxide. An energy recovery boiler is used to recover heat energy from the combustion product. Combustion product is then cleaned and the carbon dioxide is separated and condensed into a useable liquid carbon dioxide product.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: May 25, 1999
    Inventor: Steve L. Clark
  • Patent number: 5862762
    Abstract: Combustible is comminuted and dried, and metal and noncombustible are removed from the coarsely comminuted combustible. Then, the combustible is secondarily comminuted and separated into coarse combustible and fluff which is fine combustible. The coarse combustible of the separated combustible is fed onto a fire grate (2) of a refuse incinerator (1), and burned in flat bed combustion in a primary combustion chamber (4). On the other hand, the fluff is burned in suspended combustion in a secondary combustion chamber (7) with a combustion fluff burner (5) for incinerating combustible. Thus, refuse containing much plastics which is formed into fluff can be efficiently disposed of, whereby the amount of incineration is increased as a whole.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: January 26, 1999
    Assignee: Hitachi Zosen Corporation
    Inventors: Yoshitoshi Sekiguchi, Kunio Sasaki, Hideo Shimotani, Noboru Okigami, Hiroshi Isotani, Kenji Kaketa, Kenji Kashiwabara, Shozo Umemura, Hiroshi Onishi
  • Patent number: 5771677
    Abstract: A high efficiency economical coal fired combined cycle power generation system and process is described. The system utilizes a circulating fluid bed ("CFB") coal devolatilizer which is fluidized with recycled coal volatiles. The devolatilizer is heated indirectly with hot bed material from a conventional CFB boiler burning the devolatilized coal (char). The CFB boiler is fluidized by gas turbine exhaust gas. The ratio of high efficiency/low capital cost Brayton cycle (gas turbine) power output to lower efficiency, higher capital cost Rankine cycle (steam turbine) power output is maximized by concurrently and/or successively preheating the gas turbine compressor discharge with; (1) gas turbine exhaust (recuperator), (2) hot coal volatiles exiting the devolatilizer, (3) coal char CFB boiler hot bed material (with either an external or internal heat exchanger), and (4) CFB boiler flue gas. The process and method described produces a thermally cracked, clean product gas with a high Btu content (.about.
    Type: Grant
    Filed: August 29, 1996
    Date of Patent: June 30, 1998
    Assignee: John W. Rohrer
    Inventor: John W. Rohrer
  • Patent number: 5762008
    Abstract: A method for burning fuels, particularly garbage, in incinerators with a stoker grate, for which the primary air is supplied below the stoker grate into the fuel layer and the secondary air is supplied above the fuel layer, is controlled in such a way that the intensity of the combustion of the fuel on the stoker grate is increased by increasing the oxygen content of the primary air and the intensity of the combustion in the secondary combustion zone is choked by decreasing the oxygen content in the secondary air. Flue gas, preferably from the combustion process, is recirculated in order to reduce the oxygen content of the secondary air.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: June 9, 1998
    Assignee: Martin GmbH fuer Umwelt- und Enetgietechnik
    Inventors: Johannes Josef Edmund Martin, Joachim Horn, Michael Busch
  • Patent number: 5746141
    Abstract: A process of waste incineration, with heat recovery and reduced emissions of acid gases and particulate comprising a reduction of acid gases and particulate by mixing recirculating low temperature flue gases flowing out from the heat recovery section, with high temperature flue gases obtained from incineration. Said mixed flue gases are subjected, prior to heat recovery, to particulate separation. Moreover, the low temperature flue gases may be deacidified. Preferably, the reduction is enhanced by reacting the high temperature flue gases, mixed with a cold flue gas recirculation stream drawn downstream the heat recovery section, with an alkaline reagent, in order to eliminate the acidic gases. A waste incinerator is disclosed, which is combined with an acid gases and particulate removal plant, which is provided between the incinerator itself (2, 6) and the boiler (7).
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: May 5, 1998
    Assignee: Consorzio Obbligatorio Nazionale Per Il Riciclaggio Dei Contenitori in Plastica Per Liquidi
    Inventors: Luigi Lacquaniti, Giuseppe Liuzzo, Marcello Palitto, Nicola Verdone
  • Patent number: 5730070
    Abstract: An apparatus for introducing gas recirculation into a furnace to control steam temperature includes a hot air chamber for receiving hot air from an air preheater. The hot air chamber has at least one outlet communicating with the interior of the furnace. The apparatus includes a recirculation gas chamber for receiving recirculation gas from a recirculation fan and includes at least one outlet communicating with the interior of the furnace. Each of the chambers is disposed about at least a portion of the circumference of the furnace with one of the chambers disposed above at least a portion of the other. Ducts are provided between the hot air chamber and the air preheater and between the recirculation gas chamber and the recirculation fan to provide communication between the elements. A passageway is disposed between the hot air chamber and the recirculation gas chamber.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: March 24, 1998
    Assignee: Combustion Engineering, Inc.
    Inventors: Robert C. Kunkel, Thomas J. Dunn, Jr.
  • Patent number: 5697307
    Abstract: A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.
    Type: Grant
    Filed: December 4, 1995
    Date of Patent: December 16, 1997
    Assignee: The University of Chicago
    Inventors: Paul A. Nelson, William M. Swift
  • Patent number: 5685243
    Abstract: A system and method for distributing, injecting, and dispersing a sorbent mixture of sorbent and compressed filtered flue gas into the combustion furnace portion of a boiler furnace. Prior to injection into the combustion furnace, the sorbent mixture is heated with steam and distributed within the combustion furnace through a plurality of injection tubes having their ends arranged in a grid and oriented substantially toward the combustion furnace flue gas flow.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: November 11, 1997
    Assignee: The Babcock & Wilcox Company
    Inventors: Wadie F. Gohara, Kevin J. Rogers, Dennis K. McDonald
  • Patent number: 5683550
    Abstract: A method and system for treating waste liquors from pulping processes for recovering energy and chemicals from the waste liquors (such as kraft black liquor). A recovery boiler having a furnace for combusting waste liquor includes a plurality of injection nozzles in the furnace walls, for injecting waste liquor into the furnace. At least one conduit is disposed in at least one wall of the furnace below the nozzles for withdrawing a portion of the combustible gas from the furnace. Typically between about 10-50% of the combustible gas produced in the furnace is withdrawn through the conduit or conduits below the nozzles, and the withdrawn gas is cooled and purified. The system may utilize a superheater which is separate and distinct from the recovery boiler, the cleaned and cooled withdrawn gas led to the separate superheater.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: November 4, 1997
    Assignee: Ahlstrom Recovery Inc.
    Inventor: Rolf C. Ryham