Growth Accompanied By Material Removal (other Than The Product) From Solution (e.g., Solvent Evaporation, Osmosis) Patents (Class 117/70)
  • Patent number: 10351616
    Abstract: Arrangements and methods are provided for obtaining information associated with an anatomical sample. For example, at least one first electro-magnetic radiation can be provided to the anatomical sample so as to generate at least one acoustic wave in the anatomical sample. At least one second electro-magnetic radiation can be produced based on the acoustic wave. At least one portion of at least one second electro-magnetic radiation can be provided so as to determine information associated with at least one portion of the anatomical sample. In addition, the information based on data associated with the second electro-magnetic radiation can be analyzed. The first electro-magnetic radiation may include at least one first magnitude and at least one first frequency. The second electro-magnetic radiation can include at least one second magnitude and at least one second frequency.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 16, 2019
    Assignee: The General Hospital Corporation
    Inventor: Seok-Hyun Yun
  • Patent number: 10096734
    Abstract: Methods of forming colloidal nanocrystal (NC)-based thin film devicesare disclosed. The methods include the steps of depositing a dispersion of NCs on a substrate to form a NC thin-film, wherein at least a portion of the NCs is capped with chalcogenocyanate (xCN)-based ligands; and doping the NC thin-film with a metal.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: October 9, 2018
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Cherie R. Kagan, Aaron T. Fafarman, Ji-Hyuk Choi, Weon-Kyu Koh, David K. Kim, Soong Ju Oh, Yuming Lai, Sung-Hoon Hong, Sangameshwar Rao Saudari, Christopher B. Murray
  • Patent number: 9365950
    Abstract: To provide a crystallizer to generate pseudo non-gravity environment by three-dimensional high speed rotation and to minimize influence of gravity in crystallization process for crystallizing a substance from a solution. The crystallizer has turning gear, container 9, and container supporting unit 30. The turning gear includes horizontal shafts 3,6, first rotation frame 1 coupled to first shafts, motor 4 rotating frame 1 about X-X line, vertical shafts 7,8 provided on frame 1, and driving force transmission system 10. System 10 includes first disc 11 and second disc 12. First disc 11 rotates relative to frame 1 about axis of shafts 6. Second disc 12 is coupled to shaft 7. Contact between disc 11 and disc 12 transmits a turning force of frame 1 rotated by motor 4 to cause frame 2 to rotate about Y-Y line.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: June 14, 2016
    Assignee: Nagao System Inc.
    Inventors: Fumiyoshi Nagao, Daisuke Nagao
  • Patent number: 9329107
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: May 3, 2016
    Assignee: THE UNIVERSITY OF CHICAGO
    Inventors: Rustem F Ismagilov, Joshua David Tice, Cory John Gerdts, Bo Zheng
  • Patent number: 9090885
    Abstract: This invention provides devices and methods that enable co-incubation of microorganisms. Also provided are methods of making such devices for co-incubation of microorganisms, and various applications of such devices.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 28, 2015
    Assignee: The University of Chicago
    Inventors: James Q. Boedicker, Rustem F. Ismagilov, Hyun Jung Kim
  • Patent number: 8986447
    Abstract: A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. In a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 24, 2015
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8979999
    Abstract: A method for large-scale manufacturing of gallium nitride boules. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and grown ammonothermally. The seed orientation and mounting geometry are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus. The method is scalable up to very large volumes and is cost effective.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: March 17, 2015
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8963146
    Abstract: By using a coating method, which is a method of manufacturing a transparent conductive film, with low-temperature heating lower than 300° C., a transparent conductive film with excellent transparency, conductivity, film strength, and resistance stability and a method of manufacturing this film are provided. In the method of manufacturing a transparent conductive film, a heat energy ray irradiating step is a step of irradiating with the energy rays while heating under an oxygen-containing atmosphere to a heating temperature lower than 300° C. to form the inorganic film, and the plasma processing step is a step of performing the plasma processing on the inorganic film under a non-oxidizing gas atmosphere at a substrate temperature lower than 300° C. to promote mineralization or crystallization of the film, thereby forming a conductive oxide fine-particle layer densely packed with conductive oxide fine particles having a metal oxide as a main component.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: February 24, 2015
