With A Significant Technique For (a) Preliminary Preparation Or Growth Starting Or (b) Product Handling Or Growth Ending (e.g., Arrangement Of Or Crystallography Of Seed) Patents (Class 117/35)
  • Patent number: 11230795
    Abstract: The present invention relates to a silica-glass crucible for pulling up single-crystal silicon therefrom by Czochralski method (CZ method) or for melting an optical-glass, which includes a crystallization promoter, and method of producing the silica-glass crucible in which a raw-material silica powder including Al and Ca at a specific molar concentration ratio is molded.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: January 25, 2022
    Assignee: COORSTEK KK
    Inventor: Ryohei Saito
  • Patent number: 11085128
    Abstract: Methods for producing single crystal silicon ingots in which the dopant concentration in the silicon melt is controlled are disclosed. The control of the dopant concentration enhances ingot quality by the reduction or elimination of dislocations in the neck, crown, and main body portions of the single crystal silicon ingot.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 10, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventor: Maria Porrini
  • Patent number: 11077469
    Abstract: A Czochralski-type method for sorting wafers obtained by cutting a single-crystal silicon ingot, the method being implemented when the wafers are in an as-cut state or in a shaped-surface state. The method includes a) measuring the majority free charge carrier concentration in an area of each wafer; calculating the thermal donor concentration in the area of each wafer, on the basis of the majority free charge carrier concentration; calculating the charge carrier lifetime limited by the thermal donors in the area of each wafer, on the basis of the thermal donor concentration; determining a bulk lifetime value for the charge carriers in each wafer on the basis of the lifetime limited by the thermal donors; comparing the bulk lifetime value or a normalised bulk lifetime value with a threshold value; and discarding the wafer when the bulk lifetime value or the normalised bulk lifetime value is lower than the threshold value.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: August 3, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Elénore Letty, Wilfried Favre, Jordi Veirman
  • Patent number: 10718065
    Abstract: Provided is a silicon-based molten composition including silicon, carbon, and a metal in which a solubility parameter (Csisol) defined by Equation (1) below is less than ?0.37, wherein a SiC single crystal is formed by a solution method: Csisol=A?B+?1??2??Equation (1) in Equation (1) above, A is a first energy (A) of a first evaluation lattice including silicon atoms, a carbon atom, and metal atoms in a silicon crystal lattice including metals and carbons, B is a second energy (B) of a second evaluation lattice including silicon atoms and metal atoms in a silicon crystal lattice including metals, ?1 is a constant of ?5.422, and ?2 is a constant of ?9.097.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: July 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Chan Yeup Chung, Jung Min Ko, Dae Sung Kim, Sung Soo Lee, Chang Sun Eun
  • Patent number: 10662547
    Abstract: The present invention relates to a silicon-based molten composition for forming a SiC single crystal by a solution method, the composition containing silicon, carbon, and a metal satisfying 0.70?Csisol?1.510 with respect to a solubility parameter (Csisol) defined by the following Equation (1): Csisol=A?B+?1??2??Equation (1) wherein, A is first energy (A) of a first evaluation lattice containing silicon atoms, carbon atoms, and metal atoms, in a silicon crystal lattice containing the metal and the carbon; B is second energy (B) of a second evaluation lattice containing silicon atoms and metal atoms, in a silicon crystal lattice containing the metal; ?1 is ?5.422 as a constant value, and ?2 is ?9.097 as a constant value.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: May 26, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Chan Yeup Chung, Ho Rim Lee, Jung Min Ko, Dae Sung Kim, Sung Soo Lee, Chang Sun Eun
  • Patent number: 10378122
    Abstract: According to an embodiment of the present invention, there is provided a method for growing a single crystal ingot having a target resistivity in a silicon melt by the Czochralski method, including steps of: deriving a resistivity value according to a dopant concentration included in a raw material and tabulating the resistivity value with reliable data; setting a reference value of a dopant concentration with respect to a target resistivity value; deriving a measurement value with respect to the dopant concentration included in the raw material itself; calculating a difference value between the reference value and the measurement value; and performing a counter doping on the silicon melt as much as the difference value. Accordingly, a single crystal ingot having a resistivity of 8 k? or more can be grown without improving impurities included in the raw material itself.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: August 13, 2019
    Assignee: SK Siltron Co., Ltd.
