Supplying Fluid Patents (Class 110/348)
  • Patent number: 10357779
    Abstract: A sorting station is provided with a hopper, at least one conveyor belt, a deck screener, including at least one mesh screen and at least one spray bar, a chute, having a tapering form, a prep screw, a dewatering screen, wherein the deck screener is configured to have vibration applied thereto to separate a matter from a mixture of matters, and where the at least one spray bar is configured to wash the mixture of matter and further separate a selected matter from the mixture of matters. Methods of sorting a particular matter from a mixture of matters, and processes of filtering soil are also provided.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: July 23, 2019
    Inventor: Thomas Pratt
  • Publication number: 20150020717
    Abstract: A method for optimizing the operation of a gas generator having a housing part, at the upper end of which are elements for supplying fuel to a fuel compartment inside the housing part. The fuel descends by gravity onto a grate, a combustion zone being formed above the grate, with elements for supplying gasification gas thereto. The grate includes two concentrically arranged first and second grate parts, at least one of which grate part can be turned around an axis of rotation passing through a joint centre. The grate parts can be moved in the direction of the axis of rotation towards each other into their mutually interlocking position, and away from each other, into a position partly or completely out of the interlocking position. The grate parts move with respect to each other to regulate the flow of gases through the grate and/or the removal of ash.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 22, 2015
    Applicant: RAUTE OYJ
    Inventors: Marko Perttila, Timo Saares
  • Publication number: 20140360201
    Abstract: In a method for supplying nitrogen to a combustion chamber, gaseous nitrogen (9) is drawn off from an air separation unit (7) at a first pressure, the nitrogen is compressed in at least two stages (C1, C2) of a nitrogen compressor and sent to a combustion chamber (25) at a second pressure, which is the output pressure of the last stage (C3) of the nitrogen compressor, between two stages of the nitrogen compressor the nitrogen is humidified by direct contact in passing through a contactor (17) supplied at its top with water, and the humidified nitrogen is compressed in at least one stage of the nitrogen compressor and sent to the combustion chamber.
    Type: Application
    Filed: November 23, 2012
    Publication date: December 11, 2014
    Inventors: Richard Dubettier-Grenier, Sylvain Gerard, Loic Joly
  • Patent number: 8881662
    Abstract: An inside of an incinerator body into which sludge is fed is divided into a lower portion, a portion above the lower portion, and a top portion in a height direction. The lower portion serves as a pyrolysis zone for supplying fluidizing air having an air ratio of 1.1 or less together with fuel to thermally decompose the sludge while fluidizing the sludge. The portion above the lower portion serves as an over bed combustion zone for supplying only combustion air having an air ratio of 0.1 to 0.3 to form a local high temperature place to decompose N2O. The top portion serves as a perfect combustion zone for perfectly combusting unburned contents. The quantity of N2O generated during sludge incineration can be drastically reduced while maintaining the use quantity of auxiliary fuel at the same level as that of a conventional incineration method.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: November 11, 2014
    Assignee: Metawater Co., Ltd.
    Inventors: Masaki Yamada, Tetsuya Yanase, Masayuki Yamamoto, Tomoyuki Takeshita, Kosuke Kamiya
  • Publication number: 20140305357
    Abstract: A dual phase fuel feeder is disclosed that can be used to provide both solid fuels and liquid fuels to a boiler, such as a fluidized bed boiler. The fuel feeder includes a sloped chute which defines a solid feedpath. Gas distribution nozzles are located at the base of the fuel feeder, and secondary nozzles are located so as to be able to distribute a liquid or particulate fuel into the solid feedpath. This permits the liquid fuel to contact the solid fuel and be carried into the fluidized bed instead of becoming suspended above the bed.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 16, 2014
    Inventors: James F. DeSELLEM, Karl M. HEIL, Jeremiah J. YODER, Albert D. LaRUE, Mikhail MARYAMCHIK, William R. STIRGWOLT
  • Patent number: 8789478
    Abstract: Provided is a dry distillation and gasification typed incinerator capable of saving time and fuels required for combustion aid. In a first phase when a waste material A stored in a dry distillation furnace 1 is ignited till a fire bed is formed, the dry distillation and gasification typed incinerator supplies air to the dry distillation furnace 1 through an air supply passage 13. When the waste material A is in a continuous combustion state (a second phase), the oxygen supply to the dry distillation furnace 1 is switched from the air supply by the air supply passage 13 to the concentrated oxygen supply by an oxygen supply passage 15.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 29, 2014
    Assignee: Kinsei Sangyo Co., Ltd.