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Yuki Murayama, Takahito Nagano, Yoshihiro Otsuka
  • Patent number: 8945303
    Abstract: The subject is providing a crystallizing device of a biopolymer, which made to form biopolymer crystal efficiently in crystallization solution of a small amount of biopolymers by applying a low voltage and not to make an electrode disturb but observable a state of crystal formation. As an electrode for applying an electric field to a biopolymer solution, a transparent conductor, which does not disturb crystal formation, is used. Between the transparent conductor electrodes 2s, the electric insulating member 4 is placed and the crystallization solution 1 for a small amount of biopolymers is maintained inter-electrode. A biopolymer is efficiently crystallized by applying a low voltage supplied from the voltage generator 5 to the transparent conductor electrode 2. A crystal formation state of a biopolymer is optically observable from the electrode side of a transparent conductor. Orientation control of the biopolymer can be performed by an electric field formed by the above-mentioned voltage application.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: February 3, 2015
    Assignee: Institute of National Colleges of Technology, Japan
    Inventors: Takashi Wakamatsu, Yuki Ohnishi
  • Patent number: 8932404
    Abstract: The present invention relates to a method for producing semicrystalline polymer material, wherein the predominantly amorphous raw polymer material, in particular granules, to be treated is introduced into a crystallization reactor (1) and is partially crystallized there by being heated, but without melting, and subsequently the semicrystalline polymer material obtained in such a way is removed from the crystallization reactor (1) and at least part of said semicrystalline polymer material is diverted and mixed back into the crystallization reactor (1) in order to reduce the adhesive tendency of the polymer material. According to the invention, the diverted semicrystalline polymer material is combined and mixed with the raw polymer material before being mixed back into the crystallization reactor (1), and the mixture is then introduced into the crystallization reactor (1).
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: January 13, 2015
    Assignee: EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H.
    Inventors: Klaus Feichtinger, Manfred Hackl, Andreas Roessler-Czermak, Gerald Weis
  • Patent number: 8920559
    Abstract: The present disclosure relates to crystallizing a chemical substance(s) using ultrasound. Methods are provided for screening a chemical substance according to its solid forms by using ultrasound to generate new or unusual solid forms. Methods are also provided for crystallizing a chemical substance by novel techniques that include sonication. The present disclosure also relates to cocrystallization using ultrasound. Methods are provided for preparing cocrystals of an active agent and a guest by sonicating and crystallizing. Methods are also provided for screening a sample according to solid state phases (such as cocrystals and salts) and include generating a cocrystal from the sample using ultrasound.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: December 30, 2014
    Assignee: Aptuit (West Lafayette), LLC
    Inventors: Scott L. Childs, Patricia M. Mougin-Andres, Barbara C. Stahly
  • Publication number: 20140331916
    Abstract: ZnO structures comprising crystalline ZnO micro or nanorods and methods for making and using these ZnO structures are provided. The side surface of the central portion of each rod may comprise planes of the form {1 0 ?1 0}, {0 1 ?1 0}, {?1 1 0 0}, {?1 0 1 0}, {0 ?1 1 0} and {1 ?1 0 0}, with central edge regions including a crystallographic plane of the form {2 ?1 ?1 0} or {?2 1 1 0}. The tip of the rod may comprise planes of the form {1 0 ?1 1} {0 1 ?1 1}, {?1 1 0 1}, {?1 0 1 1}, {0 ?1 1 1} and {1 ?1 0 1} with tip edge regions including a crystallographic plane of the form {2 ?1 ?1 2} or {?2 1 1 2}. The rods may be joined at or near their bases to form the “flower-like” morphology. In an embodiment, a synthesis mixture is prepared by dissolving a zinc salt in an alcohol solvent, followed by addition of at least two additives. The zinc salt may be zinc nitrate hexahydrate, the first additive may be benzyl alcohol and the second additive may be urea.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Ryan M. RICHARDS, Lifang CHEN, Juncheng HU
  • Patent number: 8876972