    Inventors: In-Gu Kang, Jung-Ha Hwang, In-Sik Bang
  • Patent number: 9915010
    Abstract: Provided is one embodiment which is a method for growing a ?-Ga2O3-based single crystal which uses the EFG method and includes raising a Ga2O3 melt inside a crucible up to a die opening via a die slit such that a seed crystal is contacted with the Ga2O3-based melt in the opening of the die with a horizontal position of the seed crystal shifted in a width direction (W) from a center in the width direction (W) of the die, and pulling up the seed crystal contacting the Ga2O3-based melt so as to grown a ?-Ga2O3 single crystal.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: March 13, 2018
    Assignees: TAMURA CORPORATION, KOHA CO., LTD.
    Inventors: Kimiyoshi Koshi, Takekazu Masui, Masaru Takizawa
  • Patent number: 9586861
    Abstract: A glass article that includes a first surface, a second surface and a body extending between the first and second surfaces. A plurality of discrete layers of metallic silver are formed in the body. Each discrete layer may have a thickness T such that 100 nm?T?250 nm and may be spaced apart from adjacent layers of metallic silver by a spacing S?500. The glass article also includes a layer of compressive stress extending into the body, a depth of layer of up to about 60 ?m and a magnitude of compression ?200 MPa. Further, the first layer of the plurality of discrete layers is spaced apart from the first surface by a distance D, wherein D?5 ?m.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: March 7, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Nicholas Francis Borrelli, Karl William Koch, III, Joseph Francis Schroeder, III
  • Patent number: 9487441
    Abstract: Glass articles with infrared reflectivity and methods for making the same are disclosed herein. In one embodiment, glass article having infrared reflectivity includes a first surface, a second surface and a body extending between the first and second surfaces. A plurality of discrete layers of metallic silver are formed in the body creating at least one optical cavity in the body. Each discrete layer may have a thickness T such that 100 nm?T?250 nm and may be spaced apart from adjacent layers of metallic silver by a spacing S?500. The glass article reflects at least a portion of electromagnetic radiation incident on the glass article having a wavelength from 800 nm to 2500 nm and transmits at least a portion of electromagnetic radiation incident on the glass article having a wavelength from 390 nm to 750 nm.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: November 8, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Nicholas Francis Borrelli, Karl William Koch, III, Joseph Francis Schroeder, III
  • Publication number: 20150136016
    Abstract: Provided is a method for producing a SiC single crystal wherein generation of polycrystals can be inhibited even if the temperature of the Si—C solution is changed after seed touching.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 21, 2015
    Inventors: Katsunori DANNO, Kazuhiko KUSUNOKI, Kazuhito KAMEI
  • Patent number: 8968471
    Abstract: The present disclosure provides an apparatus for manufacturing a silicon substrate for solar cells using continuous casting, which can improve quality, productivity and energy conversion efficiency of the silicon substrate. The apparatus includes a crucible unit configured to receive raw silicon and having a discharge port, a heating unit provided to an outer wall and an external bottom surface of the crucible unit and heating the crucible unit to form molten silicon, a casting unit casting the molten silicon into a silicon substrate, a cooling unit rapidly cooling the silicon substrate, and a transfer unit disposed at one end of the cooling unit and transferring the silicon substrate. The casting unit includes a casting unit body having a casting space defined therein to be horizontally connected to the discharge port, and an assistant heating mechanism that preheats the casting unit body to control a solidification temperature of the silicon substrate.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Bo-Yun Jang, Jin-Seok Lee, Joon-Soo Kim
  • Patent number: 8936679
    Abstract: According to one exemplary embodiment, a single crystal pulling-up apparatus of pulling-up silicon single crystals by a Czochralski method, is provided with: a neck diameter measuring portion which measures a diameter of a grown neck portion; a first compensation portion which outputs a first compensated pulling-up speed for the seed crystals based on a difference between a measured value of the diameter of the neck portion and a target value of the neck portion diameter previously stored; a second compensation portion which outputs a second pulling-up speed while limiting an upper limit of the first pulling-up speed to a first limit value; and a crucible rotation number compensation portion which lowers the number of a rotation of a crucible at least in a period where the upper limit of the first pulling-up speed is limited to the first limit value.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: January 20, 2015
    Assignee: Globalwafers Japan Co., Ltd
    Inventors: Hironori Banba, Hiromichi Isogai, Yoshiaki Abe, Takashi Ishikawa, Shingo Narimatsu, Jun Nakao, Hiroyuki Abiko, Michihiro Ohwa
  • Patent number: 8932550
    Abstract: Methods for producing muticrystalline silicon ingots by use of a Czochralski-type crystal puller and pulling assemblies that include a plurality of seed crystals for pulling multicrystalline silicon ingots.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 13, 2015
    Assignee: MEMC Singapore Pte. Ltd.
