Unusable Portion Contains A Metal Atom (e.g., Diamond Or Cbn Growth In Metal Solvent) Patents (Class 117/79)
-
Patent number: 10287708Abstract: In a single-crystal diamond material, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond material has a crystal growth main surface having an off angle of not more than 20°. A perforated tool includes a single-crystal diamond die, wherein in the single-crystal diamond die, a concentration of non-substitutional nitrogen atoms is not more than 200 ppm, a concentration of substitutional nitrogen atoms is lower than the concentration of the non-substitutional nitrogen atoms, and the single-crystal diamond die has a low-index plane represented by a Miller index of not less than ?5 and not more than 5 in an integer, a perpendicular line of the low-index plane having an off angle of not more than 20° relative to an orientation of a hole for wire drawing.Type: GrantFiled: July 22, 2016Date of Patent: May 14, 2019Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC HARDMETAL CORP.Inventors: Yoshiki Nishibayashi, Natsuo Tatsumi, Hitoshi Sumiya, Akihiko Ueda, Yutaka Kobayashi
-
Patent number: 10252233Abstract: In an embodiment, a cell assembly for use in a high-pressure cubic press may include at least one can assembly containing a diamond volume. The at least one can assembly may include an end surface in proximity to the diamond volume. The cell assembly may include at least one heating element including a major surface generally opposing and positioned adjacent to the end surface of the at least one can assembly. The at least one heating element may be positioned and configured to heat the diamond volume. The cell assembly may include at least one pressure transmitting medium extending about the at least one can assembly, and a gasket medium that defines a receiving space configured to receive the at least one can assembly, the one or more heating elements, and the at least one pressure transmitting medium.Type: GrantFiled: April 6, 2017Date of Patent: April 9, 2019Assignee: US SYNTHETIC CORPORATIONInventors: Kenneth E. Bertagnolli, Michael A. Vail, Arnold D. Cooper, Paul Douglas Jones, Damon B. Crockett
-
Patent number: 10125312Abstract: A single crystal composition includes an alkali halide crystal doped with a divalent element in the amount of 0.5 to 5 weight percent, the doped crystal having an optical transmission of at least 45% at at least one wavelength. An alkali halide doped with at least one of europium and ytterbium is particularly useful as a scintillator.Type: GrantFiled: September 6, 2016Date of Patent: November 13, 2018Assignee: UT-BATTELLE, LLCInventors: Lynn A. Boatner, James A. Kolopus
-
Patent number: 9889541Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) and methods of fabricating polycrystalline diamond tables and PDCs in a manner that facilitates removal of metal-solvent catalyst used in the manufacture of polycrystalline diamond tables of such PDCs.Type: GrantFiled: January 3, 2014Date of Patent: February 13, 2018Assignee: US SYNTHETIC CORPORATIONInventors: Mohammad N. Sani, Jair J. Gonzalez, Andrew E. Dadson, Debkumar Mukhopadhyay
-
Patent number: 9330887Abstract: Correction of skew in plasma etch rate distribution is performed by tilting the overhead RF source power applicator about a tilt axis whose angle is determined from skew in processing data. Complete freedom of movement is provided by incorporating exactly three axial motion servos supporting a floating plate from which the overhead RF source power applicator is suspended.Type: GrantFiled: March 4, 2013Date of Patent: May 3, 2016Assignee: APPLIED MATERIALS, INC.Inventors: Kenneth S. Collins, Andrew Nguyen, Martin Jeffrey Salinas, Imad Yousif, Ming Xu
-
Patent number: 9255343Abstract: A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference ?Gm between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30° C./min or higher, and the melt solidifies to form a single crystal of the material.Type: GrantFiled: March 8, 2013Date of Patent: February 9, 2016Assignee: UT-Battelle, LLCInventors: Boyd Mccutchen Evans, III, Roger A. Kisner, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Alexander M. Melin, Donald M. Nicholson, Chad M. Parish, Orlando Rios, Athena S. Sefat, David L. West, John B. Wilgen
-