    Abstract: A crystallization device is for protein crystallization with a small amount of a sample in the liquid to liquid diffusion method. It is easy to fill the device with protein solution and precipitant solution and easy to pick up grown crystals from the device. The device comprises a channel plate made of polydimethylsiloxane (PDMS) and the first and second cover sheets made of polyethylene terephthalate. The channel plate includes at least one elongated channel having one side which extends in the longitudinal direction of the channel, the one side being exposed at the bottom surface of the channel plate. The channel has both ends which communicate with a protein solution inlet and a precipitant solution inlet respectively. The channel also communicates midway with a gel inlet and a vent hole. When picking up grown crystals from the device, the second cover sheet is cut off with a cutter knife so that the channel is exposed.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: November 4, 2014
    Assignees: Rigaku Corporation, Japan Aerospace Exploration Agency
    Inventors: Tomokazu Hasegawa, Kensaku Hamada, Masaru Sato, Moritoshi Motohara
  • Patent number: 8876971
    Abstract: Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: November 4, 2014
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Calvin J. Curtis, Alexander Miedaner, Maikel Van Hest, David S. Ginley
  • Publication number: 20140318440
    Abstract: A coated substrate is formed with aligned objects such as small molecules, macromolecules and nanoscale particulates, such as inorganic, organic or inorganic/organic hybrid materials. In accordance with one or more embodiments, an apparatus or method involves an applicator having at least one surface patterned with protruded or indented features, and a coated substrate including a solution-based layer of objects having features and morphology attributes arranged as a function of the protruded or indented features.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Inventors: Zhenan Bao, Ying Diao, Stefan Christian Bernhardt Mannsfeld, Chee-Keong Tee, Hector A. Becerril-Garcia, Yan Zhou
  • Patent number: 8871024
    Abstract: An improved high pressure apparatus and methods for processing supercritical fluids is described. The apparatus includes a capsule, a heater, and at least one ceramic ring contained by a metal sleeve. The apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8834629
    Abstract: Single, acentric, rhombohedral, fluoroberyllium borate crystals of a size sufficient for use in a variety of laser and non-optical applications are formed by a hydrothermal method.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: September 16, 2014
    Assignee: Clemson University
    Inventors: Joseph W Kolis, Colin D. McMillen
  • Publication number: 20140230876
    Abstract: A magnetic element according to the present invention is formed of a layered product having a magnetic insulator film formed on a substrate including a material having no crystal structure. The magnetic insulator film has a columnar crystal structure.
    Type: Application
    Filed: July 10, 2012
    Publication date: August 21, 2014
    Applicants: TOHOKU UNIVERSITY, NEC CORPORATION
    Inventors: Akihiro Kirihara, Masahiko Ishida, Takashi Manako, Kenichi Uchida, Eiji Saitoh
  • Patent number: 8721788
    Abstract: A method for charging with liquefied ammonia comprising sequentially a feeding step of feeding gaseous ammonia in a condenser, a liquefaction step of converting the gaseous ammonia into a liquefied ammonia in the condenser, and a charging step of feeding the liquefied ammonia formed in the condenser to a vessel to thereby charge the vessel with the liquefied ammonia wherein a cooling step of feeding the liquefied ammonia formed in the condenser to the vessel and cooling the vessel by the latent heat of vaporization of the liquefied ammonia and a circulation step of feeding the gaseous ammonia formed through vaporization of the liquefied ammonia in the previous cooling step to the condenser are carried out between the liquefaction step and the charging step.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yuuichi Katou, Takao Watanabe, Kazunori Hiruta
  • Publication number: 20140124677
    Abstract: A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: Lawrence Livermore National Security, LLC
  • Patent number: 8709153
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 29, 2014
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8702863
    Abstract: A method for the evaporative production of phenol-BPA adduct crystals in a crystallizer is provided. First, a supersaturated BPA solution is introduced into a crystallizer that includes a cylindrical vessel and a concentrically-disposed draft tube that defines an annular space between the vessel and tube. Next, the BPA solution is circulated through the draft tube and annular space while a coolant is uniformly distributed in the circulating flow by radially injecting a volatile hydrocarbon compound at between about 30% and 60% of a radial extent of the annular space of to form a BPA mixture. Phenol-BPA adduct crystals are produced in the vessel by evaporating the volatile hydrocarbon compound out of the BPA mixture. The method provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 22, 2014