    Inventor: Steven L. Kimbel
  • Publication number: 20140352606
    Abstract: Buckling of a vitreous silica crucible or fall of a sidewall into the crucible is effectively suppressed. Furthermore, dislocations in a silicon single crystal are suppressed to enhance the yield of the single crystal. The vitreous silica crucible is used to pull single-crystal silicon and includes the cylindrical sidewall having an upward-opening rim, a mortar-shaped bottom including a curve, and a round portion connecting the sidewall and the bottom. The round portion is provided in such a manner that the curvature of the inner surface thereof is gradually increased from the sidewall toward the bottom in a section passing through the rotation axis of the vitreous silica crucible.
    Type: Application
    Filed: October 31, 2012
    Publication date: December 4, 2014
    Inventors: Toshiaki Sudo, Tadahiro Sato, Eriko Kitahara, Takeshi Fujita
  • Patent number: 8888911
    Abstract: The present invention provides a technique which enables production of single crystal silicon having relatively low resistivity by preventing cell growth during crystal growth from occurring, especially in a case where a relatively large amount of dopant is added to a molten silicon raw material. Specifically, the present invention provides a method of producing single crystal silicon by the Czochralski process, comprising producing single crystal silicon having relatively low resistivity by controlling a height of a solid-liquid interface when the single crystal silicon is pulled up.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Masayuki Uto, Tuneaki Tomonaga, Toshimichi Kubota, Fukuo Ogawa, Yasuhito Narushima
  • Publication number: 20140326174
    Abstract: The present invention provides a method for manufacturing a silicon single crystal according to a Czochralski method: bringing a sharp end of a seed crystal into contact with a silicon melt; melting the seed crystal from the end up to a position at which the seed crystal has a predetermined diameter; growing the silicon single crystal without a Dash-Necking process, wherein the seed crystal is melted while a crucible is rotated at a rotational speed of 2 rpm or less, and the rotational speed of the crucible is decelerated to below the rotational speed at the time of the melting within 10 minutes after an end of the melting and a start of the crystal growth. The method avoids reduction in success rate for dislocation-free single crystal growth in manufacture of a heavy, large-diameter ingot and improves the productivity by the dislocation-free seeding method without the necking process.
    Type: Application
    Filed: November 20, 2012
    Publication date: November 6, 2014
    Inventor: Nobuaki Mitamura
  • Patent number: 8828139
    Abstract: Methods of manufacturing a sapphire seed for growing a crystal having reduced dislocation density. The present invention provides a method of manufacturing a sapphire seed formed by a sapphire single crystal and used for growing another sapphire single crystal on a (0001) face as a crystal growing surface, the method comprising: preparing a sapphire seed whose side face forms a crystal face within a {1-100} face±10 °, and whose shape is processed so as to include a hexagonal prism or a triangle prism; and applying a predetermined thermal treatment to said sapphire seed.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 9, 2014
    Assignee: Sumco Corporation
    Inventors: Masato Imai, Kouzou Nakamura
  • Patent number: 8821636
    Abstract: The present invention is a single-crystal manufacturing apparatus based on the Czochralski method having a main chamber configured to accommodate hot zone components including a crucible, and a pull chamber configured to accommodate and take out a single crystal pulled from a raw material melt, the apparatus further comprising a multipurpose chamber interchangeable with the pull chamber, wherein a heating means for heating a raw material charged into the crucible and a cooling means for cooling the hot zone components after pulling the single crystal are placeable in the multipurpose chamber respectively. As a result, there is provided a single-crystal manufacturing apparatus that enables, in manufacture of a single crystal of a large diameter, e.g., approximately 200 mm or more, an operating rate of the single-crystal manufacturing apparatus and productivity of the single crystal to be improved.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: September 2, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Takao Abe, Kouzou Yokota, Kouji Mizuishi
  • Publication number: 20140205837
    Abstract: Disclosed is a single-crystal ingot manufacturing apparatus, which includes a crucible in which a melt is accommodated, a heater configured to heat the crucible, a heat shield member configured to shield radiant heat from the heater and the melt, and a neck cover configured to encompass a seed crystal unit above the crucible with being introduced into an opening of the heat shield member, the radiant heat being not shielded in the opening, the neck cover being vertically moved in linkage to vertical movement of the seed crystal unit within a predetermined range.