Patent number: 9133566Abstract: The invention relates to a single crystal CVD diamond material, wherein the extended defect density as characterized by X-ray topography is less than 400/cm2 over an area of greater than 0.014 cm2. The invention further relates to a method for producing a CVD single crystal diamond material according to any preceding claim comprising the step of selecting a substrate on which to grow the CVD single crystal diamond, wherein the substrate has at least one of a density of extended defects as characterized by X-ray topography of less than 400/cm2 over an area greater than 0.014 cm2; an optical isotropy of less than 1×10-5 over a volume greater than 0.1 mm3; and a FWHM X-ray rocking curve width for the (004) reflection of less than 20 arc seconds.Type: GrantFiled: December 8, 2006Date of Patent: September 15, 2015Assignee: ELEMENT SIX TECHNOLOGIES LIMITEDInventors: Daniel James Twitchen, Grant Charles Summerton, Ian Friel, John Olaf Hansen, Keith Barry Guy, Michael Peter Gaukroger, Philip Maurice Martineau, Robert Charles Burns, Simon Craig Lawson, Timothy Patrick Gerard Addison
-
Patent number: 9061263Abstract: This invention relates to a method of improving the crystalline perfection of IIa diamond crystals by heating the grown diamond crystals at an elevated temperature and an elevated pressure. The invention extends to grown diamond material having a low extended defect density with low nitrogen concentration.Type: GrantFiled: December 9, 2005Date of Patent: June 23, 2015Assignee: ELEMENT SIX TECHNOLOGIES LIMITEDInventors: Grant Charles Summerton, John Olaf Hansen, Robert Charles Burns, Timothy Patrick Gerard Addison, Simon Craig Lawson, Keith Barry Guy, Michael Peter Gaukroger
-
Publication number: 20150144956Abstract: Provided is a self-supporting gallium nitride substrate useful as an alternative material for a gallium nitride single crystal substrate, which is inexpensive and also suitable for having a large area. This substrate is composed of a plate composed of gallium nitride-based single crystal grains, wherein the plate has a single crystal structure in the approximately normal direction. This substrate can be manufactured by a method comprising providing an oriented polycrystalline sintered body; forming a seed crystal layer composed of gallium nitride on the sintered body so that the seed crystal layer has crystal orientation mostly in conformity with the crystal orientation of the sintered body; forming a layer with a thickness of 20 ?m or greater composed of gallium nitride-based crystals on the seed crystal layer so that the layer has crystal orientation mostly in conformity with crystal orientation of the seed crystal layer; and removing the sintered body.Type: ApplicationFiled: September 29, 2014Publication date: May 28, 2015Inventors: Morimichi WATANABE, Jun YOSHIKAWA, Tsutomu NANATAKI, Katsuhiro IMAI, Tomohiko SUGIYAMA, Takashi YOSHINO, Yukihisa TAKEUCHI, Kei SATO
-
Publication number: 20150144055Abstract: The invention provides a process for the production of crystalline titanium powder containing single crystals or agglomerates of single crystals having an average crystal size (by volume) greater than 1 ?m, said process including reacting a titanium chloride species, preferably titanium dichloride, and reducing metal in a continuous back-mix reactor to produce a free flowing suspension of titanium powder in molten chloride salt wherein: i. both the titanium chloride species and the reducing metal are dissolved in a molten chloride salt and fed to the reactor containing a chloride salt of the reducing metal; ii. the average feed ratio of the titanium chloride species and reducing metal to the continuous back-mix reactor is within 1%, preferably within 0.1%, of the stoichiometric ratio required to fully reduce the titanium chloride salt to titanium metal; iii.Type: ApplicationFiled: May 29, 2013Publication date: May 28, 2015Inventors: David Steyn Van Vuuren, Salomon Johannes Oosthuizen, Jaco Johannes Swanepoel
-
Method of growing GaN whiskers from a gallium-containing solvent at low pressure and low temperature
Patent number: 8999060Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.Type: GrantFiled: March 12, 2013Date of Patent: April 7, 2015Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr. -
Patent number: 8961920Abstract: Embodiments of methods of altering the color of diamonds are disclosed. In an embodiment, a method for altering the color of diamonds includes identifying and selecting a diamond having a suitable nitrogen content, HPHT processing the selected diamond under diamond-stable conditions to alter the color of the selected diamond from a first color to a second color, irradiating the HPHT-processed diamond with an electron source having an energy between about 1 MeV and about 20 MeV so as to alter the color of the selected diamond from the second color to a third color, and annealing the irradiated diamond either under partial vacuum conditions, or under HPHT diamond-stable conditions so as to alter the color from the third color to a fourth color (e.g., pink, red, or purple, depending on the nitrogen content of the selected diamond).Type: GrantFiled: April 26, 2011Date of Patent: February 24, 2015Assignee: US Synthetic CorporationInventor: Louis McConkie Pope, II
-
