With Means For Measuring, Testing, Or Sensing Patents (Class 117/201)
  • Patent number: 11810686
    Abstract: Atom-scale particles, e.g., neutral and charged atoms and molecules, are pre-cooled, e.g., using magneto-optical traps (MOTs), to below 100 ?K to yield cold particles. The cold particles are transported to a sensor cell which cools the cold particles to below 1 ?K using an optical trap; these particles are stored in a reservoir within an optical trap within the sensor cell so that they are readily available to replenish a sensor population of particles in quantum superposition. A baffle is disposed between the MOTs and the sensor cell to prevent near-resonant light leaking from the MOTs from entering the sensor cell (and exciting the ultra-cold particles in the reservoir). The transporting from the MOTs to the sensor cell is effected by moving optical fringes of optical lattices and guiding the cold particles attached to the fringes along a meandering path through the baffle and into the sensor cell.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: November 7, 2023
    Assignee: ColdQuanta, Inc.
    Inventors: Dana Zachary Anderson, Clifton Leon Anderson
  • Patent number: 11473211
    Abstract: A method of estimating an oxygen concentration in monocrystalline silicon, which is pulled up by a pull-up device having a hot zone with a plane-asymmetric arrangement with respect to a plane defined by a crystal pull-up shaft and an application direction of a horizontal magnetic field, includes, in at least one of a neck-formation step or a shoulder-formation step for the monocrystalline silicon: a step of measuring a surface temperature of a silicon melt at a point defining a plane-asymmetric arrangement of a hot zone, and a step of estimating the oxygen concentration in a straight body of the pulled-up monocrystalline silicon based on the measured surface temperature of the silicon melt and a predetermined relationship between the surface temperature of the silicon melt and the oxygen concentration in the monocrystalline silicon.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 18, 2022
    Assignee: SUMCO CORPORATION
    Inventors: Shin Matsukuma, Kazuyoshi Takahashi, Toshinori Seki, Tegi Kim, Ryusuke Yokoyama
  • Patent number: 11255024
    Abstract: A roller guide assembly for use in lifting a seed coupled to a cable includes a mounting plate, a shaft, and a roller guide. The mounting plate has a throughhole. The shaft is coupled to the mounting plate such that the shaft is movable relative to the mounting plate in a direction that is generally perpendicular to a central axis of the shaft. The roller guide is rotationally coupled about the shaft and generally positioned within the throughhole of the mounting plate such that at least a portion of the roller guide extends out of the throughhole.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: February 22, 2022
    Assignee: Linton Crystal Technologies Corp.
    Inventors: John A. Reese, Joel C. Stefl
  • Patent number: 11130261
    Abstract: An apparatus includes a pressure vessel and a steerable heat source disposed within the pressure vessel. The apparatus also includes one or more control systems coupled to the steerable heat source. The one or more control systems are configured to direct supplemental heat toward a targeted region within the pressure vessel using the steerable heat source.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: September 28, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Christian Aaron Todhunter
  • Patent number: 10801105
    Abstract: The present invention is in the field of processes for the generation of thin inorganic films on substrates, in particular atomic layer deposition processes. The present invention relates to a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R1, R2, R3, and R4 are independent of each other an alkyl group, an aryl group or a trialkylsilyl group, M is Mn, Ni or Co, X is a ligand which coordinates M, wherein at least one X is a neutrally charged ligand, m is 1, 2 or 3 and n is at least 1 wherein the molecular weight of the compound of general formula (I) is up to 1000 g/mol.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: October 13, 2020
    Assignee: BASF SE
    Inventors: Torben Adermann, Daniel Loeffler, Carolin Limburg, Falko Abels, Hagen Wilmer, Monica Gill, Matthew Griffiths, Sean Barry
  • Patent number: 10553461
    Abstract: The present disclosure provides a film annealing apparatus and method. The film annealing apparatus includes: a carrying platform configured to carry a substrate formed with a film layer thereon; a heater configured to individually heat respective regions of the film layer such that the film layer is annealed; a carrier detector configured to detect carrier concentrations of the respective regions of the film layer; and a controller electrically connected with the carrier detector and the heater respectively and configured to, according to the carrier concentrations of the respective regions of the film layer detected by the carrier detector, adjust at least one of a heating temperature and a heating time of the heater for heating a corresponding one of the regions of the film layer such that the carrier concentrations of the respective regions of the annealed film layer become the same.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: February 4, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Ming Wang
  • Patent number: 10540758
    Abstract: Image feature alignment is provided. In some implementations, a computer-readable tangible medium includes instructions that direct a processor to access a reference feature point associated with a high contrast region in a first sub-image that is associated with a first section of a borehole. Instructions are also present that direct the processor to identify several candidate feature points in a second sub-image associated with a second section of the borehole adjacent to the first section of the borehole, with each of the candidate feature points being believed to possibly be associated with the high contrast region. Additional instructions are present that direct the processor to prune the candidate feature points using global solution pruning to arrive at a matching candidate feature point in the second sub-image.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: January 21, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Andriy Gelman, Arnaud Jarrot, Robert Laronga
  • Patent number: 10183369
    Abstract: A cutting fluid supply system includes a machine tool, a nozzle for ejecting cutting fluid, and a nozzle-moving unit for holding and moving the nozzle. The cutting fluid supply system detects an object existing in the machine tool, recognizes a position and a shape of the object based on the detection information, and specifies a machining point from the recognized information. The nozzle-moving unit moves the nozzle such that cutting fluid is ejected to the specified machining point.
