With Responsive Control Means Patents (Class 117/202)
  • Patent number: 11011658
    Abstract: Method and system for wavelength thermophotovoltaic (WTPV) power generation. In one embodiment, the system comprises a refractory waveguide that collects broadband infrared light generated by a heat source; a filter that filters the collected broadband infrared light to generate narrow-band infrared light; and a thermophotovoltaic (TPV) converter, thermally de-coupled from the heat source, that receives the narrow-band infrared light and converts the received narrow-band infrared light to electrical power.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 18, 2021
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Patrick J. Taylor, Harry S. Hier, Ivan C. Lee, Mark Dubinsky, Zun Zhang, Priyalal S. Wijewarnasuriya
  • Patent number: 10982350
    Abstract: A production method of a monocrystalline silicon includes: forming a shoulder of the monocrystalline silicon; and forming a straight body of the monocrystalline silicon. In forming the shoulder, the shoulder is formed such that a part of growth striations, which extend radially across the shoulder, has an outer end interrupted by another part of the growth striations not to reach a peripheral portion of the shoulder and that no remelt growth area with a height of 200 ?m or more in a growth direction is generated.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 20, 2021
    Assignee: SUMCO CORPORATION
    Inventors: Yasuhito Narushima, Toshimichi Kubota
  • Patent number: 10982349
    Abstract: The present disclosure provides an open temperature field device, including a bottom plate, a drum, a filler, and a cover plate. The bottom plate may be mounted on a bottom of the temperature field device and cover an open end of the drum. The cover plate may be mounted on a top of the temperature field device and cover the other open end of the drum. The filler may be filled inside the drum. In the temperature field device, the filler filled inside the drum can form a new thermal insulation layer, which effectively prevents the problem of sudden temperature changes caused by the cracking of the drum and improves the stability performance and a count of reusable times of the temperature field device. Meanwhile, by adjusting the filling height and the tightness of the filler, the temperature gradient of the temperature field device can be adjusted.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: April 20, 2021
    Assignee: MEISHAN BOYA ADVANCED MATERIALS CO., LTD.
    Inventors: Yu Wang, Weiming Guan, Zhenxing Liang
  • Patent number: 10981800
    Abstract: Briefly, embodiments of systems and/or methods for synthesis of zinc oxide are described, including a chamber enclosure, a wafer substrate holder, a fluid handling system, and sequences for implementation.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 20, 2021
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Jacob J. Richardson, Evan C. O'Hara
  • Patent number: 10975493
    Abstract: To provide a single crystal production apparatus capable of efficiently producing a single crystal of relatively high quality, by cooling a melting zone, the device including: a heating part that forms the melting zone from a raw material by irradiation of light; and a supporting part that supports the melting zone in a non-contact manner.
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: April 13, 2021
    Inventor: Shin Akutsu
  • Patent number: 10954606
    Abstract: Methods for forming single crystal silicon ingots in which plural sample rods are grown from the melt are disclosed. A parameter related to the impurity concentration of the melt or ingot is measured. In some embodiments, the sample rods each have a diameter less than the diameter of the product ingot.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: March 23, 2021
    Assignee: GlobalWafers CO., Ltd.
    Inventors: Carissima Marie Hudson, JaeWoo Ryu
  • Patent number: 10844513
    Abstract: Single crystal semiconductor wafers comprise oxygen and an n-type dopant, and are produced by a process comprising providing a silicon melt containing n-type dopant in a quartz crucible, the melt having an initial height hM; heating the melt from the side by selectively supplying heat to an upper volume of the melt having an initial height hm, wherein hm is smaller than hM; pulling a single crystal of silicon from the melt by the CZ method with a pulling velocity V; heating the melt from above in the region of a phase boundary between the growing single crystal and the melt; heating the melt from above in the region of a surface of the melt; subjecting the melt to a magnetic field; counterdoping the melt with p-type dopant; and separating the semiconductor wafer of single-crystal silicon from the single crystal. An apparatus for accomplishing the process is also disclosed.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: November 24, 2020
    Assignee: SILTRONIC AG
    Inventors: Walter Heuwieser, Dieter Knerer, Werner Schachinger, Masamichi Ookubo
  • Patent number: 10662548
    Abstract: An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus may further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: May 26, 2020
    Assignee: Leading Edge Crystal Technologies, Inc.