Publication number: 20150027363Abstract: A method for manufacturing a plurality of synthetic single crystal diamonds, the method comprising: forming a plurality of seed pads, each seed pad comprising a plurality of single crystal diamond seeds anchored to, or embedded in, an inert holder; loading a carbon source, a metal catalyst, and the plurality of seed pads into a capsule; loading the capsule into a high pressure high temperature (HPHT) press; and subjecting the capsule to a HPHT growth cycle to grow single crystal diamond material on the plurality of single crystal diamond seeds, the HPHT growth cycle comprising: initiating HPHT growth of single crystal diamond material on the plurality of single crystal diamond seeds by increasing pressure and temperature; maintaining HPHT growth of single crystal diamond material on the plurality of single crystal diamond seeds via a pressure driven growth process by controlling and maintaining pressure and temperature; and terminating HPHT growth of single crystal diamond material on the plurality of singleType: ApplicationFiled: March 13, 2013Publication date: January 29, 2015Inventors: Dietrich Borse, Eugen Gura, Carlton Nigel Dodge, Raymond Anthony Spits
-
Publication number: 20150020730Abstract: A seed crystal holder according to the present invention for growing a crystal by a solution method, and that includes a seed crystal made of silicon carbide; a holding member above the seed crystal; a bonding agent configured to fix the seed crystal and the holding member; and a sheet member made of carbon which is interposed in the bonding agent in a thickness direction, and which has an outer periphery smaller than an outer periphery of the seed crystal in a plan view.Type: ApplicationFiled: January 30, 2013Publication date: January 22, 2015Inventors: Katsuaki Masaki, Yutaka Kuba, Chiaki Domoto, Daisuke Ueyama, Yuichiro Hayashi
-
Publication number: 20140360426Abstract: The present invention provides a method for producing a Group III nitride semiconductor crystal and a GaN substrate, in which the transfer of dislocation density or the occurrence of cracks can be certainly reduced on a growth substrate, and the Group III nitride semiconductor crystal can be easily separated from a seed crystal. A mask layer is formed on a GaN substrate, to thereby form an exposed portion of the GaN substrate, and an unexposed portion of the GaN substrate. Through a flux method, a GaN layer is formed on the exposed portions of the GaN substrate in a molten mixture containing at least Group III metal and Na. At that time, non-crystal portions containing the components of the molten mixture are formed on the mask layer so as to be covered with the GaN layer grown on the GaN substrate and the mask layer.Type: ApplicationFiled: June 3, 2014Publication date: December 11, 2014Applicant: TOYODA GOSEI CO., LTD.Inventors: Shohei Kumegawa, Yasuhide Yakushi, Seiji Nagai, Miki Moriyama
-
Patent number: 8846505Abstract: A method for growing islands of semiconductor monocrystals from a solution on an amorphous substrate includes the procedures of depositing a semiconductor-metal mixture layer, applying lithography and etching for forming at least one platform, heating the at least one platform, and saturating the semiconductor-metal solution until a monocrystal of the semiconductor component is formed. The procedure of depositing a semiconductor-metal mixture layer, includes a semiconductor component and at least one other metal component, is performed on top of the amorphous substrate. The procedure of applying lithography and etching to the semiconductor-metal mixture layer and a portion of the amorphous substrate is performed for forming at least one platform, the at least one platform having a top view shape corresponding to crystal growth direction and habit respective of the semiconductor component.Type: GrantFiled: March 9, 2010Date of Patent: September 30, 2014Assignee: SKOKIE Swift CorporationInventor: Moshe Einav
-
Patent number: 8778295Abstract: Disclosed is a combinatorial synthesis of Diamond wherein a first reactive species is produced by catalytic treatment of Acetylene, a second reactive species is produced by decomposition of a hydrocarbon source having a low Hydrogen-to-Carbon ratio using a high energy discharge, and the two reactive species so obtained are combined in the vapor phase to yield Diamond without the need of post-treatments. The reaction is efficient and affords Diamond under mild conditions with high purity such that it may be useful for producing Diamond for semiconductor and microelectronics applications.Type: GrantFiled: August 5, 2011Date of Patent: July 15, 2014Inventor: Daniel Hodes
-