    Type: Grant
    Filed: December 27, 2015
    Date of Patent: January 22, 2019
    Assignee: FANUC CORPORATION
    Inventor: Takashi Kurokawa
  • Patent number: 10113247
    Abstract: A single crystal pulling apparatus including: a remelting detection apparatus which detects that remelting of a lower end portion of the semiconductor single crystal is completed from a change in weight of the semiconductor single crystal when the lower end portion of the semiconductor single crystal is immersed in the melt to be remolten by using the wire; and a lowermost end detection apparatus which detects a lowermost end of the semiconductor single crystal from a position where no current flows between the semiconductor single crystal and the melt when the semiconductor single crystal is taken up with the use of the wire while applying a voltage between the semiconductor single crystal and the melt by applying a voltage between the crucible and the wire.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: October 30, 2018
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Naoki Masuda, Masahiko Urano
  • Patent number: 10094043
    Abstract: A method for producing a single crystal, wherein the space is adjusted to a predetermined distance by measuring a distance from a reference height position at a predetermined height above a melt surface to a lower end part of an in-furnace structure in a state wherein the in-furnace structure above the melt surface is installed in a pull chamber, obtaining a lower end part position error which is a difference between measured distance and a distance from the previously set reference height position to the lower end part of the in-furnace structure, obtaining a target distance from the melt surface to the reference height position by adding the lower end part position error and a distance from the reference height position to a melt surface position, and adjusting a distance from an initial position of the melt surface to the reference height position such that the target distance is attained.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: October 9, 2018
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Shou Takashima, Yuuichi Miyahara, Atsushi Iwasaki
  • Patent number: 9970108
    Abstract: A vapor delivery system includes an ampoule to store liquid precursor and a heater to partially vaporize the liquid precursor. A first valve communicates with a push gas source and the ampoule. A second valve supplies vaporized precursor to a heated injection manifold. A valve manifold includes a first node in fluid communication with an outlet of the heated injection manifold, a third valve having an inlet in fluid communication with the first node and an outlet in fluid communication with vacuum, a fourth valve having an inlet in fluid communication with the first node and an outlet in fluid communication with a second node, a fifth valve having an outlet in fluid communication with the second node, and a sixth valve having an outlet in fluid communication with the second node. A gas distribution device is in fluid communication with the second node.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 15, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jun Qian, Hu Kang, Purushottam Kumar, Chloe Baldasseroni, Heather Landis, Andrew Kenichi Duvall, Mohamed Sabri, Ramesh Chandrasekharan, Karl Leeser, Shankar Swaminathan, David Smith, Jeremiah Baldwin, Eashwar Ranganathan, Adrien LaVoie, Frank Pasquale, Jeongseok Ha, Ingi Bae
  • Patent number: 9846933
    Abstract: Systems and methods for monitoring components are provided. A component has an exterior surface. A method includes performing a first analysis of a first image of a surface feature configured on the exterior surface of the component, the first image obtained by an imaging device. The method further includes adjusting a viewing parameter of the imaging device when a predetermined first analysis threshold for the first image is unsatisfied, and performing a subsequent first analysis of a second image of the surface feature, the second image obtained by the imaging device. The method further includes adjusting a distance between the imaging device and the surface feature when the predetermined first analysis threshold for the second image is unsatisfied, and performing a second analysis of a third image, the third image obtained by the imaging device.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: December 19, 2017
    Assignee: General Electric Company
    Inventor: Basak Yuksel
  • Patent number: 9738989