    Inventors: Brian H. Mackintosh, Peter L. Kellerman, Dawei Sun
  • Patent number: 10553416
    Abstract: A mass spectrometer includes a beam radiator radiating a beam to a sample. A laser radiator radiates laser light onto an irradiation surface of a surface of the sample irradiated with the beam or above the irradiation surface. The laser radiator splits the laser light into at least first light and second light. The laser radiator adjusts a polarization state, a length of an optical path, or a direction of the optical path of at least either the first light or the second light to condense the first light and the second light onto the irradiation surface or above the irradiation surface. A detector detects particles discharged from the sample.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: February 4, 2020
    Assignee: Toshiba Memory Corproation
    Inventors: Haruko Akutsu, Toma Yorisaki
  • Patent number: 10392721
    Abstract: A laser heated pedestal growth system includes two lasers having output beams that are combined with a beam combiner to produce a single beam. A growth chamber that includes a final focusing mirror for receiving and focusing the single beam of the lasers onto a tip of a feed material to create a molten zone in a focal region. A feed transport mechanism is adapted for transporting a feed material through the growth chamber and into the molten zone. An opposing seed transport mechanism is adapted for withdrawing a seed material from the growth chamber. An imaging system is adapted for capturing an image of the molten zone within the growth chamber. A controller in communication with the feed transport mechanism, the seed transport mechanism, one of the two lasers, and the imagining system is adapted to control and stabilize a fiber growth process by controlling the feed transport mechanism, the seed transport mechanism, and the power of the combined laser beam.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 27, 2019
    Inventor: Nicholas Djeu
  • Patent number: 10344396
    Abstract: An apparatus for physical vapor transport growth of semiconductor crystals having a cylindrical vacuum enclosure defining an axis of symmetry; a reaction-cell support for supporting a reaction cell inside the vacuum enclosure; a cylindrical reaction cell made of material that is transparent to RF energy and having a height Hcell defined along the axis of symmetry; an RF coil provided around exterior of the vacuum enclosure and axially centered about the axis of symmetry, wherein the RF coil is configured to generate a uniform RF field along at least the height Hcell; and, an insulation configured for generating thermal gradient inside the reaction cell along the axis of symmetry. The ratio of height of the RF induction coil, measured along the axis of symmetry, to the height Hcell may range from 2.5 to 4.0 or from 2.8 to 4.0.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 9, 2019
    Assignee: DOW SILICONES CORPORATION
    Inventor: Mark Loboda
  • Patent number: 10096473
    Abstract: Described herein are techniques for forming an epitaxial III-V layer on a substrate. In a pre-clean chamber, a native oxygen layer may be replaced with a passivation layer by treating the substrate with a hydrogen plasma (or products of a plasma decomposition). In a deposition chamber, the temperature of the substrate may be elevated to a temperature less than 700° C. While the substrate temperature is elevated, a group V precursor may be flowed into the deposition chamber in order to transform the hydrogen terminated (Si—H) surface of the passivation layer into an Arsenic terminated (Si—As) surface. After the substrate has been cooled, a group III precursor and the group V precursor may be flowed in order to form a nucleation layer. Finally, at an elevated temperature, the group III precursor and group V precursor may be flowed in order to form a bulk III-V layer.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: October 9, 2018
    Assignee: AIXTRON SE
    Inventors: Maxim Kelman, Zhongyuan Jia, Somnath Nag, Robert Ditizio
  • Patent number: 10088242
    Abstract: In one aspect, a cooling system is provided for use in computing devices, such as laptops, cell phones, and tablet computers. The cooling system includes a heat spreader coupled to a radiator via a heat pipe having a midline. The heat pipe includes a first end portion longitudinally extending along the midline, a second end portion longitudinally extending along the midline, and a mid-portion longitudinally extending along the midline. The mid-portion is located between the first end portion and the second end portion and it has a thickness that is greater than the thicknesses of both the first portion and the second portion thereby reducing the overall thermal resistance of the heat pipe.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: October 2, 2018
    Assignee: Google LLC
    Inventors: Felix Jose Alvarez Rivera, James Tanner, William Riis Hamburgen
  • Patent number: 10072352
    Abstract: An exemplary embodiment of the present invention provides a silicon single crystal growing apparatus and method. The apparatus comprises: a chamber; a crucible that is disposed in the chamber and receives melted silicon; a heater disposed outside the crucible to heat the crucible; a heat shield part disposed in the chamber; and an auxiliary heat shield part disposed above the crucible to move upward and downward, wherein the auxiliary heat shield part is disposed to be separated from a body part of a single crystal that has grown from the melted silicon, and a rising speed is controlled such that a defect-free zone in the single crystal body part increases. The auxiliary heat shield part can reduce a deviation of a temperature gradient in the body part, whereby increasing the distribution of a defect-free zone in the body part.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: September 11, 2018
    Assignee: SK SILTRON CO., LTD.