    Inventor: Masamoto Kaneko
  • Publication number: 20140137779
    Abstract: Substantially pure high pressure steam is produced within a high pressure heat exchanger. Heat for the high pressure heat exchanger is provided from an outlet of an oxy-fuel combustion gas generator which discharges a steam/CO2 mixture at high pressure and temperature. The gas generator combusts oxygen and hydrocarbon fuel and mixes with water which can include contaminates therein in the form of dissolved solids or hydrocarbons. A separator is typically provided downstream of the gas generator and upstream of the heat exchanger and the steam/CO2 mixture is discharged from the gas generator at saturation temperature. A water fraction of the steam/CO2 mixture is discharged from the separator along with dissolved solids in concentrated brine form. The water heated into steam by the heat exchanger can be at least partially water separated within a condenser downstream of the heat exchanger.
    Type: Application
    Filed: October 8, 2013
    Publication date: May 22, 2014
    Applicant: Clean Energy Systems, Inc.
    Inventors: Keith L. Pronske, Roger A. Anderson, Bradley J. Anderson, Daniel A. Greisen
  • Patent number: 8707877
    Abstract: Solid particulate fuels are combusted with a primary oxidant stream of industrially pure oxygen and a secondary oxidant stream of industrially pure oxygen optionally mixed with a portion of recycled flue gas. The fuel is conveyed with a carrier gas of air or recycled flue gas. An oxygen concentration out of the total amount of the fuel stream and the primary and secondary oxidant streams is 40-63% by mass or 47-70% by volume.
    Type: Grant
    Filed: June 5, 2011
    Date of Patent: April 29, 2014
    Assignees: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Chendhil Periasamy, Yuan Xue, Taekyu Kang, Remi Pierre Tsiava
  • Patent number: 8707876
    Abstract: A design and method of operation for the floor of solid fuel boilers is described. The combustion region includes a stepped-floor that improves combustion in the lower furnace. In some embodiments, the fuel is moved between the steps of the floor by a gas, rather than by mechanical means, and the fuel is moved from an upper to a lower step as it is burned. In some embodiments, the steps are fixed steps having a layer of a refractory material.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: April 29, 2014
    Inventors: Daniel Richard Higgins, Eugene Sullivan
  • Patent number: 8703064
    Abstract: An apparatus and method is presented for reducing mono nitrogen oxide emissions in a hydrocarbon processing furnace. A preferred embodiment hydrocarbon cracking furnace includes a firebox with a set of wall burners and a set of floor burners, the floor burners comprising secondary burner tips burning a fuel-rich mixture and positioned below primary burner tips burning a fuel-lean mixture. A portion of flue gases are recirculated from the primary burner combustion area to the secondary burner combustion area and back to the primary burner combustion area. The floor burners further comprise a set of steam injection ports that inject steam into a conical flow to contact flames at the primary burner tips, reducing flame temperature and thereby reducing thermal NOx. The steam injection ports are positioned in the firebox above the primary burner tips.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 22, 2014
    Assignee: WPT LLC
    Inventor: David C. Payne
  • Patent number: 8702418
    Abstract: In one embodiment, a method for generating heat energy includes injecting a stream having a concentration of at least 50% oxygen (O2 stream) into a primary gas stream through a mixer, the mixer discharging the O2 stream as two or more spaced jets traversing the primary stream, thereby enriching the primary gas stream. The method further includes mixing fuel with the enriched primary gas stream, thereby forming a fuel stream; and combusting the fuel stream, thereby forming a flue gas stream.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 22, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: M. Usman Ghani, Florian Gautier, Rajani K. Varagani, Susie Levesque, Bernard Labegorre, Frederic Camy-Peyret, Sylvain Grillon, Pavol Pranda
  • Patent number: 8689708
    Abstract: Method and device for combusting a solid phase fuel, where the fuel is caused, by the help of a non-pneumatic feeding element (11), to be fed to an inlet opening (11a) in a burner device (10), where the burner device (10) includes a first inlet (13a) for the oxidant through which an oxidant is caused to flow via a first supply conduit (13). The first inlet (13a) for oxidant is arranged in the form of a first opening arranged by the inlet opening, through which the oxidant is caused to flow out, through a burner pipe (16) and out through a burner orifice (17) to a combustion space (18), so that the oxidant by ejector action causes the fuel to be conveyed through the burner pipe and out through the burner orifice (17), and water vapour is added to the oxidant before the oxidant reacts with the fuel.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 8, 2014
    Assignee: AGA AB
    Inventors: Tomas Ekman, Anders Lugnet
  • Publication number: 20140080073
    Abstract: A combustion system for operational connection to an energy conversion system and a method of providing thermal energy to the energy conversion system. The system comprises a combustor to be oxy-fired at above atmospheric pressure, using solid, liquid or gaseous fuels, with a supply of oxygen and supercritical carbon dioxide. The combustion gases from the combustor are delivered to a heat exchanger which interfaces with the energy conversion system. Temperatures in the combustor, and the delivery temperature to the heat exchanger, are controlled by selective recirculation of at least part of the combustion gases to the combustor, and by modulating the supply of oxygen and fuel to the combustor. Any combustion gases which are not recirculated are processed to separate carbon dioxide for use or sequestration. The system and method substantially eliminate emissions of carbon dioxide, while providing a highly efficient supply of thermal energy to the energy conversion system.