    Abstract: A single-crystal manufacturing apparatus including: main chamber accommodating crucible and heater; pull chamber wherein a grown single-crystal is received; gas-flow guiding cylinder that has opening through which the single-crystal passes and extends downward from ceiling of main chamber; seed chuck configured to hold a seed crystal; and heat insulation plate that is level with lower end of the opening of gas-flow guiding cylinder when raw material is heated and melted, and pulled together with the seed crystal when single-crystal is pulled. The seed chuck includes a mounting fixture to mount heat insulation plate. Mounting fixture has a mechanism allowing heat insulation plate to be mounted so the heat insulation plate can be rotated independently of the rotation of the seed chuck. This apparatus can be readily introduced, melt raw material with low heater power; inhibit occurrence of dislocation during seeding and generation of dislocation in single-crystal when single-crystal is pulled.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 22, 2017
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Masanori Takazawa
  • Patent number: 9382639
    Abstract: A device for crystallizing a molecule to be crystallized, which includes: at least one crystallization cell that includes a crystallization chamber for receiving a first solution S1 containing the molecule to be crystallized and the crystal seeds thereof, a dialysis membrane, and a container to be filled with a second solution S2 that contains constituents selected from the group containing crystallization agents, additives and buffers; and at least one image acquisition means. The crystallization device is characterized in that it includes: at least one addition means arranged to add, to the container, constituents selected from the group containing crystallization agents, additives and buffers of solution S2; and/or at least one sampling means arranged to collect, from the container, all or a portion of solution S2. The invention also relates to a crystallization method.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: July 5, 2016
    Assignee: UNIVERSITE JOSEPH FOURIER
    Inventor: Monika Spano
  • Patent number: 9284660
    Abstract: An apparatus of producing a silicon single crystal including: an imaging device; a heat shield that has a circular opening; a first operation unit that operates the imaging device and takes a real image of the heat shield and a mirror image of the heat shield reflected on a surface of the silicon melt, measures a spacing between the real image and the mirror image, and calculates a position of a melt-surface; a second operating unit that operates the imaging device and takes an image of a bright-zone in the vicinity of the solid-liquid interface, and calculates a position of the melt-surface based on the image of the bright zone; and a controlling unit that refers a data of the position of the silicon melt obtained by the first operation unit and the second operation unit, and controls the position of the silicon melt.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: March 15, 2016
    Assignee: SUMCO CORPORATION
    Inventors: Keiichi Takanashi, Ken Hamada
  • Patent number: 9202671
    Abstract: A charged particle beam apparatus includes a sample stage, a focused ion beam column, a scattered electron detector that detects backscattered electrons generated from a cross-section of a sample, a crystal orientation information generation unit that generates crystal orientation information on a predetermined region of the cross-section, and an angle calculation unit that calculates attachment angles of the sample stage, corresponding to a direction of the cross-section. In response to receiving input of information indicating that the crystal orientation information on the region displayed on a display unit is changed to aimed second crystal orientation information, the angle calculation unit calculates the attachment angles corresponding to the direction of the cross-section for generating the second crystal orientation information, and the focused ion beam column performs etching processing on the cross-section at the calculated attachment angles.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: December 1, 2015
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Xin Man, Atsushi Uemoto, Tatsuya Asahata
  • Publication number: 20150125717
    Abstract: A method and apparatus for growing truly bulk In2O3 single crystals from the melt, as well as melt-grown bulk In2O3 single crystals are disclosed. The growth method comprises a controlled decomposition of initially non-conducting In2O3 starting material (23) during heating-up of a noble metal crucible (4) containing the In2O3 starting material (23) and thus increasing electrical conductivity of the In2O3 starting material with rising temperature, which is sufficient to couple with an electromagnetic field of an induction coil (6) through the crucible wall (24) around melting point of In2O3. Such coupling leads to an electromagnetic levitation of at least a portion (23.1) of the liquid In2O3 starting material with a neck (26) formation acting as crystallization seed. During cooling down of the noble metal crucible (4) with the liquid In2O3 starting material at least one bulk In2O3 single crystal (28.1, 28.2) is formed.