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Patent number: 8696812
    Abstract: Thin films of ferroelectric material with a high mole fraction of Pb(A2+1/3B5+2/3)O3 substantially in a perovskite phase, wherein A is zinc or a combination of zinc and magnesium, and B is a valence 5 element such as niobium or tantalum, have been prepared. Typically, the mole fraction of Pb(A2+1/3B5+2/3)O3 in the ferroelectric material is >0.7. The method for preparing the thin films of ferroelectric material comprises providing a precursor solution containing lead, A2+, and B5+; modifying the precursor solution by addition of a polymer species thereto; applying the modified precursor solution to a surface of a substrate and forming a coating thereon; and (d) subjecting the coating to a heat treatment and forming the film in the perovskite phase. Optimal results have been obtained with PEG200 as the polymer species.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 15, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Kui Yao, Shuhui Yu, Francis Eng Hock Tay
  • Patent number: 8691010
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 8, 2014
    Assignee: California Institute of Technology
    Inventors: Carl L. Hansen, Morten Sommer, Stephen R. Quake
  • Patent number: 8679248
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8679443
    Abstract: A method of treating a diamond, the method comprising: (i) providing a liquid metal saturated with carbon with respect to graphite precipitation; (ii) lowering the temperature of the liquid metal such that the liquid metal is saturated with carbon with respect to diamond precipitation; (iii) immersing a diamond in the liquid metal; and (iv) removing the diamond from the metal.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: March 25, 2014
    Assignee: Designed Materials Ltd
    Inventors: Philip H. Taylor, A. Marshall Stoneham
  • Publication number: 20140073781
    Abstract: The present invention provides a process for obtaining a charge of hexanitrohexaazaisowurtzitane crystals having rounded morphology. It also provides said charge, the energetic material comprising it, and a process for manufacturing said material. Said process for obtaining said charge comprises: preparing a saturated solution of any polymorphic form of hexanitrohexaazaisowurtzitane in a mixture comprising both an organic solvent for said hexanitrohexaazaisowurtzitane and an organic nonsolvent for said hexanitrohexaazaisowurtzitane, said solvent being more volatile than said nonsolvent; seeding this saturated solution with a few hexanitrohexaazaisowurtzitane crystals; and then concentrating the seeded, saturated solution by at least partial evaporation of the solvent, said evaporation of the solvent being performed at a temperature of between 35° C. and 15° C.
    Type: Application
    Filed: April 5, 2012
    Publication date: March 13, 2014
    Applicants: EURENCO, HERAKLES
    Inventors: Florent Muscatelli, Philippe Lescop
  • Publication number: 20140023697
    Abstract: In one aspect, embodiments of the invention provide a method, the method comprising contacting at least one osmotic body and a droplet comprising solvent and at least one solute. The contacting forms at least one thin film between the droplet and the at least one osmotic body. The method further comprises allowing solvent to transfer between the droplet and the at least one osmotic body, to form a precipitate of the at least one solute.
    Type: Application
    Filed: May 17, 2013
    Publication date: January 23, 2014
    Applicant: IONA COLLEGE
    Inventor: SUNGHEE LEE DIMAURO
  • Publication number: 20130337331
    Abstract: To provide nickel composite hydroxide particles having a small and uniform particle diameter and a method for producing the same. The method for producing the nickel composite hydroxide particles includes: a nucleation step of producing nuclei including primary particles by controlling a pH of an aqueous solution for nucleation to 11.5 to 13.2 at a liquid temperature of 25° C., the aqueous solution for nucleation containing a metal compound having an atomic ratio of metals corresponding to an atomic ratio of metals in the nickel composite hydroxide particles and substantially not containing a metal complex ion-forming agent; and a particle growth step of forming, on an outer surface of each of the nuclei, an outer shell portion including platy primary particles larger than primary particles of the nuclei by controlling a pH of an aqueous solution for particle growth containing the nuclei obtained in the nucleation step to 9.5 to 11.0 at a liquid temperature of 25° C.