    Inventors: Do Yeon Kim, Il Soo Choi, Yun Ha An
  • Patent number: 9994969
    Abstract: A view port for observing ingot growth process of the present embodiment is as a view port for observing the inside of a chamber providing a space in which a growth process of an ingot is performed includes a body part disposed on the a side of the chamber and having a hole connected to the inside of the chamber; a window being inserted into the hole of the body part to maintain a sealing state of the chamber and through which light being transmitted from the inside of the chamber; and, a window purge being disposed on the side of the body part an forms air curtain. The view port of the present invention proposed has an advantage of prevention of the glass contamination as well as self-cleaning of the contaminated glass of the view port. The ingot that grows in the inside of the chamber may be clearly observed through such a view port and then the process condition is determined through the process data accurately observed.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: June 12, 2018
    Assignee: SK Siltron Co., Ltd.
    Inventors: Seong-Hyeok Kim, Gwang-Ha Na, Hyun-Su Jang
  • Patent number: 9982366
    Abstract: A single crystal production apparatus including a chamber housing a crucible and a heater, to which at least part of the heater is connected, a strain buffering support member connected to the chamber in a manner capable of being horizontally displaced while supporting the chamber in the perpendicular direction, and a base member to which a crucible support shaft and a seed crystal support shaft are directly connected and the chamber is connected via the strain buffering support member, wherein the rigidity of the base member is larger than the rigidity of the strain buffering support member, the chamber has a through hole, the crucible support shaft and the seed crystal support shaft are inserted into the through hole, and the gap between the crucible support shaft and the through hole and the gap between the seed crystal support shaft and the through hole are sealed by a sealing member.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: May 29, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Nobuhira Abe
  • Patent number: 9799737
    Abstract: A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: October 24, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xinyu Bao, Errol Antonio C. Sanchez, David K. Carlson, Zhiyuan Ye
  • Patent number: 9650724
    Abstract: A method of charging raw material, includes: storing the material in a recharge tube including a quartz cylinder for storing the material and a conical valve for opening or closing an opening at a lower end of the cylinder; installing the recharge tube storing the raw material in a chamber; and feeding the raw material stored in the recharge tube into the crucible by locating the recharge tube and crucible such that a distance between the lower end of the recharge tube and raw material or melt in the crucible ranges from 200 to 250 mm, and lowering the conical valve to open the opening while simultaneously lowering the crucible such that a ratio CL/SL of the lowering speed of the crucible to the lowering speed of the conical valve ranges from 1.3 to 1.45. The method can inhibit damage of the quartz crucible and recharge tube.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: May 16, 2017
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Katsuyuki Kitagawa, Masahiko Urano, Katsuhiro Yoshida
  • Patent number: 9234298
    Abstract: A method for growing a single crystal in a chamber. The method includes heating raw material to form a melt for forming the single crystal. A crystal seed is then inserted into the melt and pulled from the melt to form a partial ingot, wherein the partial ingot radiates heat. An amount of gas is then introduced into the chamber which corresponds to a size of the partial ingot so as to provide a constant crystallization rate.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 12, 2016
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Keith Ritter
  • Patent number: 9212431
    Abstract: A graphite member utilized in a pulling device for pulling a silicon single crystal is provided. An edge part of the graphite member is rounded off which is exposed to a reactive gas. The graphite member may comprise: a plate part having a thickness of ‘t’ wherein a curvature radius of ‘r’ satisfies the formula: t/8?r?t/4.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 15, 2015
    Assignee: SUMCO TECHXIV CORPORATION
    Inventors: Shinichi Kawazoe, Fukuo Ogawa, Yasuhito Narushima, Tsuneaki Tomonaga, Toshimichi Kubota
  • Publication number: 20150122172