    Type: Application
    Filed: May 24, 2011
    Publication date: March 20, 2014
    Inventors: Kourosh Etemadi Zanganeh, William John Pearson, Milenka Mitrovic, Ahmed Shafeen
  • Publication number: 20140069307
    Abstract: Provided is a method for operating a pulverized coal-fired boiler facility, wherein upgraded low-grade coal can be safely used as fuel and an existing facility needs little remodeling. The present invention relates to a method for operating a pulverized coal-fired boiler facility (100) that uses upgraded brown coal as fuel. Boiler exhaust gas taken out of an exhaust gas duct (31) is added to air from a primary air fan (10) to prepare mixed gas with an oxygen concentration of less than 12% in a volume ratio, the mixed gas is caused to separately flow to a carrier gas duct (33) that goes through a GAH (8) and a bypass carrier gas duct (34) that bypasses the GAH (8), and thereafter the mixed gas is supplied to a mill (21).
    Type: Application
    Filed: July 12, 2012
    Publication date: March 13, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Toshiya Tada
  • Patent number: 8656846
    Abstract: A method and an apparatus for continuous real time heating value/coal flow balancing of coal from a coal feeder to a burner. The apparatus includes a Dual-energy Gamma Attenuation (DGA)/Multi-energy Gamma Attenuation (MGA) device for measuring coal quality at a specific location between the coal silo/bunker and the coal feeder in a coal fired plant in order to control the individual burner stoichiometries according to the measured coal quality. By strategically placing the DGA/MGA device, continuous accurate real-time coal quality information is accomplished for making individual adjustments in order to improve stoichiometry to optimize performance of the system.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: February 25, 2014
    Assignee: Energy Technologies, Inc.
    Inventors: Peter M. Osucha, David K. Swindell, Jack R. Lee
  • Patent number: 8640634
    Abstract: An arrangement is disclosed for supplying an air jet form to the furnace of a recovery boiler, where the furnace has a front wall, a rear wall and side walls. Black liquor spraying devices are disposed on the furnace walls on one or several levels of the furnace. A plurality of air ports are located at several horizontal elevations for introducing air into the furnace from an air supply. In the arrangement for the secondary air flows, at least two horizontal air levels at different elevations are arranged above the lower primary levels and below the black liquor sprayer. Secondary air is supplied from two opposite walls. The secondary air ports on each of said first and second horizontal elevations comprise air ports for each horizontal elevation that project a pattern of large air jets into the furnace from said opposite walls and said secondary air ports further comprise a plurality of secondary air ports on at least one of the elevations that project smaller air jets into the furnace.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: February 4, 2014
    Assignee: Andritz Oy
    Inventors: Kari Saviharju, Jorma Simonen, Raimo Paju, Jukka Savolainen, Esa Vihavainen
  • Patent number: 8627775
    Abstract: A burner apparatus (10) for a process heating system (400) includes a combustion air damper (48) to control the volume of air in the combustion chamber (98). Top (15), bottom (17), and sidewalls (14) of the chamber are of steel without refractory material lining while a fuel door (178) is steel with refractory material lining (186). A flue gas damper (34) selectively allows or disallows flue gas out of the chamber. A cooling jacket (18) of a steel sheeting surrounds and is narrowly spaced from the combustion chamber top, bottom, and sidewalls. The cooling jacket conducts air, transfers heat from the combustion chamber top, bottom, and sidewalls to thereby prevent overheating, and generates heated air. A turbulation device (38) combines flue gas and heated air into a turbulent air-gas mixture, completes combustion, and outputs a heated gas stream.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: January 14, 2014
    Inventor: David L. Wilson
  • Patent number: 8607717
    Abstract: The present invention relates to a regulated two stage thermal oxidation of waste and applications to use such a process for energy generation. A system and a method are provided comprising a set up of one or more gasification chambers, which are connected via ductwork to a combustion chamber to burn the waste material. The waste is loaded into the gasification chamber(s) and ignited there and the gas, which is generated by the sub-stoichiometric combustion in the gasification chamber is fully combusted in the secondary combustion chamber at a very high temperature. The time used for the burn down period is decreased and controlled by several air and gas flow factors of the system of the present invention.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 17, 2013
    Assignee: WTE Waste To Energy Canada, Inc.