Publication number: 20140134491Abstract: Provided is a lithium containing composite oxide powder suitable for the positive electrode active material of the non-aqueous electrolysis solution secondary battery such as the lithium ion secondary battery, and a manufacturing process for the same. A lithium containing composite oxide powder includes a single crystal particle containing a lithium containing composite oxide that is manufactured by a molten salt method and that includes at least lithium and another one or more metal elements and in which a crystal structure belongs to a lamellar rock salt structure, wherein an average primary particle diameter is greater than or equal to 200 nm and smaller than or equal to 30 ?m. The lithium containing composite oxide powder is grown by reacting the metal containing ingredient in the molten salt of the lithium hydroxide at a reaction temperature of higher than or equal to 650° C. and lower than or equal to 900° C.Type: ApplicationFiled: June 22, 2012Publication date: May 15, 2014Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKIInventors: Yuki Sugimoto, Naoto Yasuda, Fumiya Kanetake, Hideaki Shinoda, Manabu Miyoshi, Kyoichi Kinoshita, Toru Abe
-
Patent number: 8721788Abstract: A method for charging with liquefied ammonia comprising sequentially a feeding step of feeding gaseous ammonia in a condenser, a liquefaction step of converting the gaseous ammonia into a liquefied ammonia in the condenser, and a charging step of feeding the liquefied ammonia formed in the condenser to a vessel to thereby charge the vessel with the liquefied ammonia wherein a cooling step of feeding the liquefied ammonia formed in the condenser to the vessel and cooling the vessel by the latent heat of vaporization of the liquefied ammonia and a circulation step of feeding the gaseous ammonia formed through vaporization of the liquefied ammonia in the previous cooling step to the condenser are carried out between the liquefaction step and the charging step.Type: GrantFiled: September 24, 2008Date of Patent: May 13, 2014Assignee: Mitsubishi Chemical CorporationInventors: Yuuichi Katou, Takao Watanabe, Kazunori Hiruta
-
Patent number: 8702864Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C prepared by dissolving C into the melt that contains Cr and X, which consists of at least one element of Ce and Nd, such that a proportion of Cr in a whole composition of the melt is in a range of 30 to 70 at. %, and a proportion of X in the whole composition of the melt is in a range of 0.5 at. % to 20 at. % in the case where X is Ce, or in a range of 1 at. % to 25 at. % in the case where X is Nd, and the silicon carbide single crystal is grown from the solution.Type: GrantFiled: January 14, 2009Date of Patent: April 22, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yukio Terashima, Yasuyuki Fujiwara
-
Patent number: 8679248Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.Type: GrantFiled: November 23, 2010Date of Patent: March 25, 2014Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
-
Patent number: 8637761Abstract: One embodiment of the present invention provides a method for fabricating a solar cell. The method includes: melting a metallurgical-grade (MG) Si feedstock, lowering a single-crystalline Si seed to touch the surface of the molten MG-Si, slowly pulling out a single-crystal Si ingot of the molten MG-Si, processing the Si ingot into single crystal Si wafers to form MG-Si substrates for subsequent epitaxial growth, leaching out residual metal impurities in the MG-Si substrate, epitaxially growing a layer of single-crystal Si thin film doped with boron on the MG-Si substrate, doping phosphor to the single-crystal Si thin film to form an emitter layer, depositing an anti-reflection layer on top of the single-crystal Si thin film, and forming the front and the back electrical contacts.Type: GrantFiled: December 23, 2008Date of Patent: January 28, 2014Assignee: Silevo, Inc.Inventors: Jianming Fu, Zheng Xu, Peijun Ding, Chentao Yu, Guanghua Song, Jianjun Liang
-
Patent number: 8591648Abstract: A crystal growing system having multiple rotatable crucibles and using a temperature gradient method comprises a crystal furnace, a plurality of crucibles, a supporting device, and a temperature control device. The crystal furnace includes a furnace body, a heater, and a hearth, wherein the furnace body from outer to inner includes an outer shell, a fiber insulation layer, an insulation brick layer, and a refractory layer. The crucible supporting device includes an elevator, a plurality of crucible guiding tubes, and a plurality of tube holders each capable of supporting a crucible guiding tube, a moving device that is connected to the elevator, a motor with electrical power that is connected to the moving device, wherein there is an affixing device between each pair of guiding tube and guiding tube holder. Each crucible is located in a corresponding crucible guiding tube. The crucible supporting device is a rotatable device.Type: GrantFiled: December 27, 2007Date of Patent: November 26, 2013Inventor: Youbao Wan