    Type: Application
    Filed: April 24, 2012
    Publication date: May 7, 2015
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Zbigniew Galazka, Roberto Fornari, Reinhard Uecker
  • Publication number: 20150122172
    Abstract: An apparatus for processing materials at high temperatures comprises a high strength enclosure; a plurality of high strength radial segments disposed adjacent to and radially inward from the high strength enclosure; a liner disposed adjacent to and radially inward from the radical segments; a chamber defined interior to the liner; a heating device disposed within the chamber; and a capsule disposed within the chamber, the capsule configured to hold a supercritical fluid. The apparatus may be used for growing crystals, e.g., GaN, under high temperature and pressure conditions.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 7, 2015
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Kirsh Afimiwala, Larry Zeng
  • Publication number: 20150114283
    Abstract: A cantilever device for extending capacity of a scale used in a crystal growth apparatus having a pulling head wherein upward movement of a support column in the pulling head decreases a weight measured by the scale. The device includes a horizontal arm having first and second brackets, wherein the first bracket is attached to the pulling head. The device also includes a plate that extends through openings in the first and second brackets, wherein the plate includes a contact end and a free end. Further, the device includes a flexible element attached between the arm and the plate to form a pivot to enable rotation of the plate. A load is positioned on the plate wherein the load causes rotation of the plate about the pivot to cause upward movement of the contact end to move the support column upward to decrease weight measured by the scale.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: Mark S. Andreaco, James L. Corbeil, Brant Quinton, Troy Marlar, Ronald Nutt
  • Patent number: 9017478
    Abstract: Provided are an apparatus and method of extracting a silicon ingot. The apparatus for extracting a silicon ingot includes a chamber in which a silicon source material introduced into a cold crucible is melted, a primary extraction apparatus vertically movably installed in the chamber and configured to solidify the molten silicon to extract the silicon ingot, a movable apparatus configured to horizontally move the primary extraction apparatus, and a secondary extraction apparatus vertically movably installed under the chamber and configured to extract the silicon ingot in a state in which the primary extraction apparatus is moved to one side. Therefore, as the height of the extraction apparatus is reduced, manufacturing cost of equipment can be reduced and installation space of the extraction apparatus can also be reduced.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 28, 2015
    Assignee: KCC Corporation
    Inventors: Ki Hyun Chang, Dong Hyun Nam
  • Patent number: 9011599
    Abstract: A method of determining a temperature in a deposition reactor includes the steps of depositing a first epitaxial layer of silicon germanium on a substrate, depositing a second epitaxial layer of silicon above the first epitaxial layer, measuring the thickness of the second epitaxial layer and determining the temperature in the deposition reactor using the measured thickness of the second epitaxial layer. The method may also include heating the deposition reactor to approximately a predetermined temperature using a heating device and a temperature measuring device and generating a signal indicative of a temperature within the deposition reactor. The method may also contain the steps of comparing the measured thickness with a predetermined thickness of the second epitaxial layer corresponding to the predetermined temperature and determining the temperature in the deposition reactor using the measured thickness of the second epitaxial layer and the predetermined thickness of the second epitaxial layer.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jhi-Cherng Lu, Jr-Hung Li, Chii-Horng Li, Pang-Yen Tsai, Bing-Hung Chen, Tze-Liang Lee
  • Patent number: 8968468
    Abstract: When pulling and growing a single crystal from a raw material melt by the Czochralski method, a boundary between the single crystal and the raw material melt is imaged by an optical sensor, and also the weight of the single crystal is measured by a weight sensor, a diameter value of the single crystal is calculated on the basis of first measured values of the diameter of the single crystal derived from image data captured by the optical sensor and second measured values of the diameter of the single crystal derived from weight data captured by the weight sensor, and a pulling rate of the single crystal and the temperature of the raw material melt are adjusted on the basis of the calculated diameter value to thereby control the diameter of the single crystal, and thus it is possible to accurately measure the diameter of a growing single crystal.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: March 3, 2015
    Assignee: Sumco Corporation
    Inventor: Ken Hamada
  • Patent number: 8968471