    Type: Application
    Filed: June 11, 2013
    Publication date: July 24, 2014
    Inventors: Il Soo CHOI, Jin Woo Ahn, Hak Eui Wang, Yong Jin Kim
  • Patent number: 8764901
    Abstract: Embodiments related to sheet production are disclosed. A melt of a material is cooled to form a sheet of the material on the melt. The sheet is formed in a first region at a first sheet height. The sheet is translated to a second region such that it has a second sheet height higher than the first sheet height. The sheet is then separated from the melt. A seed wafer may be used to form the sheet.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 1, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Dawei Sun, Brian Helenbrook, David S. Harvey
  • Patent number: 8758506
    Abstract: The invention relates to a method for pulling a silicon single crystal from a melt which is contained in a crucible, comprising immersion of a seed crystal into the melt; crystallization of the single crystal on the seed crystal by raising the seed crystal from the melt with a crystal pull speed; widening the diameter of the single crystal to a setpoint diameter in a conical section, comprising control of the crystal pull speed in such a way as to induce a curvature inversion of a growth front of the single crystal in the conical section.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: June 24, 2014
    Assignee: Siltronic AG
    Inventor: Markus Baer
  • Patent number: 8758508
    Abstract: The invention relates to a method for forming a thin film of molecular organic semiconductor material (OSCM), said film being intended to be integrated into a device for applications in electronics or optoelectronics, which includes the following steps: step (c) of supplying a defined quantity of the molecular OSCM in the form of a melt to the surface of a substrate so as to form a thin film; and a step (d) of cooling according to a defined temperature profile in order to solidify the thin film, characterized in that the temperature of the substrate surface is equal to or above the melting point of the molecular OSCM at the moment of implementing step (a) and in that the temperature profile of step (b) comprises: a first part corresponding to a sufficiently slow controlled cooling of the molecular OSCM down to a temperature close to the crystallization temperature of the molecular OSCM, so as to cause only a single seed to appear in the thin film in melt form; and a second part corresponding to controlled coo
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: June 24, 2014
    Assignees: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Patrice Rannou, Benjamin Grevin
  • Patent number: 8741059
    Abstract: According to the present invention, there is provided a single-crystal manufacturing apparatus based on Czochralski method, comprising at least: a main chamber configured to accommodate hot zone components including a crucible; and a pull chamber configured to accommodate and take out a single crystal pulled from a raw material melt contained in the crucible, wherein the apparatus further comprises: a cooling pipe which is arranged above the crucible and in which a cooling medium is circulated; and a moving mechanism that moves up and down the cooling pipe, and the hot zone components are cooled down by utilizing the moving mechanism to move down the cooling pipe toward the crucible after growth of the single crystal, and a method for manufacturing a single crystal is also provided.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 3, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Takao Abe
  • Patent number: 8728234
    Abstract: The present invention discloses methods to create higher quality group III-nitride wafers that then generate improvements in the crystalline properties of ingots produced by ammonothermal growth from an initial defective seed. By obtaining future seeds from carefully chosen regions of an ingot produced on a bowed seed crystal, future ingot crystalline properties can be improved. Specifically, the future seeds are optimized if chosen from an area of relieved stress on a cracked ingot or from a carefully chosen N-polar compressed area. When the seeds are sliced out, miscut of 3-10° helps to improve structural quality of successive growth. Additionally a method is proposed to improve crystal quality by using the ammonothermal method to produce a series of ingots, each using a specifically oriented seed from the previous ingot. When employed, these methods enhance the quality of Group III nitride wafers and thus improve the efficiency of any subsequent device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: May 20, 2014
    Assignee: Sixpoint Materials, Inc.