    Type: Application
    Filed: March 31, 2011
    Publication date: December 19, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kensaku Mori, Rei Kokado, Shin Imaizumi
  • Publication number: 20130338303
    Abstract: The present invention relates to highly ordered arrays of colloidal 2D crystals on a substrate and to an improved method for producing the same. The method according to the invention for producing an highly ordered array of colloidal 2D crystals on a substrate comprises the following steps: a) providing a suspension of microspheres comprising poly-N-isopropylamide (polyNIPAM), the microspheres being selected from pure poly-N-isopropylamide (polyNIPAM) hydrogel microspheres, functionalized polyNIPAM microspheres, and polymeric or inorganic beads carrying poly-N-isopropyl-amide (polyNIPAM) hydrogel chains, in an aqueous medium on a substrate, wherein the aqueous medium comprises a mixture of water and a lower alkyl alcohol, b) subjecting the suspension deposited on the substrate after step a) to a shear force, and c) drying the suspension. In a preferred embodiment of the invention, the shear force is generated by applying a pulsed gas stream to the substrate surface.
    Type: Application
    Filed: March 4, 2011
    Publication date: December 19, 2013
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissen.
    Inventors: Stefan B. Quint, Claudia Pacholski
  • Patent number: 8603242
    Abstract: One embodiment of the present invention is a method for producing a silicon (Si) and/or germanium (Ge) foil, the method including: dissolving a Si and/or Ge source material in a molten metallic bath at an elevated temperature T2, wherein the density of Si and/or Ge is smaller than the density of the molten metallic bath; cooling the molten metallic bath to a lower temperature T1, thereby causing Si and/or Ge to separate out of the molten metallic bath and to float and grow as a Si and/or Ge foil on a top surface of the molten metallic bath; and separating the floating Si and/or Ge foil from the top surface of the molten metallic bath.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 10, 2013
    Inventors: Uri Cohen, Michael Roitberg
  • Patent number: 8575373
    Abstract: The present invention provides crystalline forms, including an anhydrate form, of cabazitaxel and processes for the preparation of these forms, designated as Forms C1, C2, C3, C4, C5, C6, C7, C8, C8b, C9 and C9p.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 5, 2013
    Assignee: Scinopharm Taiwan, Ltd.
    Inventors: Julian Paul Henschke, TsungYu Hsiao, MengFen Ho, YuanChang Huang
  • Patent number: 8518178
    Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 27, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Il Doo Kim, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
  • Patent number: 8449673
    Abstract: The present disclosure describes a method and an apparatus for making nanomaterials. In particular, the present innovation provides an apparatus that can be used to produce nanocrystals and/or nanorods of noble metals. The disclosure also provides methods that can be advantageously used to produce gold nanocrystals/nanorods with aspect ratios higher than 4.0.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 28, 2013
    Inventor: Babak Nikoobakht
  • Patent number: 8444765
    Abstract: A method for large-scale manufacturing of gallium nitride includes a process for reducing and/or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: May 21, 2013
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8431084
    Abstract: A crystallizer for the evaporative production of phenol-BPA adduct crystals is provided that achieves more uniform crystal growth while suppressing undesired crystal nucleation. The crystallizer includes a cylindrical vessel; a draft tube concentrically disposed within the cylindrical vessel such that an annular space is defined between the vessel and tube; an impeller that circulates liquid in the vessel through the draft tube and the annular space, and a plurality of nozzles mounted around an inner wall of said cylindrical vessel that introduce an evaporative coolant into the vessel. Each of the nozzles includes a discharge end disposed between about 30% and 60% of a radial extent of the annular space, and is located below an upper end of the draft tube a distance of between about 50% to 150% of the diameter of the vessel. Such a nozzle arrangement provides a consistent and uniform concentration of coolant across the surface of the boiling zone that prevents or at least reduces unwanted crystal nucleation.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 30, 2013
    Assignee: Badger Licensing LLC
    Inventor: Stephen W. Fetsko
  • Patent number: 8382896
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 26, 2013
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8361224