    Inventor: Fridfinnur Einarsson
  • Patent number: 8601957
    Abstract: A device and method for controlling fuel-air ratio during combustion of ground in a coal power plant, including pneumatic delivery of ground coal to the burners and feeding combustion air to burners while controlling the combustion air and the amount of carrier air. A high reliability of control combined with low maintenance of the air mass measurement devices is achieved. This is achieved by a measurement device for measuring the amount of combustion air which, according to correlation measurement, evaluates the triboelectric effects on sensors. Between 0.1 mg and 10 mg of fine-grained particles of a diameter between 20 ?m and 200 ?m are introduced per m3 air into suctioned fresh air, which is carried out during the starting of the firing system. This is done by correlation measurement that evaluates triboelectric effects on sensors, arranged in series in carrier air stream in direction of flow of the carrier air.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: December 10, 2013
    Assignee: Promecon Prozess-und Messtechnik Conrads GmbH
    Inventors: Hans George Conrads, Alexander Halm
  • Patent number: 8601960
    Abstract: In an apparatus of controlling an exhaust gas in an oxyfuel combustion boiler having the boiler 4 provided with burners 6 and a two-stage combustion port 7, a primary recirculation line 12 through which pulverized coal obtained by a mill 3 is fed to the burners 6 of the boiler 4 by the primary recirculating exhaust gas, a secondary recirculation line 14 through which another portion of the exhaust gas in recirculation is fed to a wind box 5 of the boiler 4, an oxygen producer 23, a direct supply line 25 through which a portion of oxygen produced by the oxygen producer 23 is directly fed to the burner 6 and a secondary oxygen mixing line 24 through which another portion of oxygen produced by the oxygen producer 23 is fed to the secondary recirculation line 14, the apparatus comprises an oxygen supply line 26 through which oxygen is fed to the two-stage combustion port of the boiler 4 and a flow rate regulator 20, 27 in the oxygen supply line for adjusting oxygen density.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: December 10, 2013
    Assignees: IHI Corporation, Electric Power Development Co., Ltd.
    Inventors: Shuuhei Terushita, Toshihiko Yamada, Shuzo Watanabe, Terutoshi Uchida
  • Patent number: 8555797
    Abstract: Disclosed herein is a NOx reducing system comprising a first inner conduit in fluid communication with a reactant source; and a first outer conduit comprising an open end for receiving the first inner conduit and a closed end; the first outer conduit comprising a port for discharging reactant from the reactant source into an exhaust gas stream. Also disclosed herein is a NOx reducing system comprising a conduit comprising a closed end and an open end that is in fluid communication with a reactant source; the conduit comprising a port for discharging reactant from the reactant source into an exhaust gas stream; the port being located on a downstream surface of the first outer conduit.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: October 15, 2013
    Assignee: Alstom Technology Ltd
    Inventor: Iqbal F. Abdulally
  • Patent number: 8555796
    Abstract: An oxy/fuel combustion system having a furnace arranged and disposed to combust a fuel to form a combustion fluid. The system further includes a convective section having at least one heat exchanger arranged and disposed to exchange heat between the combustion fluid and steam for use in a steam turbine. A flue gas recycle is arranged and disposed to recycle at least a portion of the combustion fluid as a recycled flue gas, the flue gas recycle having at least two expellant locations downstream of a primary combustion zone. The system includes a flow control mechanism that provides controlled amounts of the recycled flue gas to the at least two expellant locations to control temperature of the steam.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: October 15, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Mark Daniel D'Agostini
  • Publication number: 20130263766
    Abstract: Method and apparatus for burning oil from an oil release in a body of water. A mixture of oil and water is collected from the surface of the body of water and separated into an oil-enriched portion and a water-enriched portion. The oil-enriched portion is passed to a burner where the oil-enriched portion is combusted with an oxygen-containing gas having an oxygen concentration of at least 25 volume % oxygen.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Tunc Goruney, Xianming Jimmy Li, Paul M. Ashline
  • Patent number: 8544394
    Abstract: Method for reducing a formation of nitrogen oxide on a primary side of a furnace and reducing or avoiding nitrous oxide and ammonia slip in an offgas of the furnace in which a fuel is burned in a combustion process having at least two stages. The method includes passing a fuel consecutively through each of a plurality of bed areas of a combustion bed of the furnace. A primary gas including oxygen is fed individually to each of the bed areas so as to burn the fuel in the combustion chamber of the furnace. A secondary gas including oxygen is introduced into a downstream offgas burn-out zone, so as to after-burn incompletely burned offgas components formed during the burning of the fuel.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: October 1, 2013