    Inventors: Edward Letts, Tadao Hashimoto, Masanori Ikari
  • Patent number: 8721787
    Abstract: A method for manufacturing a silicon single crystal is provided including producing a silicon melt in a chamber by melting a silicon raw material loaded into a silica glass crucible under a reduced pressure and high temperature, removing gas bubbles from within the silicon melt by rapidly changing at least the pressure or temperature within the chamber, and pulling up the silicon single crystal from the silicon melt after the gas bubbles are removed. When the pressure is rapidly changed, the pressure within the chamber is rapidly changed at a predetermined change ratio. In addition, when the temperature is rapidly changed, the temperature within the chamber is rapidly changed at a predetermined change ratio. In this way, Ar gas attached to an inner surface of the crucible and h is the cause of the generation of SiO gas is removed.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: May 13, 2014
    Assignee: Japan Super Quartz Corporation
    Inventors: Yukinaga Azuma, Masaki Morikawa
  • Patent number: 8691009
    Abstract: A pulling apparatus and a method with which especially heavy crystals (5) can be pulled using the Czochralski method utilizing the pulling apparatus. For this purpose the neck (4) of the crystal (5) has an enlargement (10) beneath which extends the support device. This device includes latches (7), which are moved from a resting position into an operating position in which the latches (7) extend beneath the enlargement (10). Each latch (7) is supported on the base body such that it is swivellable about a pivot axis (8) and can assume two stable positions, namely the resting position and the operating position. Each of these positions is defined by a stop on the base body. When the latch rests on the one stop, its center of gravity, viewed from the neck (4), is located on the other side of the pivot axis (8). When the latch rests on the other stop, the center of gravity is located on this side of the pivot axis (8).
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: April 8, 2014
    Assignee: Siltronic AG
    Inventors: Burkhard Altekrüger, Stefan Henkel, Axel Vonhoff, Erich Tomzig, Dieter Knerer
  • Patent number: 8685161
    Abstract: Various single crystals are disclosed including sapphire. The single crystals have desirable geometric properties, including a width not less than about 15 cm and the thickness is not less than about 0.5 cm. The single crystal may also have other features, such as a maximum thickness variation, and as-formed crystals may have a generally symmetrical neck portion, particularly related to the transition from the neck to the main body of the crystal. Methods and for forming such crystals and an apparatus for carrying out the methods are disclosed as well.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: John W. Locher, Steven A. Zanella, Ralph L. MacLean, Jr., Herbert Ellsworth Bates
  • Patent number: 8685162
    Abstract: In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 1, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Gregory D. Thronson, Dawei Sun
  • Patent number: 8652254
    Abstract: The invention is a method for pulling a silicon single crystal, which is a Czochralski method for growing the silicon single crystal by contacting a seed crystal with a melt and by pulling up, including the steps of: contacting the seed crystal with the melt; forming a necking portion under the seed crystal; and forming the silicon single crystal under the necking portion by increasing a diameter, wherein a pulling rate during forming the necking portion is 2 mm/min or less, and the silicon single crystal with the increased diameter is a boron-doped silicon single crystal having a resistivity of 1.5 m?·cm or less at a shoulder portion. Therefore, there can be provided a method of pulling a silicon single crystal without generating defects such as scratches at a wafer surface in the case of processing a boron-doped silicon single crystal ingot with a low resistivity produced by CZ method into a wafer.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 18, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Soeta, Masahiro Mori
  • Publication number: 20130319318
    Abstract: The present invention is provided with a support on a gripping member, the support being composed of linear springs which elastically support an engaging portion. Thus, the support can be reused, and generation of rupture and dislocation of a single crystal ingot from a gripping part of the engaging portion can be prevented.