    Abstract: The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, which can improve quality, productivity and energy conversion efficiency of the silicon substrate. The apparatus includes a crucible unit configured to receive raw silicon and having a discharge port, a heating unit provided to an outer wall and an external bottom surface of the crucible unit and heating the crucible unit to form molten silicon, a casting unit casting the molten silicon into a silicon substrate, a cooling unit rapidly cooling the silicon substrate, and a transfer unit disposed at one end of the cooling unit and transferring the silicon substrate. The casting unit includes a casting unit body having a casting space defined therein to be horizontally connected to the discharge port, and an assistant heating mechanism that preheats the casting unit body to control a solidification temperature of the silicon substrate.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo-Yun Jang, Jin-Seok Lee, Joon-Soo Kim
  • Patent number: 8932404
    Abstract: The present invention relates to a method for producing semicrystalline polymer material, wherein the predominantly amorphous raw polymer material, in particular granules, to be treated is introduced into a crystallization reactor (1) and is partially crystallized there by being heated, but without melting, and subsequently the semicrystalline polymer material obtained in such a way is removed from the crystallization reactor (1) and at least part of said semicrystalline polymer material is diverted and mixed back into the crystallization reactor (1) in order to reduce the adhesive tendency of the polymer material. According to the invention, the diverted semicrystalline polymer material is combined and mixed with the raw polymer material before being mixed back into the crystallization reactor (1), and the mixture is then introduced into the crystallization reactor (1).
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 13, 2015
    Assignee: EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H.
    Inventors: Klaus Feichtinger, Manfred Hackl, Andreas Roessler-Czermak, Gerald Weis
  • Publication number: 20140338590
    Abstract: A high temperature furnace comprising hot zone insulation having at least one shaped thermocouple assembly port to reduce temperature measurement variability is disclosed. The shaped thermocouple assembly port has an opening in the insulation facing the hot zone that is larger than the opening on the furnace shell side of the insulation. A method for producing a crystalline ingot in a high temperature furnace utilizing insulation having a shaped thermocouple assembly port is also disclosed.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 20, 2014
    Inventors: Ning Duanmu, Dean C. Skelton, Menahem Lowy, Dzung D. Nguyen
  • Patent number: 8888911
    Abstract: The present invention provides a technique which enables production of single crystal silicon having relatively low resistivity by preventing cell growth during crystal growth from occurring, especially in a case where a relatively large amount of dopant is added to a molten silicon raw material. Specifically, the present invention provides a method of producing single crystal silicon by the Czochralski process, comprising producing single crystal silicon having relatively low resistivity by controlling a height of a solid-liquid interface when the single crystal silicon is pulled up.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Masayuki Uto, Tuneaki Tomonaga, Toshimichi Kubota, Fukuo Ogawa, Yasuhito Narushima
  • Patent number: 8871024
    Abstract: An improved high pressure apparatus and methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, and at least one ceramic ring contained by a metal sleeve. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8864908
    Abstract: A crucible protection sheet is provided that can prevent damages to an inner crucible, hinder an outer crucible from silicon-carbidization, and transmit heat from the outer crucible to the inner crucible uniformly. In a crucible having an inner crucible 2 and an outer crucible 3, the crucible protection sheet is arranged between the two crucibles and is made of expanded graphite. The planar thermal conductivity is 120 W/(m·K) or higher, the gas permeability is less than 1.0×10?4 cm2/s, and the compression ratio is 20% or higher when the sheet is compressed in a thickness direction at a pressure of 34.3 MPa. Since the compression ratio is high, the effect of preventing breakage is great when inserting the inner crucible, improving workability and preventing the inner crucible from tilting inside the outer crucible.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: October 21, 2014
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Yoshiaki Hirose, Tetsuya Yuki
  • Patent number: 8840723
    Abstract: An apparatus for manufacturing polycrystalline silicon whereby raw-material gas is supplied to one or more heated silicon seed rods provided vertically in a reactor so as to deposit the polycrystalline silicon on a surface of the silicon seed rod, having a seed rod holding member, made of conductive material, having a holding hole in which a lower end of the silicon seed rod is inserted, the holding hole having a horizontal cross-sectional shape with at least two corners, and the holding member having a screw hole extending from the outer surface of the seed rod holding member to at least the holding hole and formed at the location of at least two corners of the holding hole; and a fixing screw which fixes the silicon seed rod and is threaded through at least one of the screw holes.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshihide Endoh, Masayuki Tebakari, Toshiyuki Ishii, Masaaki Sakaguchi
  • Patent number: 8821634
    Abstract: A high temperature furnace comprising hot zone insulation having at least one shaped thermocouple assembly port to reduce temperature measurement variability is disclosed. The shaped thermocouple assembly port has an opening in the insulation facing the hot zone that is larger than the opening on the furnace shell side of the insulation. A method for producing a crystalline ingot in a high temperature furnace utilizing insulation having a shaped thermocouple assembly port is also disclosed.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 2, 2014