-
Patent number: 8574535Abstract: The present invention relates to an HPHT method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least 1.5 is utilized. Single crystal diamond seeds having an aspect ratio of at least 1.5 and synthetic single crystal diamond which may be obtained by the method recited are also described. The growth surface is substantially aligned along a <100> or <110> direction in the plane of the growth surface.Type: GrantFiled: March 7, 2008Date of Patent: November 5, 2013Assignee: Element Six LimitedInventors: Carlton Nigel Dodge, Raymond Anthony Spits
-
Publication number: 20130263775Abstract: A method and apparatus for growing crystals in a reactor vessel, wherein the reactor vessel uses carbon fiber containing materials as a structural element to contain the materials for growing the crystals as a solid, liquid or gas within the reactor vessel, such that the reactor vessel can withstand pressures or temperatures necessary for the growth of the crystals. The carbon fiber containing materials encapsulate at least one component of the reactor vessel, wherein stresses from the encapsulated component are transferred to the carbon fiber containing materials. The carbon fiber containing materials may be wrapped around the encapsulated component one or more times sufficient to maintain a desired pressure differential between an exterior and interior of the encapsulated component.Type: ApplicationFiled: April 10, 2013Publication date: October 10, 2013Applicant: The Regents of the University of CaliforniaInventors: Siddha Pimputkar, Paul Von Dollen, Shuji Nakamura, James S. Speck
-
Patent number: 8518178Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.Type: GrantFiled: January 24, 2011Date of Patent: August 27, 2013Assignee: Korea Institute of Science and TechnologyInventors: Il Doo Kim, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
-
Patent number: 8506705Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.Type: GrantFiled: September 9, 2009Date of Patent: August 13, 2013Assignee: NGK Insulators, Ltd.Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Publication number: 20130160700Abstract: Disclosed is a method of growing a diamond, including the steps of providing a diamond seed in a reaction chamber; providing a protective layer above the diamond seed; providing a catalyst above the protective layer; providing a carbon source above the catalyst; applying pressure to the reaction chamber; heating the catalyst to a first temperature; holding the first temperature for a first duration; heating the catalyst to a second temperature; and holding the second temperature for a second duration.Type: ApplicationFiled: December 21, 2011Publication date: June 27, 2013Applicant: GEMESIS DIAMOND COMPANYInventors: Joo Ro KIM, Hexiang ZHU, Karl PEARSON
-
Patent number: 8323405Abstract: An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.Type: GrantFiled: August 3, 2009Date of Patent: December 4, 2012Assignee: Soraa, Inc.Inventor: Mark P. D'Evelyn
-
Publication number: 20120291695Abstract: A method for producing hexagonal boron nitride single crystals including mixing boron nitride crystals with a solvent thereby obtaining a mixture, heating and melting the mixture under high-temperature and high-pressure thereby obtaining a melted mixture, and rectystallizing the melted mixture thereby producing hexagonal boron nitride single crystals, wherein the solvent is boronitride of alkali earth metal, or boronitride of alkali metal and the boronitride of alkali earth metal.Type: ApplicationFiled: July 30, 2012Publication date: November 22, 2012Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCEInventors: Kenji WATANABE, Takashi TANIGUCHI, Satoshi KOIZUMI, Hisao KANDA, Masayuki KATAGIRI, Takatoshi YAMADA, Nesladek MILOS
-
Publication number: 20120282443Abstract: Provided is a base substrate with which a Group-III nitride crystal having a large area and a large thickness can be grown while inhibiting crack generation. A single-crystal substrate for use in growing a Group-III nitride crystal thereon, which satisfies the following expression (1), wherein Z1 (?m) is an amount of warpage of physical shape in a growth surface of the single-crystal substrate and Z2 (?m) is an amount of warpage calculated from a radius of curvature of crystallographic-plane shape in a growth surface of the single-crystal substrate: ?40<Z2/Z1<?1: Expression (1).Type: ApplicationFiled: July 13, 2012Publication date: November 8, 2012Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Kenji FUJITO, Yasuhiro Uchiyama
-