    Type: Application
    Filed: April 4, 2012
    Publication date: December 5, 2013
    Applicant: SUMCO CORPORATION
    Inventors: Ayumi Suda, Takuya Yotsui
  • Patent number: 8580036
    Abstract: The method and apparatus includes a vessel having a bottom and sidewalls arranged to house the material in a molten state. A temperature controlled horizontally oriented, cooling plate is movable into and out of the top of the molten material. When the cooling plate is lowered into the top of the melt, an ingot of solid silicon is solidified downwards.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: November 12, 2013
    Assignee: Elkem Solar AS
    Inventor: Kenneth Friestad
  • Publication number: 20130276694
    Abstract: A quartz crucible for growing silicon single crystal comprises a crucible body made of a quartz material and a coating layer of a pure silicon which is formed on an inner wall of the crucible body and has purity equivalent to a silicon material that is to be filled into the crucible body. The pure silicon of the coating layer melts together with a silicon material filled in the quartz crucible.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 24, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Hidetoshi UTSURO, Masafumi OKAMOTO, Ryo KUWABARA, Naoya RYOKI
  • Publication number: 20130240776
    Abstract: An oxide material having a langasite-type structure having a desired surface condition and a desired outer shape is obtained stably. By adding at least one selected from the group consisting of Ir, Pt, Au, and Rh to a raw material which is a composition used for producing a desired oxide material as an additive element, it is possible to control the wettability between a die portion at a bottom end of a crucible and a melt of the raw material, thereby implementing stable production of the oxide material while controlling the wetting and spread of the melt of the raw material leaked out through a hole of the crucible.
    Type: Application
    Filed: October 12, 2011
    Publication date: September 19, 2013
    Applicant: TDK CORPORATION
    Inventors: Ko Onodera, Kazushige Tohta, Masato Sato, Akira Yoshikawa, Yuui Yokota
  • Patent number: 8506704
    Abstract: The invention relates to a method of fabricating at least one polycrystalline silicon plate (68, 70) with one (64, 66) of its two faces presenting predetermined relief, in which method a layer of polycrystalline silicon (60, 62) is deposited on at least one (56, 58) of the two faces of a support (50). The method comprises the steps of embossing said face (52, 54) of the support (50) to impart thereto a shape that is complementary to said relief; depositing said polycrystalline silicon layer (60, 62) on said embossed face (56, 58) of the support (50), the surface (64 or 66) of said polycrystalline silicon layer situated in contact with said embossed face (56 or 58) then taking on the shape of said relief; and eliminating said support in order to obtain said polycrystalline silicon plate (68 or 70). The invention is applicable to fabricating solar cells.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: August 13, 2013
    Assignee: SOLARFORCE
    Inventors: Christian Belouet, Claude Remy
  • Patent number: 8480996
    Abstract: A high-purity tellurium dioxide (TeO2) single crystal and its manufacturing method are provided. The method comprises the following procedures: firstly performing a first single crystal growth, and then dissolving the resulting single crystal again, thereafter adding a precipitation agent to form powder, and finally performing a second single crystal growth of as-prepared powder to obtain the high purity single crystal. The TeO2 single crystal prepared according to present invention is of high purity, especially with a content of radioactive impurities such as U and Th decreased to a level of 10?13 g/g.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 9, 2013
    Assignees: Research and Development Center, Shanghai Institute of Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    Inventors: Zengwei Ge, Yong Zhu, Guoging Wu, Xueji Yin, Linyao Tang, Hanbin Zhao, Lizhen Gu
  • Patent number: 8470093
    Abstract: A device for pulling a single crystal from a melt having a widened portion between an upper and a lower neck portion including a pulling device having a pulling device cable drum configured to wind a pulling cable, the pulling cable configured to pull the single crystal and a supporting device configured to relieve the upper neck portion of a weight of the single crystal.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 25, 2013
    Assignee: Siltronic AG
    Inventors: Andreas Muehe, Alfred Miller, Johann-Andreas Huber
  • Patent number: 8377203
    Abstract: An oxide single crystal having a composition represented by RExSi6O1.5x+12 (RE: La, Ce, Pr, Nd, or Sm, x: 8 to 10) is grown by using the Czochralski method such that the crystal growth orientation coincides with the c-axis direction. The solidification rate (the weight of the grown crystal÷the weight of the charged raw material) in the crystal growth is less than 45%.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: February 19, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Katsuaki Takahashi, Keisuke Mochizuki, Shuichi Kawaminami, Yoshikatsu Higuchi, Masayuki Sugawara, Susumu Nakayama
  • Patent number: 8372372
    Abstract: A clean bench comprising a worktable on which polycrystalline silicon is placed, a box part which includes side plates to surround three sides except a front face of a working space above the worktable, and a ceiling plate which covers an upper side of the working space. Supplying holes are formed in the ceiling plate of the box part, which supply clean air onto an upper surface of the worktable. An ionizer is provided, which ionizes the clean air supplied from the supplying holes to the working space and removes static electricity on the worktable. Suction holes are formed in the side plate of the box part, which suction air from the working space.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 12, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kazuhiro Sakai, Yukiyasu Miyata