    Abstract: An apparatus for processing materials at high temperatures comprises a high strength enclosure; a plurality of high strength radial segments disposed adjacent to and radially inward from the high strength enclosure; a liner disposed adjacent to and radially inward from the radical segments; a chamber defined interior to the liner; a heating device disposed within the chamber; and a capsule disposed within the chamber, the capsule configured to hold a supercritical fluid. The apparatus may be used for growing crystals, e.g., GaN, under high temperature and pressure conditions.
    Type: Application
    Filed: July 28, 2011
    Publication date: May 7, 2015
    Applicant: MOMENTIVE PERFORMANCE MATERIALS, INC.
    Inventors: Kirsh Afimiwala, Larry Zeng
  • Patent number: 9017478
    Abstract: Provided are an apparatus and method of extracting a silicon ingot. The apparatus for extracting a silicon ingot includes a chamber in which a silicon source material introduced into a cold crucible is melted, a primary extraction apparatus vertically movably installed in the chamber and configured to solidify the molten silicon to extract the silicon ingot, a movable apparatus configured to horizontally move the primary extraction apparatus, and a secondary extraction apparatus vertically movably installed under the chamber and configured to extract the silicon ingot in a state in which the primary extraction apparatus is moved to one side. Therefore, as the height of the extraction apparatus is reduced, manufacturing cost of equipment can be reduced and installation space of the extraction apparatus can also be reduced.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 28, 2015
    Assignee: KCC Corporation
    Inventors: Ki Hyun Chang, Dong Hyun Nam
  • Patent number: 9011599
    Abstract: A method of determining a temperature in a deposition reactor includes the steps of depositing a first epitaxial layer of silicon germanium on a substrate, depositing a second epitaxial layer of silicon above the first epitaxial layer, measuring the thickness of the second epitaxial layer and determining the temperature in the deposition reactor using the measured thickness of the second epitaxial layer. The method may also include heating the deposition reactor to approximately a predetermined temperature using a heating device and a temperature measuring device and generating a signal indicative of a temperature within the deposition reactor. The method may also contain the steps of comparing the measured thickness with a predetermined thickness of the second epitaxial layer corresponding to the predetermined temperature and determining the temperature in the deposition reactor using the measured thickness of the second epitaxial layer and the predetermined thickness of the second epitaxial layer.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jhi-Cherng Lu, Jr-Hung Li, Chii-Horng Li, Pang-Yen Tsai, Bing-Hung Chen, Tze-Liang Lee
  • Patent number: 8968471
    Abstract: The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, which can improve quality, productivity and energy conversion efficiency of the silicon substrate. The apparatus includes a crucible unit configured to receive raw silicon and having a discharge port, a heating unit provided to an outer wall and an external bottom surface of the crucible unit and heating the crucible unit to form molten silicon, a casting unit casting the molten silicon into a silicon substrate, a cooling unit rapidly cooling the silicon substrate, and a transfer unit disposed at one end of the cooling unit and transferring the silicon substrate. The casting unit includes a casting unit body having a casting space defined therein to be horizontally connected to the discharge port, and an assistant heating mechanism that preheats the casting unit body to control a solidification temperature of the silicon substrate.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo-Yun Jang, Jin-Seok Lee, Joon-Soo Kim
  • Publication number: 20140373774
    Abstract: A method for calculating a height position of a silicon melt surface at the time of pulling a CZ silicon single crystal is disclosed, including: obtaining a first crystal diameter measured from a fusion ring on a boundary of the silicon melt and the silicon single crystal by using a CCD camera installed at an arbitrary angle relative to the silicon single crystal, and a second crystal diameter measured by using two CCD cameras installed parallel to both ends of a crystal diameter of the silicon single crystal; and calculating the height position of the silicon melt surface in the crucible during pulling of the silicon single crystal from a difference between the first crystal diameter and the second crystal diameter. As a result, a method for enabling further accurately calculating a height position of a silicon melt surface at the time of pulling a silicon single crystal is provided.