    Assignee: GTAT Corporation
    Inventors: Ning Duanmu, Dean C. Skelton, Menahem Lowy, Dzung Duc Nguyen
  • Patent number: 8801853
    Abstract: This mechanism for controlling a melt level includes: an optical recording device by which a real image of a furnace internal structural object and a reflected image reflected on the melt surface; and a processing device which, taking a value based on the real image as a reference value, controls the position of the melt surface based on a relationship of a position or a size of the reflected image, a distance between the reflected image and the real image, or amounts of changes thereof to the position of the melt surface. This mechanism for adjusting a melt level includes: the above mechanism for controlling a melt level; and a lifting mechanism which is controlled by the mechanism for controlling a melt level and adjusts the melt surface to the set position.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: August 12, 2014
    Assignee: Sumco Corporation
    Inventor: Keiichi Takanashi
  • Patent number: 8734584
    Abstract: In accordance with one aspect, the present invention provides a method for providing polycrystalline films having a controlled microstructure as well as a crystallographic texture. The methods provide elongated grains or single-crystal islands of a specified crystallographic orientation. In particular, a method of processing a film on a substrate includes generating a textured film having crystal grains oriented predominantly in one preferred crystallographic orientation; and then generating a microstructure using sequential lateral solidification crystallization that provides a location-controlled growth of the grains orientated in the preferred crystallographic orientation.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 27, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. van der Wilt
  • Patent number: 8728586
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 20, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Carl A. Sorensen, John M. White
  • Publication number: 20140123891
    Abstract: A method for producing a crystalline material in a crucible in a crystal growth apparatus is disclosed. The method comprises, in part, the step of determining the amount of solidified material present in a partially solidified melt produced during the growth phase using at least one laser positioned at a height above the crucible. A crystal growth apparatus comprising the laser is also disclosed.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: GT CRYSTAL SYSTEMS, LLC
    Inventor: Edward P. Morris
  • Patent number: 8715415
    Abstract: Provided is a vitreous silica crucible for pulling silicon single crystals, which can melt a silicon raw material in a short time and improve production yield of silicon single crystals by temporal change of an opaque vitreous silica layer. The vitreous silica crucible includes an opaque vitreous silica layer(11) provided on an outer surface thereof and containing plural bubbles, and a transparent vitreous silica layer(12) provided on an inner surface and not containing bubbles substantially. The opaque vitreous silica layer(11) has a bubble diameter distribution in which the content of bubbles having a diameter of less than 40 ?m is 10% or more and less than 30%, the content of bubbles having a diameter of 40 ?m or more and less than 90 ?m is 40% or more and less than 80%, and the content of bubbles having a diameter equal to or more than 90 ?m is 10% or more and less than 30%.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Makiko Kodama, Hiroshi Kishi, Minoru Kanda
  • Patent number: 8709152
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 29, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Publication number: 20140102357
    Abstract: A method for growing a single crystal in a chamber. The method includes heating raw material to form a melt for forming the single crystal. A crystal seed is then inserted into the melt and pulled from the melt to form a partial ingot, wherein the partial ingot radiates heat. An amount of gas is then introduced into the chamber which corresponds to a size of the partial ingot so as to provide a constant crystallization rate.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventor: Keith Ritter
  • Patent number: 8696813
    Abstract: Leakage of silicon melt is monitored and touch of a seed crystal at the silicon melt is detected, and in addition, reinforcement of a vitreous silica crucible to be endurable during pulling for a long time and decrease of impurity concentration of a silicon single crystal can be expected. A method for manufacturing a silicon single crystal is provided.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 15, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Hideki Watanabe, Nobumitsu Takase
  • Publication number: 20140090592
    Abstract: Systems and methods for continuous sapphire growth are disclosed. One embodiment may take the form of a method including feeding a base material into a crucible located within a growth chamber, heating the crucible to melt the base material and initiating crystalline growth in the melted base material to create a crystal structure. Additionally, the method includes pulling the crystal structure away from crucible and feeding the crystal structure out of the growth chamber.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: Apple Inc.