  • Patent number: 8361223
    Abstract: Provided is a method for reliably and easily measuring a liquid level by selecting an optimal reflection method from among a plurality of reflection methods, depending on growing conditions of a pulled single crystal. The method comprises: setting a plurality of measuring methods having different ways of determining the liquid level; creating, in advance, information that associates with a gap between the outer peripheral face of the single crystal and a predetermined position located between a heat shield and the outer peripheral face of the single crystal; determining the gap in accordance with manufacturing conditions; selecting a measuring method associated to the determined gap, on the basis of the information; and measuring the liquid level of a melt surface in use of the selected measuring method.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 29, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Toshio Hayashida, Ayumi Kihara, Takuaki Takami
  • Patent number: 8343275
    Abstract: The present invention resides in a silicon single crystal growth method of pulling up and growing a single crystal from a melt of a silicon raw material in a quartz crucible based on a Czochralski method, wherein the method comprises the steps of: applying a DC voltage between an outer wall of the quartz crucible acts as a positive electrode and a pulling wire or pulling shaft for pulling up the silicon single crystal acts as a negative electrode; and fixing an electric current flowing through the silicon single crystal over a period of time for pulling up the single crystal, to grow the single crystal; as well as a pulling apparatus therefor.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: January 1, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Yuuichi Miyahara, Atsushi Iwasaki, Tetsuhiro Oda
  • Patent number: 8328937
    Abstract: A seed crystal axis used in a solution growth of single crystal production system is provided to prevent formation of polycrystals and grow a single crystal with a high growth rate. The seed crystal axis includes a seed crystal bonded to a seed crystal support member between which is interposed a laminated carbon sheet having a high thermal conductivity in a direction perpendicular to a solution surface of a solvent. The laminated carbon sheet includes a plurality of carbon thin films laminated with an adhesive or a plurality of pieces with differing lamination directions arranged in a lattice. Alternatively, a wound carbon sheet including a carbon strip wound concentrically from the center or a wound carbon sheet including a plurality of carbon strips with differing thicknesses which are wound and laminated from the center may be provided.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidemitsu Sakamoto, Yasuyuki Fujiwara
  • Patent number: 8308864
    Abstract: The present invention is a single-crystal manufacturing method based on the Czochralski method, comprising at least the steps of: producing a melt by heating and melting a crystalline raw material in a crucible with a heater; maturing the melt by keeping the melt at a high temperature; growing a single crystal after dipping a seed crystal into the matured melt, wherein the heater and the crucible are relatively moved up and down in the step of maturing. As a result, there is provided a single-crystal manufacturing method that enables the generation of dislocation to be effectively suppressed and a high quality single crystal to be manufactured at good yield, particularly in case of pulling the single crystal having a large diameter, in manufacture of the single crystal.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: November 13, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Makoto Iida, Kazuo Matsuzawa
  • Publication number: 20120279438
    Abstract: Methods for reducing or even eliminating dislocations in Czochralski-grown silicon ingots are disclosed. Generally, the methods involve controlling the growth conditions of the neck prior to formation of the ingot body.
    Type: Application
    Filed: April 24, 2012
    Publication date: November 8, 2012
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Jae Woo Ryu, Young Gil Jeong
  • Patent number: 8268077
    Abstract: An upper heater for use in the production of a single crystal, the upper heater having electrodes to which a current is supplied and a heat generating section which generates heat by resistance heating are provided, the upper heater being used when a single crystal is produced by a Czochralski method, the upper heater being placed above a graphite heater which is placed so as to surround a crucible containing silicon melt, wherein the heat generating section is ring-shaped and is placed so as to surround the crucible, and has slits formed from the inside and the outside of the heat generating section in a horizontal direction. As a result, the upper heater controls a crystal defect of the single crystal efficiently and improves the oxygen concentration controllability.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Kiyotaka Takano
  • Patent number: 8216362
    Abstract: Processes for preparing a single crystal silicon ingot are disclosed. In certain embodiments, the processes involve controlling (1) a growth velocity, v, of the ingot as well as (2) an average axial temperature gradient, G, a corrected average axial temperature gradient, Gcorrected, or an effective average axial temperature gradient, Geffective, during the growth of at least a segment of the constant diameter portion of the ingot.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 10, 2012
    Assignee: MEMC Electronic Materials, Inc.