    Type: Application
    Filed: January 22, 2013
    Publication date: December 25, 2014
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Naoki Masuda, Takahiro Yanagimachi
  • Patent number: 8888911
    Abstract: The present invention provides a technique which enables production of single crystal silicon having relatively low resistivity by preventing cell growth during crystal growth from occurring, especially in a case where a relatively large amount of dopant is added to a molten silicon raw material. Specifically, the present invention provides a method of producing single crystal silicon by the Czochralski process, comprising producing single crystal silicon having relatively low resistivity by controlling a height of a solid-liquid interface when the single crystal silicon is pulled up.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Masayuki Uto, Tuneaki Tomonaga, Toshimichi Kubota, Fukuo Ogawa, Yasuhito Narushima
  • Patent number: 8882911
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a seed crystal by supplying a material gas from below the seed crystal. The apparatus includes a heating container and a base located in the heating container. The seed crystal is mounded on the base. The apparatus further includes a first inlet for causing a purge gas to flow along an inner wall surface of the heating container, a purge gas source for supplying the purge gas to the first inlet, a second inlet for causing the purge gas to flow along an outer wall surface of the base, and a mechanism for supporting the base and for supplying the purge gas to the base from below the base.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 11, 2014
    Assignee: DENSO CORPORATION
    Inventors: Yuuichirou Tokuda, Kazukuni Hara, Jun Kojima
  • Patent number: 8840723
    Abstract: An apparatus for manufacturing polycrystalline silicon whereby raw-material gas is supplied to one or more heated silicon seed rods provided vertically in a reactor so as to deposit the polycrystalline silicon on a surface of the silicon seed rod, having a seed rod holding member, made of conductive material, having a holding hole in which a lower end of the silicon seed rod is inserted, the holding hole having a horizontal cross-sectional shape with at least two corners, and the holding member having a screw hole extending from the outer surface of the seed rod holding member to at least the holding hole and formed at the location of at least two corners of the holding hole; and a fixing screw which fixes the silicon seed rod and is threaded through at least one of the screw holes.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshihide Endoh, Masayuki Tebakari, Toshiyuki Ishii, Masaaki Sakaguchi
  • Patent number: 8801853
    Abstract: This mechanism for controlling a melt level includes: an optical recording device by which a real image of a furnace internal structural object and a reflected image reflected on the melt surface; and a processing device which, taking a value based on the real image as a reference value, controls the position of the melt surface based on a relationship of a position or a size of the reflected image, a distance between the reflected image and the real image, or amounts of changes thereof to the position of the melt surface. This mechanism for adjusting a melt level includes: the above mechanism for controlling a melt level; and a lifting mechanism which is controlled by the mechanism for controlling a melt level and adjusts the melt surface to the set position.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: August 12, 2014
    Assignee: Sumco Corporation
    Inventor: Keiichi Takanashi
  • Patent number: 8728586
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 20, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Carl A. Sorensen, John M. White
  • Patent number: 8728238
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 20, 2014
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Patent number: 8721786