    Abstract: The present invention relates to colloidal photonic crystals using colloidal nanoparticles and a method for the preparation thereof, wherein by adding a viscoelastic material into a solution containing the colloidal nanoparticles when preparing the colloidal photonic crystals, a uniform volume contraction occurs due to the elasticity of the viscoelastic material even when a nonuniform volume contraction occurs while drying a dispersion medium in the colloidal solution. Thus, it is possible to prepare 2 or 3 dimensional colloidal photonic crystals of large scale with no defects in less time.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: January 29, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Young-jun Hong, Sang-hyuk Im
  • Patent number: 8353985
    Abstract: A process for producing colloidal crystals immobilized with a polymer, comprising the steps of: preparing a monomer-dispersion in which colloidal crystals having a three-dimensionally ordered array state are formed by adding, to a monomer-containing liquid containing at least one kind of monomers, colloidal particles having an average particle size in a range from 0.01 ?m to 10 ?m and a degree of monodispersity expressed by a following equation (1) of 20% or below, [Degree of monodispersity (unit: %)]=([Standard deviation of particle size]/[Average particle size])×100??(1) and then by dispersing the colloidal particles so as to arrange the colloidal particles in a three-dimensionally ordered array state at which a reflection spectrum thereof exhibits a reflection peak; and obtaining the colloidal crystals immobilized with a polymer by polymerizing the monomers in the monomer-dispersion.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 15, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroshi Nakamura, Masahiko Ishii
  • Publication number: 20120201265
    Abstract: A method of producing a lasing microsource of colloidal nanocrystals. The method includes the steps of preparing a nanocrystal solution in a solvent; depositing at least a drop of the nanocrystals solution with a drop volume below 1 nl on a flat substrate; and evaporating the solvent to dryness thereby to obtain at the edge of the evaporated drop a single annular stripe including a domain wherein the nanocrystals are arranged in an ordered array, wherein the ordered nanocrystals in the domain constitute an active region capable of lasing and the radially inner and outer edges of the stripe define a resonant cavity in which the active region is inserted.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Applicant: FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Roman KRAHNE, Liberato MANNA, Margherita ZAVELANI-ROSSI, Guglielmo LANZANI, Salvatore GIRARDO, Dario PISIGNANO, Maria Grazia LUPO
  • Patent number: 8216363
    Abstract: A process and system for continuous crystallization of a compound using antisolvent addition in which a solution is prepared with an organic compound and a solvent. An antisolvent is added to the solution in a continuous plug flow system comprising at least one process module. The antisolvent can be added in multiple addition points such that the overall amount of antisolvent added to the continuous plug flow reactor remains fixed. The multiple addition point technique provides every process module with an equal volume of antisolvent. Finally, crystals are recovered from the slurry upon exiting the system. Preferably, the mean crystal size is less than 100 ?m.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Illinois Institute of Technology
    Inventors: Allan S. Myerson, Alejandro Alvarez
  • Patent number: 8163084
    Abstract: The invention relates to nanostructure and its manufacturing method. In the manufacturing method of a nanostructure, first anisotropic crystalline particles, connectors having end to be connected to a specific crystal face of each of said crystalline particles, and second particles to be connected to the other end of each of said connectors are prepared. First ends of the connectors are connected to specific crystal faces of the first crystalline particles, and simultaneously or before or after the connection, the second ends of the connectors are connected to the second particles. A nanostructure formed by this method has a three-dimensional structure which does not have a closest packing structure.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: April 24, 2012
    Assignees: Fujikura Ltd., National University Corporation Hokkaido University
    Inventors: Yoshihiro Terada, Mitsuru Kamikatano, Kuniharu Himeno, Bunsho Ohtani, Takamune Yamagami, Tsukasa Torimoto
  • Patent number: 8097081
    Abstract: A high pressure apparatus and related methods for processing supercritical fluids. In a specific embodiment, the present apparatus includes a capsule, a heater, at least one ceramic ring but can be multiple rings, optionally, with one or more scribe marks and/or cracks present. In a specific embodiment, the apparatus optionally has a metal sleeve containing each ceramic ring. The apparatus also has a high-strength enclosure, end flanges with associated insulation, and a power control system. IN a specific embodiment, the apparatus is capable of accessing pressures and temperatures of 0.2-2 GPa and 400-1200° C., respectively.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: January 17, 2012
    Assignee: Soraa, Inc.