    Inventors: Dale N. Memering, Scott A. Myers
  • Patent number: 8663389
    Abstract: A method and apparatus for depositing III-V material is provided. The apparatus includes a reactor partially enclosed by a selectively permeable membrane 12. A means is provided for generating source vapors, such as a vapor-phase halide of a group III element (IUPAC group 13) within the reactor volume 10, and an additional means is also provided for introducing a vapor-phase hydride of a group V element (IUPAC group 15) into the volume 10. The reaction of the group III halide and the group V hydride on a temperature-controlled substrate 18 within the reactor volume 10 produces crystalline III-V material and hydrogen gas. The hydrogen is preferentially removed from the reactor through the selectively permeable membrane 12, thus avoiding pressure buildup and reaction imbalance. Other gases within the reactor are unable to pass through the selectively permeable membrane.
    Type: Grant
    Filed: May 21, 2011
    Date of Patent: March 4, 2014
    Inventor: Andrew Peter Clarke
  • Publication number: 20140048011
    Abstract: According to the invention, a device and a method for producing materials having a monocrystalline or multicrystalline structure are provided, in which a container is arranged between two pressure regions and the setting of the height of the melt in the container takes place via the setting of the differential pressure between the pressure regions. As a result, even particulate material can be fed continuously to the container and melted uniformly. Delivery material with high purity can also be pulled out of the container.
    Type: Application
    Filed: March 21, 2012
    Publication date: February 20, 2014
    Applicant: Streicher Maschinenbau GmbH & Co., KG
    Inventor: Rupert Köckeis
  • Patent number: 8652257
    Abstract: A melting furnace, mounted adjacent a growth furnace, comprises a receiving container for melting therein raw material in a particle or powder form falling in it from a feeder. The receiving container accommodates a set of slope-wise plates providing a distributed sliding of partially melted raw material particles over the surface of these plates and their complete melting while moving downward; eventually the melted raw material flows into the crucible of the growth furnace through a conveying tube extending slantingly from the bottom of the receiving container to the crucible through coaxial openings in housings of both furnaces. The rate of feeding is given solely by the feeder, and at continuous feeding the raw material flows continuously by gravity from the feeder to the crucible of the growth furnace, first in a solid state (powder, granules, pellets, etc.) and then in a liquid state.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 18, 2014
    Inventors: Lev George Eidelman, Vladimir Ilya Zheleznyak
  • Patent number: 8641822
    Abstract: An improvement to a method and an apparatus for growing a monocrystalline silicon ingot from silicon melt according to the CZ process. The improvement performs defining an error between a target taper of a meniscus and a measured taper, and translating the taper error into a feedback adjustment to a pull-speed of the silicon ingot. The conventional control model for controlling the CZ process relies on linear control (PID) controlling a non-linear system of quadratic relationship defined in the time domain between the diameter and the pull-speed. The present invention transforms the quadratic relationship in the time domain between the diameter and the pull-speed into a simile, linear relationship in the length domain between a meniscus taper of the ingot and the pull-speed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 4, 2014
    Assignee: Sumco Phoenix Corporation
    Inventors: Benno Orschel, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Publication number: 20140000509
    Abstract: The present invention provides a semiconductor crystal removal apparatus which realizes effective removal of a semiconductor crystal from a crucible through rapid melting of a solidified flux, and a method for producing a semiconductor crystal. The semiconductor crystal removal apparatus includes a crucible support for supporting a crucible so that the opening of the crucible is directed downward; a heater for heating the crucible supported on the crucible support; and a semiconductor crystal receiving net for receiving a semiconductor crystal falling from the opening of the crucible. The semiconductor crystal removal apparatus further includes a determination portion for determining removal of the semiconductor crystal on the basis of a change in weight through falling of the semiconductor crystal.