Patent number: 8287644Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C by dissolving C into the melt that contains Si, Cr and X, which consists of at least one element of Sn, In and Ga, such that the proportion of Cr in the whole composition of the melt is in a range of 30 to 70 at. %, and the proportion of X is in a range of 1 to 25 at. %, and the silicon carbide crystal is grown from the solution.Type: GrantFiled: January 14, 2009Date of Patent: October 16, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yukio Terashima, Yasuyuki Fujiwara
-
Publication number: 20120237428Abstract: A method is disclosed with provides stable growth of SiC single crystals, particularly 4H—SiC single crystals, with an effective crystal growth rate for a prolonged time even at a low temperature range of 2000° C. or lower. A raw material containing Si, Ti and Ni is charged into a crucible made of graphite and heat-melted to obtain a solvent. At the same time, C is dissolved out from the crucible into the solvent to obtain a melt. A SiC seed crystal substrate is then brought into contact with the melt such that SiC is supersaturated in the melt in the vicinity of the surface of the SiC seed crystal substrate, thereby allowing growth and production of an SiC single crystal on the SiC seed crystal substrate.Type: ApplicationFiled: March 23, 2012Publication date: September 20, 2012Applicant: FUJI ELECTRIC CO., LTD.Inventors: Mina RYO, Yoshiyuki YONEZAWA, Takeshi SUZUKI
-
Patent number: 8105955Abstract: An integrated circuit system includes a substrate, a carbon-containing silicon region over the substrate, a non-carbon-containing silicon region over the substrate, and a silicon-carbon region, including the non-carbon-containing silicon region and the carbon-containing silicon region.Type: GrantFiled: August 15, 2006Date of Patent: January 31, 2012Assignees: GLOBALFOUNDRIES Singapore Pte. Ltd., International Business Machines CorporationInventors: Jin Ping Liu, Richard J. Murphy, Anita Madan, Ashima B. Chakravarti
-
Publication number: 20110277680Abstract: An artificial corundum crystal which can be put into practical use at low costs, and a process for producing the same. The artificial corundum crystal has at least one crystal face selected from {113}, {012}, {014}, {113}, {110}, {101}, {116}, {211}, {122}, {214}, {100}, {125}, {223}, {131}, and {312} faces. The process for producing the artificial corundum crystal is by a flux evaporation method of heating a sample containing a raw material and a flux to precipitate a crystal and grow the crystal by use of flux evaporation as a driving force.Type: ApplicationFiled: July 26, 2011Publication date: November 17, 2011Applicant: DAI NIPPON PRINTING CO., LTD.Inventors: Katsuya TESHIMA, Shuji OISHI
-
Publication number: 20110271900Abstract: A high pressure high temperature (HPHT) method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least (1) and a growth surface substantially parallel to a {110} crystallographic plane is utilised is described. The growth is effected at a temperature in the range from 1280° C. to 1390° C.Type: ApplicationFiled: January 15, 2010Publication date: November 10, 2011Inventors: Raymond Anthony Spits, Carlton Nigel Dodge
-
Patent number: 8021481Abstract: A method for large-scale manufacturing of gallium nitride includes a process for reducing and/or minimizing contamination in the crystals, for solvent addition to an autoclave, for improving or optimizing the solvent atmosphere composition, for removal of the solvent from the autoclave, and for recycling of the solvent. The method is scalable up to large volumes and is cost effective.Type: GrantFiled: August 4, 2009Date of Patent: September 20, 2011Assignee: Soraa, Inc.Inventor: Mark P. D'Evelyn
-
Publication number: 20110185964Abstract: A system and method for growing diamond crystals from diamond crystal seeds by epitaxial deposition at low temperatures and atmospheric and comparatively low pressures. A solvent is circulated (by thermal convection and/or pumping), wherein carbon is added in a hot leg, transfers to a cold leg having, in some embodiments, a range of progressively lowered temperatures and concentrations of carbon via the circulating solvent, and deposits layer-by-layer on diamond seeds located at the progressively lower temperatures since as diamond deposits the carbon concentration lowers and the temperature is lowered to keep the solvent supersaturated. The solvent includes metal(s) or compound(s) that have low melting temperatures and transfer carbon at comparatively low temperatures. A controller receives parameter signals from a variety of sensors located in the system, processes these signals, and optimizes diamond deposition by outputting the necessary control signals to a plurality of control devices (e.g.Type: ApplicationFiled: April 11, 2011Publication date: August 4, 2011Inventor: Zalman M. Shapiro