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventor: Hans Hunsinger
  • Patent number: 8539891
    Abstract: An initial coal is cleaned to reduce ash content by ?20% and yield refined coal that optimizes combustion air flow through a coal burner. This permits conveyance of pulverized refined coal in suspended condition through feeder pipes of the coal burner using reduced air flow compared to the quantity of air required to convey pulverized initial coal in suspended condition through the feeder pipes. This reduces oxygen in the primary combustion zone, lowering conversion of fuel nitrogen into NOx and instead converting it into N2 using the refined coal product. Reduced primary combustion air also reduces core flame temperature, reducing thermal NOx formation using the refined coal product. Increasing secondary and/or tertiary combustion air compensates for reduced primary combustion air and result in overall decrease in NOx formation (e.g., thermal NOx formation is reduced when combustion completed in cooler secondary and/or tertiary combustion zones).
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 24, 2013
    Assignee: Headwaters Energy Services Corporation
    Inventors: Rafic Minkara, N. Stan Harding
  • Publication number: 20130233213
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Richard MARTIN, Jeffrey ARMSTRONG, Douglas HAMRIN
  • Publication number: 20130220189
    Abstract: A method for staged combustion in a combustor assembly includes introducing an oxidant stream and a fuel stream at a first location into a combustion chamber to produce a heated stream. A Liquid water stream and an additional oxidant stream, fuel stream or both are then introduced into the heated stream in at least one location along the heated stream downstream from the first location. The additional oxidant stream, fuel stream or both react in the heated stream to generate additional heat that vaporizes liquid water from the liquid water stream to water vapor.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Inventor: Jeffrey A. Mays
  • Patent number: 8518133
    Abstract: A gasifier is disclosed. The gasifier may include a housing and a refractory system contained within the housing. The refractory system may comprise an upper manifold, an intermediate portion, and a lower manifold. The refractory system may also include columnar cavities. The columnar cavities may extend vertically through the intermediate portion and place the upper manifold in communication with the lower manifold.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: August 27, 2013
    Inventors: Alan M. Neves, Grover R. Brockbank, Morris K. Ebeling, Jr.
  • Patent number: 8490556
    Abstract: Provided are fuel feed means 3, an air separation unit 6 air feed means 7, a combustion furnace 11 with a burner 9 for combustion, an exhaust gas line 14 for leading an exhaust gas from the combustion furnace 11 to outside of the combustion furnace 11, exhaust gas treatment means 20a and 20b included in the exhaust gas line 14, and a recirculation line 15 for circulating a portion of the exhaust gas at least exhaust gas treatment means 20a and 20b for recirculation of a portion of the exhaust gas at least dust-removed by the exhaust gas treatment means 20a and 20b to the burner. Further provided are exhaust gas capture means 18 for taking out carbon dioxide gas from a remaining non-recirculating exhaust gas, and carbon dioxide gas feed means 33, 40 and 46 for introducing carbon dioxide gas to equipments 10, 20a and 20b of the oxyfuel combustion boiler facility.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: July 23, 2013
    Assignees: IHI Corporation, Electric Power Development Co., Ltd.
    Inventors: Toshihiko Yamada, Terutoshi Uchida, Shinji Watanabe, Shuzo Watanabe
  • Publication number: 20130167762
    Abstract: Grate bar for a furnace. The grate bar comprises a first air duct (46) at a first lateral side of the grate bar. The first air duct is provided at an angle other than 90 degrees with respect to a longitudinal axis of the grate bar.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 4, 2013
    Applicant: TISKA GMBH
    Inventor: Wolfgang Schmid
  • Patent number: 8453585
    Abstract: A new and unique boiler and method of transition between air and Oxy-combustion in a coal fired combustion process wherein near pure oxygen may be introduced to the boiler furnace in several locations including directly into the flame through the burner and/or directly into the furnace as nearly pure oxygen, and/or into the recycle flue gas streams to the burners, including both primary and secondary streams.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: June 4, 2013
    Assignees: Babcock & Wilcox Power Generation Group, Inc., American Air Liquide, Inc.