    Type: Application
    Filed: June 14, 2013
    Publication date: January 2, 2014
    Inventors: Shiro YAMAZAKI, Seiji NAGAI, Miki MORIYAMA
  • Patent number: 8617313
    Abstract: A system for preparing a semiconductor film, the system including: a laser source; optics to form a line beam, a stage to support a sample capable of translation; memory for storing a set of instructions, the instructions including irradiating a first region of the film with a first laser pulse to form a first molten zone, said first molten zone having a maximum width (Wmax) and a minimum width (Wmin), wherein the first molten zone crystallizes to form laterally grown crystals; laterally moving the film in the direction of lateral growth a distance greater than about one-half Wmax and less than Wmin; and irradiating a second region of the film with a second laser pulse to form a second molten zone, wherein the second molten zone crystallizes to form laterally grown crystals that are elongations of the crystals in the first region, wherein laser optics provide Wmax less than 2×Wmin.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. Van Der Wilt
  • Publication number: 20130329296
    Abstract: A device grows sapphire ingots by dipping a sapphire seed into molten aluminum oxide and lifting and spinning the sapphire seed from the molten aluminum oxide to cause the molten aluminum oxide adhering to the sapphire. Meanwhile, the device controls temperature such that the molten aluminum oxide is crystallized on the sapphire seed which is gradually cooled down to a room temperature. The device also includes a housing and air controller for providing desire air conditions for growing the sapphire ingot.
    Type: Application
    Filed: January 11, 2013
    Publication date: December 12, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ga-Lane CHEN, Chung-Pei WANG
  • Patent number: 8562739
    Abstract: A silica glass crucible used for pulling up a silicon single crystal and made from natural silica a raw material is provided with a region within a certain range from the center of a bottom section of the crucible and up to 0.5 mm deep from an inner surface and which substantially does not include gas bubbles, wherein an average value of a concentration of Al included in a region within the certain range from the center of the bottom section of the crucible and up to 0.5 mm deep from the inner surface is 30 ppm or more and 150 ppm or less. In the case where the inner layer of the crucible bottom section is formed in this way, dents in the inner surface are prevented and the generation of gas bubbles is reduced.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 22, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Kazuhiro Harada, Satoshi Kudo
  • Patent number: 8545623
    Abstract: The present invention provides a method and apparatus for controlling the growth of a silicon ingot in which the diameter of the growing silicon ingot can be accurately measured. A camera captures an image of the interface ring between the growing silicon ingot and the silicon melt. An image processor extracts local intensity maxima from the captured image, which are then digitized into an image data which comprises attributes of the pixels forming the local intensity maxima. An analyzer statistically analyzes the image data to derive parameters of an equation statistically simulating the interface ring. A probabilistic filter conducts the statistical analysis on the equation in which the respective pixels are weighted by their weight factors. The weight factor functions to attenuate the effect of noises caused by pixels which do not represent the interface ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: October 1, 2013
    Assignees: Sumco Phoenix Corporation, Sumco Corporation
    Inventors: Benno Orschel, Keiichi Takanashi
  • Publication number: 20130199439
    Abstract: A device for crystallising a molecule to be crystallised, which includes: at least one crystallisation cell that includes a crystallisation chamber for receiving a first solution S1 containing the molecule to be crystallised and the crystal seeds thereof, a dialysis membrane, and a container to be filled with a second solution S2 that contains constituents selected from the group containing crystallisation agents, additives and buffers; and at least one image acquisition means. The crystallisation device is characterized in that it includes: at least one addition means arranged to add, to the container, constituents selected from the group containing crystallisation agents, additives and buffers of solution S2; and/or at least one sampling means arranged to collect, from the container, all or a portion of solution S2. The invention also relates to a crystallisation method.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 8, 2013
    Applicant: UNIVERSITE JOSEPH FOURIER (GRENOBLE 1)
    Inventor: Monika Spano
  • Patent number: 8454748
    Abstract: A calculation method for finding the hole mobility or the electron mobility of an organic film. The method includes the steps of: calculating the electron density of a film using semi-empirical quantum molecular dynamics calculations; using the fact that holes and electrons move easily through regions of high electron density to calculate the probability that a hole or an electron will move in an excited state in which an electron is excited from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) using a Monte Carlo method; and, using the probability as a performance index, calculating the hole mobility from the number of carriers which exist in the HOMO and the orbitals below the HOMO, or calculating the electron mobility from the number of carriers which exist in the LUMO and the orbitals above the LUMO.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Iwaki, Motoki Nakashima