-
Patent number: 7905958Abstract: A method of manufacturing group III-nitride semiconductor crystal includes the steps of accommodating an alloy containing at least a group III-metal element and an alkali metal element in a reactor, introducing a nitrogen-containing substance in the reactor, dissolving the nitrogen-containing substance in an alloy melt in which the alloy has been melted, and growing group III-nitride semiconductor crystal is provided. The group III-nitride semiconductor crystal attaining a small absorption coefficient and an efficient method of manufacturing the same, as well as a group III-nitride semiconductor device attaining high light emission intensity can thus be provided.Type: GrantFiled: March 30, 2005Date of Patent: March 15, 2011Assignees: Sumitomo Electric Industries, Ltd.Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota
-
Publication number: 20100288189Abstract: One embodiment of the present invention is a method for producing a silicon (Si) and/or germanium (Ge) foil, the method including: dissolving a Si and/or Ge source material in a molten metallic bath at an elevated temperature T2, wherein the density of Si and/or Ge is smaller than the density of the molten metallic bath; cooling the molten metallic bath to a lower temperature T1, thereby causing Si and/or Ge to separate out of the molten metallic bath and to float and grow as a Si and/or Ge foil on a top surface of the molten metallic bath; and separating the floating Si and/or Ge foil from the top surface of the molten metallic bath.Type: ApplicationFiled: February 25, 2010Publication date: November 18, 2010Inventors: Uri Cohen, Michael Roitberg
-
Patent number: 7833347Abstract: A nitride single crystal is produced using a growth solution containing an easily oxidizable material. A crucible for storing the growth solution, a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen, and an oxygen absorber disposed inside the pressure vessel and outside the crucible are used to grow the nitride single crystal.Type: GrantFiled: September 18, 2008Date of Patent: November 16, 2010Assignees: NGK Insulators, Ltd., Osaka UniversityInventors: Makoto Iwai, Shuhei Higashihara, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
-
Patent number: 7820246Abstract: The present invention provides a method for growing a thin nitride film over a substrate and a thin nitride film device, in which the polarity of the thin nitride film can be controlled by a low temperature process. In the method for growing the thin nitride film over a substrate, a Ga face (2) and a N face (3) are formed over a c face sapphire (Al2O3) substrate (1), the Ga face (2) growing in +c face, and the N face (3) growing in ?c face.Type: GrantFiled: June 15, 2004Date of Patent: October 26, 2010Assignee: Japan Science and Technology AgencyInventors: Masatomo Sumiya, Shunro Fuke
-
Patent number: 7815733Abstract: A method of growing hexagonal boron nitride single crystal is provided. Hexagonal boron nitride single crystal is grown in calcium nitride flux by heating, or heating and then slowly cooling, boron nitride and a calcium series material in an atmosphere containing nitrogen. Bulk hexagonal boron nitride single crystal can thereby successfully be grown.Type: GrantFiled: August 13, 2007Date of Patent: October 19, 2010Assignees: NGK Insulators, Ltd.Inventors: Makoto Iwai, Katsuhiro Imai, Takatomo Sasaki, Fumio Kawamura, Minoru Kawahara, Hiroaki Isobe
-
Patent number: 7771531Abstract: Provided is a manufacturing method of a crystallized rare-earth thin films on a glass or a silicon substrate. This manufacturing method of a crystallized metal oxide thin film includes a step of retaining an metal organic thin film or a metal oxide film containing at least one type of rare-earth metal element selected from a group comprised of Y, Dy, Sm, Gd, Ho, Eu, Tm, Tb, Er, Ce, Pr, Yb, La, Nd and Lu formed on a substrate at a temperature of 250 to 600° C., and a step of crystallizing the organic metal thin film or the metal oxide film while irradiating ultraviolet radiation having a wavelength of 200 nm or less.Type: GrantFiled: August 9, 2007Date of Patent: August 10, 2010Assignee: National Institute of Advanced Industrial Science and TechnologyInventors: Tetsuo Tsuchiya, Tomohiko Nakajima, Akio Watanabe, Toshiya Kumagai
-