    Inventor: Milind S. Kulkarni
  • Publication number: 20120080645
    Abstract: Disclosed are a method of growing a rare-earth oxyorthosilicate crystal and a crystal grown using the method. A melt is prepared by melting a first substance including at least one rare-earth element and a second substance including at least one element from group 7 of the periodic table. A seed crystal is brought into contact with the surface of the melt and withdrawn to grow the crystal.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 5, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Mark S. Andreaco, A. Andrew Carey, Piotr Szupryczynski
  • Publication number: 20120070366
    Abstract: A high-purity tellurium dioxide (TeO2) single crystal and its manufacturing method are provided. The method comprises the following procedures: firstly performing a first single crystal growth, and then dissolving the resulting single crystal again, thereafter adding a precipitation agent to form powder, and finally performing a second single crystal growth of as-prepared powder to obtain the high purity single crystal. The TeO2 single crystal prepared according to present invention is of high purity, especially with a content of radioactive impurities such as U and Th decreased to a level of 10?13 g/g.
    Type: Application
    Filed: April 2, 2010
    Publication date: March 22, 2012
    Inventors: Zengwei Ge, Yong Zhu, Guoging Wu, Xueji Yin, Linyao Tang, Hanbin Zhao, Lizhen Gu
  • Publication number: 20120055395
    Abstract: A Czochralski process (“CZ”) crystal growth method and furnace having a heater capable of generating a heating zone, a crucible within the heating zone and capable of retaining a volume of molten crystal growth material forming a melt line oriented in a designated position within the heating zone, a seed growth rod retractable from the crucible with a rod retraction mechanism, for forming a crystal boule thereon proximal the melt line from the molten crystal growth material. The furnace causes relative movement between the crucible and heating zone as the crystal boule is retracted, so that the melt line is maintained in the designated position within the heating zone. In some embodiments relative movement is based at least in part on sensed weight of the growing crystal boule. In other embodiments the crucible growth rod retraction mechanism are fixed relative to each other by a gantry.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 8, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Mark S. Andreaco, Troy Marlar, Brant Quinton, Piotr Szupryczynski
  • Patent number: 8124041
    Abstract: A process for producing silicon comprises the steps of a reduction step [1] of depositing silicon by reacting chlorosilanes and hydrogen in a reactor under heat and discharging an exhaust gas that contains hydrogen, oligomers of silanes, and a silicon powder; a carring step [2] of carrying the exhaust gas that has been exhausted in the step [1] while keeping a temperature of the exhaust gas at not less than 105° C.; a removal step [3] of supplying the exhaust gas that has been carried in the step [2] to a filter at a temperature of not less than 105° C. and discharging the exhaust gas from the filter at a temperature of not less than 105° C. to remove the silicon powder from the exhaust gas and give a mixed gas that contains the hydrogen and the oligomers of silanes; and a separation step [4] of cooling the mixed gas that has been obtained in the step [3] to separate the hydrogen as a gas phase from the mixed gas.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: February 28, 2012
    Assignee: Tokuyama Corporation
    Inventors: Manabu Sakida, Satoru Wakamatsu
  • Patent number: 8114216
    Abstract: The present invention relates to a semiconductor single crystal growth method, which uses a Czochralski process for growing a semiconductor single crystal through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and pulling up the seed while rotating the quartz crucible and applying a strong horizontal magnetic field, wherein the seed is pulled up while the quartz crucible is rotated with a rate between 0.6 rpm and 1.5 rpm.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 14, 2012
    Assignee: Siltron, Inc.
    Inventors: Hyon-Jong Cho, Seung-Ho Shin, Ji-Hun Moon, Hong-Woo Lee, Young-Ho Hong