    Inventors: Bryan B. Stone, Denny K. McDonald, Allan J. Zadiraka, Rajani K. Varagani
  • Patent number: 8413596
    Abstract: An oxyfuel boiler 1 is equipped with an oxygen separation apparatus 23 to produce oxygen by separating oxygen from the air, a recirculation fan 26 to supply a portion of combustion flue gas branched from the combustion flue gas discharged from the boiler to the oxyfuel boiler 1, a temperature sensor 14a to detect gas temperature at a boiler outlet 1d in the oxyfuel boiler 1, and a control apparatus 150 to calculate gas temperature at a furnace outlet 1c in the boiler from the gas temperature at the boiler outlet 1d detected by the temperature sensor 14a and control the operating condition of the recirculation fan 26 so that the calculated gas temperature at the furnace outlet 1c becomes a desired preset gas temperature.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 9, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Yoshiharu Hayashi, Akihiro Yamada, Tsuyoshi Shibata
  • Publication number: 20130047900
    Abstract: Flame stability of a burner that is operated with a mixture of oxygen and flue gas as the oxidant, is enhanced by including a second burner that combusts fuel with oxidant having a high O2 content.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 28, 2013
    Inventors: Lawrence Bool, Stefan E.F. Laux, Kelly Fangmei Tian
  • Patent number: 8381667
    Abstract: An adjustable fuel nozzle assembly [1000] for spraying fuel into a recovery boiler [13] includes at least two fuel nozzle assemblies [1100, 1300]. An adjustment section [1500] adapted to adjust the relative orientation between the nozzle assemblies [1100, 1300] and hold them at the desired orientation relative to each other to create a desired spray pattern. The adjustment section [1500] also adapted to simultaneously aim several fuel nozzles at a target location, retaining their relative orientation between the nozzle assemblies [1100, 1300]. This allows the nozzle assemblies [1100, 1300] to spray fuel with a desired spray pattern to a desired location to properly control combustion of the recovery boiler [13], thereby increasing stability of combustion minimizing the creation of pollutants such as NOx gases.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 26, 2013
    Assignee: ALSTOM Technology Ltd
    Inventor: Steven R. Gibowski
  • Patent number: 8375872
    Abstract: The present invention is directed to processes and apparatuses for reducing the content of pollutants in a boiler system flue gas resulting from combustion of fuel. The present invention discloses improved slurry injection techniques, re-circulation of flue gas to provide momentum to the injected slurry, a measurement system for obtaining system profile information and a system to optimize the reduction of pollutants in a flue gas by adjusting the injection of slurry suspension based on system profile information.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: February 19, 2013
    Assignee: Intertek APTECH
    Inventors: T. Steve Torbov, Terry W. Rettig, Stephen M. Kohan
  • Publication number: 20130025514
    Abstract: An initial coal is cleaned to reduce ash content by ?20% and yield refined coal that optimizes combustion air flow through a coal burner. This permits conveyance of pulverized refined coal in suspended condition through feeder pipes of the coal burner using reduced air flow compared to the quantity of air required to convey pulverized initial coal in suspended condition through the feeder pipes. This reduces oxygen in the primary combustion zone, lowering conversion of fuel nitrogen into NOx and instead converting it into N2 using the refined coal product. Reduced primary combustion air also reduces core flame temperature, reducing thermal NOx formation using the refined coal product. Increasing secondary and/or tertiary combustion air compensates for reduced primary combustion air and result in overall decrease in NOx formation (e.g., thermal NOx formation is reduced when combustion completed in cooler secondary and/or tertiary combustion zones).
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Inventors: Rafic Minkara, N. Stan Harding
  • Publication number: 20120322017
    Abstract: A method for heating a blast furnace stove includes combusting a fuel with a lower heating value (LHV) of 9 MJ/Nm3 or less in a combustion zone which is arranged in a combustion chamber in the stove, and causing the combustion gases to flow through and thereby heat refractory material in the stove. The fuel is combusted with an oxidant including at least 85% oxygen, and combustion gases are recirculated into the combustion zone for diluting the mixture of fuel and oxidant therein sufficiently for the combustion to be flameless.