    Inventor: Mark P. D'Evelyn
  • Patent number: 8092595
    Abstract: A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 10, 2012
    Assignee: Sandia Corporation
    Inventors: Hongyou Fan, C. Jeffrey Brinker, Gabriel P. Lopez
  • Patent number: 8088221
    Abstract: A system and method for growing diamond crystals from diamond crystal seeds by epitaxial deposition at low temperatures and atmospheric and comparatively low pressures. A solvent is circulated (by thermal convection and/or pumping), wherein carbon is added in a hot leg, transfers to a cold leg having, in some embodiments, a range of progressively lowered temperatures and concentrations of carbon via the circulating solvent, and deposits layer-by-layer on diamond seeds located at the progressively lower temperatures since as diamond deposits the carbon concentration lowers and the temperature is lowered to keep the solvent supersaturated. The solvent includes metal(s) or compound(s) that have low melting temperatures and transfer carbon at comparatively low temperatures. A controller receives parameter signals from a variety of sensors located in the system, processes these signals, and optimizes diamond deposition by outputting the necessary control signals to a plurality of control devices (e.g.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 3, 2012
    Inventor: Zalman M. Shapiro
  • Publication number: 20110300051
    Abstract: A method to improve the crystal purity of a group-I11 nitride crystal grown in an ammonothermal growth system by removing any undesired material (i.e., impurities) from within the system prior to, in-between, or after the growth steps for the group-I11 nitride crystal. Impurities are removed from the ammonothermal growth system by first bringing the impurities into solution and then removing part or all of the solution from the growth system. The result is a high purity group-I11 nitride crystal grown in the ammonothermal growth system.
    Type: Application
    Filed: November 4, 2009
    Publication date: December 8, 2011
    Applicant: The Regents of the University of California
    Inventors: Derrick S. Kamber, Siddha Pimputkar, Makoto Saito, Steven P. Denbaars, James S. Speck, Shuji Nakamura
  • Patent number: 8062420
    Abstract: Described are nonlinear optical (NLO) crystals, including aluminum-borate NLO crystals, that have low concentrations of contaminants that adversely affect the NLO crystal's optical properties, such as compounds that contain transition-metal elements and/or lanthanides, other than yttrium, lanthanum, and lutetium. Some NLO crystals with low concentrations of these contaminants are capable of second harmonic generation at very short wavelengths. Also described are embodiments of a method for making these NLO crystals. Some embodiments involve growing a single NLO crystal, such as an aluminum-borate NLO crystal, from a mixture containing a solvent that is substantially free of harmful contaminants. The described NLO crystals can be used, for example, in laser devices.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: November 22, 2011
    Assignee: State of Oregon acting by and through the State Board of higher Education on behalf of Oregon State University
    Inventors: Douglas A. Keszler, Ning Ye
  • Patent number: 8052792
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: November 8, 2011
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8052789
    Abstract: Disclosed are a polycrystalline silicon and a crystallization method thereof according to an exemplary embodiment of the present invention. The polycrystalline silicon comprises: an insulating substrate; and an optical portion formed on the insulating substrate for receiving a CW laser beam and varying the intensity of the beam in order of strength-weakness, strength-weakness, and strength-weakness on one dimension, so that an amorphous silicon thin film is crystallized. Therefore, the present invention can form a good polycrystalline silicon thin film by growing crystal grains with a constant direction and size, when an amorphous silicon thin film disposed on an insulating film such as a glass substrate is crystallized to a polycrystalline silicon thin film.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: November 8, 2011
    Assignee: Kyunghee University Industrial & Academic Collaboration Foundation
    Inventors: Jin Jang, Jae-Hwan Oh, Eun-Hyun Kim, Ki-Hyoung Kim
  • Patent number: 8038792
    Abstract: The present invention relates to methods and apparatus for promoting rapid formation of biomolecule crystals from a solution of biomolecules, preferably proteins, wherein the protein solution undergoes rapid concentration according to its isoelectric point in an electric field. Protein crystallization according to the methods of the present invention takes place within a period of hours or less.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 18, 2011
    Inventor: Shmuel Bukshpan