    Abstract: A Czochralski process (“CZ”) crystal growth method and furnace having a heater capable of generating a heating zone, a crucible within the heating zone and capable of retaining a volume of molten crystal growth material forming a melt line oriented in a designated position within the heating zone, a seed growth rod retractable from the crucible with a rod retraction mechanism, for forming a crystal boule thereon proximal the melt line from the molten crystal growth material. The furnace causes relative movement between the crucible and heating zone as the crystal boule is retracted, so that the melt line is maintained in the designated position within the heating zone. In some embodiments relative movement is based at least in part on sensed weight of the growing crystal boule. In other embodiments the crucible growth rod retraction mechanism are fixed relative to each other by a gantry.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: May 13, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton, Piotr Szupryczynski
  • Patent number: 8721789
    Abstract: An apparatus for crystallization of silicon includes a crucible for containing silicon, a heating and heat dissipating arrangement provided for melting the silicon contained in the crucible and for subsequently solidifying the molten silicon, and an electromagnetic stirring device provided for stirring the molten silicon in the crucible during the solidification of the molten silicon. A control arrangement is provided for controlling the heating and heat dissipating arrangement to solidify the molten silicon at a specified solidification rate and for controlling the electromagnetic stirring device to stir the molten silicon in response to the specified solidification rate of the molten silicon such that the ratio of a speed of the molten silicon and the specified solidification rate is above a first threshold value.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: May 13, 2014
    Assignee: ABB AB
    Inventors: Jan-Erik Eriksson, Olof Hjortstam, Ulf Sand
  • Publication number: 20140123891
    Abstract: A method for producing a crystalline material in a crucible in a crystal growth apparatus is disclosed. The method comprises, in part, the step of determining the amount of solidified material present in a partially solidified melt produced during the growth phase using at least one laser positioned at a height above the crucible. A crystal growth apparatus comprising the laser is also disclosed.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 8, 2014
    Applicant: GT CRYSTAL SYSTEMS, LLC
    Inventor: Edward P. Morris
  • Patent number: 8709152
    Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 29, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Publication number: 20140083352
    Abstract: A method for synthesizing ZnO, comprising continuously circulating a growth solution that is saturated with ZnO between a warmer deposition zone, which contains a substrate or seed, and a cooler dissolution zone, which is contains ZnO source material.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jacob J. Richardson, Frederick F. Lange
  • Patent number: 8663389
    Abstract: A method and apparatus for depositing III-V material is provided. The apparatus includes a reactor partially enclosed by a selectively permeable membrane 12. A means is provided for generating source vapors, such as a vapor-phase halide of a group III element (IUPAC group 13) within the reactor volume 10, and an additional means is also provided for introducing a vapor-phase hydride of a group V element (IUPAC group 15) into the volume 10. The reaction of the group III halide and the group V hydride on a temperature-controlled substrate 18 within the reactor volume 10 produces crystalline III-V material and hydrogen gas. The hydrogen is preferentially removed from the reactor through the selectively permeable membrane 12, thus avoiding pressure buildup and reaction imbalance. Other gases within the reactor are unable to pass through the selectively permeable membrane.