    Type: Application
    Filed: November 25, 2010
    Publication date: December 20, 2012
    Inventors: Andrew Cameron, Tomas Ekman, Mats Gartz
  • Publication number: 20120312207
    Abstract: In one embodiment, a method for generating heat energy includes injecting a stream having a concentration of at least 50% oxygen (O2 stream) into a primary gas stream through a mixer, the mixer discharging the O2 stream as two or more spaced jets traversing the primary stream, thereby enriching the primary gas stream. The method further includes mixing fuel with the enriched primary gas stream, thereby forming a fuel stream; and combusting the fuel stream, thereby forming a flue gas stream.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: M. Usman GHANI, Florian GAUTIER, Rajani K. VARAGANI, Susie LEVESQUE, Bernard LABEGORRE, Frederic CAMY-PEYRET, Sylvain GRILLON, Pavol PRANDA
  • Patent number: 8327779
    Abstract: A combustion system having a furnace arranged and disposed to receive solid fuel and oxygen and combust the solid fuel and oxygen to form a flue gas. The system includes a heat exchanger arrangement arranged and disposed to receive heat from the flue gas, where the heat exchanger arrangement has a predetermined heat exchange capacity. A water injection arrangement is arranged and disposed to provide water to the flue gas to controllably adjust the flue gas mass flow rate and temperature to provide the predetermined heat exchange capacity.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: December 11, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Kevin Boyle Fogash, Xianming Jimmy Li
  • Patent number: 8316784
    Abstract: This disclosure includes a system and method of controlling fuel combustion including providing a system, measuring a property, and providing oxygen and fuel in response to the property. The system includes a furnace arranged and disposed to receive fuel and oxygen and combust the fuel and the oxygen to form a combustion fluid, a plurality of heat exchanger sections arranged and disposed to receive heat from the combustion fluid, and a plurality of oxygen injectors arranged and disposed to controllably provide oxygen to the combustion fluid to adjust composition of the combustion fluid and temperature of the combustion fluid. The property measured is selected from the group consisting of temperature of the combustion fluid, composition of the combustion fluid, temperature of the heat exchanger sections, and combinations thereof and is performed in close proximity to the oxygen injectors.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 27, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Mark Daniel D'Agostini
  • Publication number: 20120259147
    Abstract: An apparatus and method is presented for reducing mono nitrogen oxide emissions in a hydrocarbon processing furnace. A preferred embodiment hydrocarbon cracking furnace includes a firebox with a set of wall burners and a set of floor burners, the floor burners comprising secondary burner tips burning a fuel-rich mixture and positioned below primary burner tips burning a fuel-lean mixture. A portion of flue gases are recirculated from the primary burner combustion area to the secondary burner combustion area and back to the primary burner combustion area. The floor burners further comprise a set of steam injection ports that inject steam into a conical flow to contact flames at the primary burner tips, reducing flame temperature and thereby reducing thermal NOx. The steam injection ports are positioned in the firebox above the primary burner tips.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Inventor: David C. Payne
  • Publication number: 20120255472
    Abstract: A burner assembly for combusting fuel in a combustion zone to reduce NOx emissions includes a water spray subassembly including a water outlet configured to direct water at an angle with respect to an axis of the burner assembly, the water outlet further configured to direct the water in a direction for mixing with the air upstream of the combustion zone. A method is also provided for combusting fuel in a combustion zone to reduce NOx emissions.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 11, 2012
    Inventors: Norman R. Gordon, Alex L. Primas, Ronald J. Kosinski
  • Patent number: 8246757
    Abstract: Pyrolysis methods for disassociating an organic mass, or coating from an article, by placing the article in an air tight processing chamber, circulating a gaseous mixture of ambient air and at least 40% water vapor from an opening, through the processing chamber and out of an exhaust port, and maintaining the processing chamber at a temperature above 650 degrees Fahrenheit for a sufficient time to disassociate the organic material. A batch oven and a continuous processing oven including entrance and exit air closures that utilize the pyrolysis methods are described.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: August 21, 2012
    Inventor: William C. Nowack
  • Publication number: 20120195815
    Abstract: Methods of treating mercury contaminated gas comprising: introducing a hydrogen halide selected from HBr and HI into a mercury contaminated gas stream containing a quantity of particulate matter at an introduction rate sufficient to create a concentration of at least 0.1 ppmvd; wherein greater than 50% of all particulate matter in the mercury contaminated gas stream is a native particulate matter; contacting a quantity of active bromine with the native particulate matter; creating a doped particulate matter; coating a filtration media with the doped particulate matter; and passing a portion of the mercury contaminated gas stream through the doped particulate matter on the filtration media and other related methods are disclosed herein.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 2, 2012
    Applicant: SHAW ENVIRONMENTAL & INFRASTRUCTURE, INC.