Patent number: 7713352Abstract: A process is provided to produce bulk quantities of nanowires in a variety of semiconductor materials. Thin films and droplets of low-melting metals such as gallium, indium, bismuth, and aluminum are used to dissolve and to produce nanowires. The dissolution of solutes can be achieved by using a solid source of solute and low-melting metal, or using a vapor phase source of solute and low-melting metal. The resulting nanowires range in size from 1 nanometer up to 1 micron in diameter and lengths ranging from 1 nanometer to several hundred nanometers or microns. This process does not require the use of metals such as gold and iron in the form of clusters whose size determines the resulting nanowire size. In addition, the process allows for a lower growth temperature, better control over size and size distribution, and better control over the composition and purity of the nanowire produced therefrom.Type: GrantFiled: September 14, 2006Date of Patent: May 11, 2010Assignee: University of Louisville Research Foundation, Inc.Inventors: Mahendra Kumar Sunkara, Shashank Sharma, Hari Chandrasekaran, Hongwei Li, Sreeram Vaddiraju
-
Publication number: 20100104495Abstract: A method for producing a nitride semiconductor, comprising controlling temperature and pressure in a autoclave containing a seed having a hexagonal crystal structure, a nitrogen element-containing solvent, a raw material substance containing a metal element of Group 13 of the Periodic Table, and a mineralizer so as to put said solvent into a supercritical state and/or a subcritical state and thereby ammonothermally grow a nitride semiconductor crystal on the surface of said seed, wherein the crystal growth rate in the m-axis direction on said seed is 1.5 times or more the crystal growth rate in the c-axis direction on said seed. By the method, a nitride semiconductor having a large-diameter C plane or a nitride semiconductor thick in the m-axis direction can be efficiently and simply produced.Type: ApplicationFiled: October 10, 2007Publication date: April 29, 2010Applicants: MITSUBISHI CHEMICAL CORPORATION, TOHOKU UNIVERSITYInventors: Shinichiro Kawabata, Hirohisa Itoh, Dirk Ehrentraut, Yuji Kagamitani, Akira Yoshikawa, Tsuguo Fukuda
-
Publication number: 20100006777Abstract: A process is disclosed for producing a doped gallium arsenide single crystal by melting a gallium arsenide starting material and subsequently solidifying the gallium arsenide melt, wherein the gallium arsenide melt contains an excess of gallium relative to the stoichiometric composition, and wherein it is provided for a boron concentration of at least 5×1017 cm?3 in the melt or in the obtained crystal. The thus obtained crystal is characterized by a unique combination of low dislocation density, high conductivity and yet excellent, very low optic absorption, particularly in the range of the near infrared.Type: ApplicationFiled: July 9, 2009Publication date: January 14, 2010Inventors: Ulrich KRETZER, Frank Borner, Stefan Eichler, Frieder Kropfgans
-
Publication number: 20090293805Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.Type: ApplicationFiled: August 3, 2009Publication date: December 3, 2009Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
-
Publication number: 20090255457Abstract: A system and method for growing diamond crystals from diamond crystal seeds by epitaxial deposition at low temperatures and atmospheric and comparatively low pressures. A solvent is circulated (by thermal convection and/or pumping), wherein carbon is added in a hot leg, transfers to a cold leg having, in some embodiments, a range of progressively lowered temperatures and concentrations of carbon via the circulating solvent, and deposits layer-by-layer on diamond seeds located at the progressively lower temperatures since as diamond deposits the carbon concentration lowers and the temperature is lowered to keep the solvent supersaturated. The solvent includes metal(s) or compound(s) that have low melting temperatures and transfer carbon at comparatively low temperatures. A controller receives parameter signals from a variety of sensors located in the system, processes these signals, and optimizes diamond deposition by outputting the necessary control signals to a plurality of control devices (e.g.Type: ApplicationFiled: June 15, 2009Publication date: October 15, 2009Inventor: Zalman M. Shapiro
-
Patent number: 7585366Abstract: An improved method for controlling nucleation sites during superabrasive particle synthesis can provide high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a particulate crystal growth layer by mixing a raw material and a catalyst material and then placing the crystalline seeds in a predetermined pattern in the growth layer. Preferably, seeds can be substantially surrounded by catalyst material. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. The crystalline seeds can be placed in a predetermined pattern using a template, a transfer sheet, vacuum chuck or similar techniques. The superabrasive particles grown using the described methods typically have a high yield of high quality industrial particles and a narrow distribution of particle sizes.Type: GrantFiled: December 14, 2006Date of Patent: September 8, 2009Inventor: Chien-Min Sung