    Type: Grant
    Filed: May 21, 2011
    Date of Patent: March 4, 2014
    Inventor: Andrew Peter Clarke
  • Patent number: 8652257
    Abstract: A melting furnace, mounted adjacent a growth furnace, comprises a receiving container for melting therein raw material in a particle or powder form falling in it from a feeder. The receiving container accommodates a set of slope-wise plates providing a distributed sliding of partially melted raw material particles over the surface of these plates and their complete melting while moving downward; eventually the melted raw material flows into the crucible of the growth furnace through a conveying tube extending slantingly from the bottom of the receiving container to the crucible through coaxial openings in housings of both furnaces. The rate of feeding is given solely by the feeder, and at continuous feeding the raw material flows continuously by gravity from the feeder to the crucible of the growth furnace, first in a solid state (powder, granules, pellets, etc.) and then in a liquid state.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 18, 2014
    Inventors: Lev George Eidelman, Vladimir Ilya Zheleznyak
  • Publication number: 20140033967
    Abstract: In consideration of influence of segregation, an evaporation area of a volatile dopant and influence of pulling-up speed at the time of manufacturing a monocrystal using a monocrystal pulling-up device, an evaporation speed formula for calculating evaporation speed of the dopant is derived. At predetermined timing during pulling-up, gas flow volume and inner pressure in a chamber are controlled such that a cumulative evaporation amount of the dopant, calculated based on the evaporation speed formula, becomes a predetermined amount. A difference between a resistivity profile of the monocrystal predicted based on the evaporation speed formula and an actual resistivity profile is made small. Since no volatile dopant is subsequently added, increase in workload on an operator, increase of manufacturing time, an increase in amorphous adhering to the inside of the chamber, and an increase in workload at the time of cleaning the inside of the chamber can be prevented.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Yasuhito NARUSHIMA, Fukuo OGAWA, Shinichi KAWAZOE, Toshimichi KUBOTA
  • Patent number: 8641822
    Abstract: An improvement to a method and an apparatus for growing a monocrystalline silicon ingot from silicon melt according to the CZ process. The improvement performs defining an error between a target taper of a meniscus and a measured taper, and translating the taper error into a feedback adjustment to a pull-speed of the silicon ingot. The conventional control model for controlling the CZ process relies on linear control (PID) controlling a non-linear system of quadratic relationship defined in the time domain between the diameter and the pull-speed. The present invention transforms the quadratic relationship in the time domain between the diameter and the pull-speed into a simile, linear relationship in the length domain between a meniscus taper of the ingot and the pull-speed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: February 4, 2014
    Assignee: Sumco Phoenix Corporation
    Inventors: Benno Orschel, Joel Kearns, Keiichi Takanashi, Volker Todt
  • Patent number: 8617313
    Abstract: A system for preparing a semiconductor film, the system including: a laser source; optics to form a line beam, a stage to support a sample capable of translation; memory for storing a set of instructions, the instructions including irradiating a first region of the film with a first laser pulse to form a first molten zone, said first molten zone having a maximum width (Wmax) and a minimum width (Wmin), wherein the first molten zone crystallizes to form laterally grown crystals; laterally moving the film in the direction of lateral growth a distance greater than about one-half Wmax and less than Wmin; and irradiating a second region of the film with a second laser pulse to form a second molten zone, wherein the second molten zone crystallizes to form laterally grown crystals that are elongations of the crystals in the first region, wherein laser optics provide Wmax less than 2×Wmin.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: December 31, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Paul C. Van Der Wilt
  • Publication number: 20130329296
    Abstract: A device grows sapphire ingots by dipping a sapphire seed into molten aluminum oxide and lifting and spinning the sapphire seed from the molten aluminum oxide to cause the molten aluminum oxide adhering to the sapphire. Meanwhile, the device controls temperature such that the molten aluminum oxide is crystallized on the sapphire seed which is gradually cooled down to a room temperature. The device also includes a housing and air controller for providing desire air conditions for growing the sapphire ingot.
    Type: Application
    Filed: January 11, 2013
    Publication date: December 12, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ga-Lane CHEN, Chung-Pei WANG
  • Patent number: 8603898
    Abstract: A method for forming a conformal group III/V layer on a silicon substrate and the resulting substrate with the group III/V layers formed thereon. The method includes removing the native oxide from the substrate, positioning a substrate within a processing chamber, heating the substrate to a first temperature, cooling the substrate to a second temperature, flowing a group III precursor into the processing chamber, maintaining the second temperature while flowing a group III precursor and a group V precursor into the processing chamber until a conformal layer is formed, heating the processing chamber to an annealing temperature, while stopping the flow of the group III precursor, and cooling the processing chamber to the second temperature. Deposition of the III/V layer may be made selective through the use of halide gas etching which preferentially etches dielectric regions.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 10, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Bao, Errol Antonio C. Sanchez, David K. Carlson, Zhiyuan Ye
  • Publication number: 20130263773
    Abstract: The distance between the heat shield and the melt level of the melt can be regulated in a high precision. The real image includes at least the circular opening of the heat shield provided in such a way that the heat shield covers a part of the melt level of the silicon melt. The mirror image is a reflected image of the heat shield on the surface of the silicon melt. Based on the distance between the obtained real image and the mirror image, the melt level position of the silicon melt is computed, and the distance between the heat shield and the melt level position is regulated.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 10, 2013
    Applicant: SUMCO CORPORATION
    Inventors: Keiichi TAKANASHI, Ken HAMADA
  • Publication number: 20130263772
    Abstract: In a Czochralski process for growing single crystal silicon ingots, a system is provided for adding solid material to the liquid silicon during crystal growth for the purpose of directly controlling the latent heat of fusion with respect to a crystal melt interface. In contrast to the standard method for controlling power to the crucible heaters, the present system has been found to be much more effective for controlling melt temperature in the crucible, especially in heavily insulated systems. The system provides the advantages of reducing the electric power required to operate a Czochralski grower, while increasing the speed with which the melt temperature can be raised or lowered in a controlled manner.