    Inventors: Randall P. Moore, Kevin Jackson, Stephen Baloga, Berani A.C. Halley, Bobby I.T. Chen, John Edel
  • Publication number: 20120192773
    Abstract: A burner and method for oxidizing solid fuels wherein the burner has a lance having one or more nozzle feeds and one or more nozzle outlets concentrically surrounded by a primary oxidant passage which is concentrically surrounded by a secondary oxidant passage wherein the primary and secondary oxidant passages communicate at their proximal ends with a gas supply, the lance having a distal and proximal end and the one or more nozzle feeds is in communication with a gas supply.
    Type: Application
    Filed: August 1, 2011
    Publication date: August 2, 2012
    Inventors: Donald P. Satchell, JR., Andrew P. Richardson, Ian Hibbitt
  • Patent number: 8230796
    Abstract: A combustor 110 is operative to effect therewith the combustion of fossil fuel 114? in order to thereby both heat to a working fluid 102 and generate a flue gas 104. An air preheater 144 receives the flue gas 104 generated in the combustor 110. A blower 180 causes air 188 to flow to the air preheater 144 when operating in an air fired mode, and causes both O2 and recycled flue gas 188? to flow when operating in the O2 firing mode. The air preheater 144 is operative to transfer heat from the flue gas 150 received thereby to the air 188 that is received when operating in an air fired mode or to both the received O2 and the recycled flue gas 188? that is received when operating in the O2 firing mode in order to thereby effect a preheating of the air 188 or of both the O2 and recycled flue gas, 188? depending upon the specific nature of the mode of operation thereof, and to thereby effect therewith a cooling of the flue gas received thereby.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: July 31, 2012
    Inventors: Herbert E. Andrus, Jr., Gregory N. Liljedahl, John L Marion, Nsakala Ya Nsakala
  • Publication number: 20120174624
    Abstract: The present invention relates to a process for operating at least one air separation unit and an oxygen-rich gas consumer, comprising a carbon fuel combustion unit or a gasification unit, the oxygen-rich gas consumer being capable of generating electricity. The consumer is supplied with an oxygen-rich gas coming from the air separation unit or units.
    Type: Application
    Filed: August 24, 2010
    Publication date: July 12, 2012
    Inventors: Alain Guillard, Nicolas Allard, Pierre-Etienne Franc, Hadi Moussavi
  • Publication number: 20120115094
    Abstract: For a steam generator comprising a combustion chamber fired with a fossil fuel and/or with particulate fuel containing carbon and at least one burner level comprising several burners (1) and/or at least one level comprising nozzles in the form of upper air nozzles and/or side wall nozzles, each having connected feed means (9, 10, 11, 12) and/or feed lines (2, 4, 5, 9a-9d, 10a-10d, 11a-11d, 12a-12d) through which/by means of which gas flows conveying combustion and/or oxidation oxygen can be fed to burners (1) and/or the nozzles (13) and/or the combustion chamber, a solution should be created by means of which undesired oxygen contents in the flue gas can be avoided during oxyfuel operation of the steam generator in the partial-load range.
    Type: Application
    Filed: March 25, 2010
    Publication date: May 10, 2012
    Applicant: HITACHI POWER EUROPE GMBH
    Inventors: Christian Bergins, Jürgen Niesbach, Alfred Gwosdz
  • Patent number: 8156876
    Abstract: Systems and methods of integrating plasma waste processing are described. An integreted energy generation system provided with a fossil fuel power plant system having a combustion chamber and a plasma waste processing system having an output. The integrated energy generation system also including an integrator for combining the output of thermal energy from the plasma waste processing system with the combustion chamber of the fossil fuel power plant.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: April 17, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Michael S. Smith, Kevin C. Caravati, Louis J. Circeo, Robert C. Martin, Jr.
  • Patent number: RE43733
    Abstract: A combustion air system for a recovery boiler is described in which multiple levels of secondary and tertiary combustion air ports each have an even number of ports, with the ports on opposing walls interlaced. The air system lends itself equally well to front/rear wall or sidewall applications and is especially beneficial for rectangular boilers. The air system features large and small-scale horizontal circulation zones superimposed on each other and the ability to adjust the angle of the air jets. Additional features include port dampers for the starting burners and system control based on kinetic energy.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 16, 2012
    Inventors: Daniel R. Higgins, Eugene Sullivan