    Type: Application
    Filed: December 4, 2008
    Publication date: October 10, 2013
    Inventors: David L. Bender, Gary Janik, David E.A. Smith
  • Patent number: 8545628
    Abstract: The present invention relates to methods and apparatus that are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the methods relate to substantially preventing the formation of unwanted materials on an isolation valve fixture within a chemical vapor deposition (CVD) reactor. In particular, the invention provides apparatus and methods for limiting deposition/condensation of GaCl3 and reaction by-products on an isolation valve that is used in the system and method for forming a monocrystalline Group III-V semiconductor material by reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 1, 2013
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Patent number: 8535442
    Abstract: This invention includes a system and a method for growing crystals including a batch auto-feeding mechanism. The proposed system and method provide a minimization of compositional segregation effect during crystal growth by controlling growth rate involving a high-temperature flow control system operable in an open and a closed loop crystal growth process. The ability to control the growth rate without corresponding loss of volatilize-able elements enables significantly improvement in compositional homogeneity and a consequent increase in crystal yield. This growth system and method can be operated in production scale, simultaneously for a plurality of growth crucibles to further the reduction of manufacturing costs, particularly for the crystal materials of binary or ternary systems with volatile components, such as Lead (Pb) and Indium (In).
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 17, 2013
    Assignee: H.C. Materials Corporation
    Inventors: Pengdi Han, Jian Tian
  • Publication number: 20130213295
    Abstract: An apparatus for growing a crystalline sheet from a melt includes a cold block assembly. The cold block assembly may include a cold block and a shield surrounding the cold block and being at an elevated temperature with respect to that of the cold block, the shield defining an opening disposed along a surface of the cold block proximate a melt surface that defines a cold area comprising a width along a first direction of the cold block, the cold area operable to provide localized cooling of a region of the melt surface proximate the cold block. The apparatus may further include a crystal puller arranged to draw a crystalline seed in a direction perpendicular to the first direction when the cold block assembly is disposed proximate the melt surface.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Brian H. Mackintosh, Peter L. Kellerman, Dawei Sun
  • Patent number: 8506708
    Abstract: A silica glass crucible for pulling up a silicon single crystal including a wall part and a bottom part is provided with a natural silica glass layer which forms at least one part of a an inner surface of the bottom part, and a synthetic silica glass layer which forms at least an inner surface of the wall part, wherein a concentration of Ca included in the natural silica glass layer is 0.5 ppm or less.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 13, 2013
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Satoshi Kudo
  • Publication number: 20130152850
    Abstract: In a method for monitoring and controlling crystal growth during a crystal growing procedure, heights of a plurality of measuring points on a solid-liquid interface of a crystal material disposed in a crucible are measured, and at least one parameter of the crystal growing procedure is optimized based on the measured heights, so that the solid-liquid interface maintains a dome shape with a predetermined curvature during the crystal growing procedure.
    Type: Application
    Filed: July 23, 2012
    Publication date: June 20, 2013
    Inventors: Chia-Ying Hsieh, Chi-Hao Chang, Hsin-Hwa Hu