Precursor Composition Intentionally Different From Product (e.g., Excess Component, Non-product Forming Component, Dopant, Non-stoichiometric Precursor, Solvent, Flux) Patents (Class 117/78)
Unusable portion contains a metal atom (e.g., diamond or cbn growth in metal solvent) (Class 117/79)
-
Patent number: 12091324Abstract: A production method for producing a halide includes heat-treating, in an inert gas atmosphere, a mixed material in which LiCl and YCl3 are mixed. In the heat-treatment, the mixed material is heat-treated at higher than or equal to 200° C. and lower than or equal to 650° C.Type: GrantFiled: May 18, 2021Date of Patent: September 17, 2024Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Takashi Kubo, Yusuke Nishio, Akihiro Sakai, Akinobu Miyazaki
-
Patent number: 11820901Abstract: [Object] An object of the present invention is to provide a high-aspect-ratio plate-like alumina particle having low aggregability and high dispersibility and a method for producing the particle. [Solving Means] The above problem is solved by providing a plate-like alumina particle including a step of firing an aluminum compound in the presence of a shape-controlling agent and a molybdenum compound serving as a fluxing agent. The above problem is solved also by providing a method for producing a plate-like alumina particle, the method including a step in which the aluminum compound and the molybdenum compound react with each other to form aluminum molybdate and a step in which the aluminum molybdate is decomposed to obtain the plate-like alumina particle.Type: GrantFiled: September 15, 2020Date of Patent: November 21, 2023Assignee: DIC CorporationInventors: Yuan Jian Jun, Hiroshi Kinoshita
-
Patent number: 11485646Abstract: A solid electrolyte material includes a first crystal phase. The first crystal phase has a composition that is deficient in Li as compared with a composition represented by the following composition formula (1).Type: GrantFiled: June 25, 2020Date of Patent: November 1, 2022Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Tetsuya Asano, Akihiro Sakai, Masashi Sakaida, Yusuke Nishio, Akinobu Miyazaki, Shinya Hasegawa
-
Patent number: 11203818Abstract: The present disclosure relates to a silicon-based fusion composition used for a solution growth method for forming a silicon carbide single crystal, and represented by the following Formula 1, including silicon, a first metal (M1), scandium (Sc) and aluminum (Al): SiaM1bSccAld??(Formula 1) wherein a is more than 0.4 and less than 0.8, b is more than 0.2 and less than 0.6, c is more than 0.01 and less than 0.1, and d is more than 0.01 and less than 0.1.Type: GrantFiled: May 30, 2018Date of Patent: December 21, 2021Inventors: Ho Rim Lee, Chan Yeup Chung, Manshik Park, Jung Min Ko
-
Patent number: 9290861Abstract: Regarding a base substrate, a plurality of steps are formed stepwise on the principal surface (c-face). Each step has a height difference of 10 to 40 ?m, and an edge is formed parallel to an a-face of a hexagonal crystal of GaN. Meanwhile, the terrace width of each step is set at a predetermined width. The predetermined width is set in such a way that after a GaN crystal is grown on the principal surface of the base substrate, the principal surface is covered up with grain boundaries when the grown GaN crystal is observed from the surface side. The plurality of steps can be formed through, for example, dry etching, sand blasting, lasing, and dicing.Type: GrantFiled: October 15, 2010Date of Patent: March 22, 2016Assignee: NGK INSULATORS, LTD.Inventors: Takayuki Hirao, Takanao Shimodaira, Katsuhiro Imai
-
Patent number: 8999059Abstract: A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.Type: GrantFiled: September 22, 2008Date of Patent: April 7, 2015Assignees: NGK Insulators, Ltd., Osaka UniversityInventors: Katsuhiro Imai, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
-
Method of growing GaN whiskers from a gallium-containing solvent at low pressure and low temperature
Patent number: 8999060Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.Type: GrantFiled: March 12, 2013Date of Patent: April 7, 2015Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr. -
Patent number: 8940095Abstract: An apparatus for growth of uniform multi-component single crystals is provided. The single crystal material has at least three elements and has a diameter of at least 50 mm, a dislocation density of less than 100 cm?2 and a radial compositional variation of less than 1%.Type: GrantFiled: November 4, 2011Date of Patent: January 27, 2015Assignee: Rensselaer Polytechnic InstituteInventor: Partha Dutta
-
Patent number: 8846505Abstract: A method for growing islands of semiconductor monocrystals from a solution on an amorphous substrate includes the procedures of depositing a semiconductor-metal mixture layer, applying lithography and etching for forming at least one platform, heating the at least one platform, and saturating the semiconductor-metal solution until a monocrystal of the semiconductor component is formed. The procedure of depositing a semiconductor-metal mixture layer, includes a semiconductor component and at least one other metal component, is performed on top of the amorphous substrate. The procedure of applying lithography and etching to the semiconductor-metal mixture layer and a portion of the amorphous substrate is performed for forming at least one platform, the at least one platform having a top view shape corresponding to crystal growth direction and habit respective of the semiconductor component.Type: GrantFiled: March 9, 2010Date of Patent: September 30, 2014Assignee: SKOKIE Swift CorporationInventor: Moshe Einav
-
Patent number: 8815011Abstract: The present invention relates to a magnetic garnet single crystal prepared by the liquid phase epitaxial (LPE) process and an optical element using the same as well as a method of producing the single crystal, for the purpose of providing a magnetic garnet single crystal at a reduced Pb content and an optical element using the same, as well as a method of producing the single crystal. The magnetic garnet single crystal is grown by the liquid phase epitaxial process and is represented by the chemical formula BixNayPbzM13-x-y-zFe5-wM2wO12 (M1 is at least one element selected from Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M2 is at least one element selected from Ga, Al, In, Ti, Ge, Si and Pt, provided that 0.5<x?2.0, 0<y?0.8, 0?z<0.01, 0.19?3-x-y-z<2.5, and 0?w?1.6).Type: GrantFiled: August 27, 2010Date of Patent: August 26, 2014Assignee: TDK CorporationInventor: Atsushi Ohido
-
Publication number: 20140209012Abstract: Provided is a base substrate with which a Group-III nitride crystal having a large area and a large thickness can be grown while inhibiting crack generation. A single-crystal substrate for use in growing a Group-III nitride crystal thereon, which satisfies the following expression (1), wherein Z1 (?m) is an amount of warpage of physical shape in a growth surface of the single-crystal substrate and Z2 (?m) is an amount of warpage calculated from a radius of curvature of crystallographic-plane shape in a growth surface of the single-crystal substrate: ?40<Z2/Z1<?1: Expression (1).Type: ApplicationFiled: March 28, 2014Publication date: July 31, 2014Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Kenji FUJITO, Yasuhiro Uchiyama
-
Patent number: 8784560Abstract: A method for producing a crystallized compound semiconductor material comprises synthesizing said material by fusion and inter-reaction of its constituents placed in elementary form constituting a charge into a sealed ampoule, and then crystallizing the resulting material in liquid form by cooling.Type: GrantFiled: February 16, 2011Date of Patent: July 22, 2014Assignee: Societe Francaise de Detecteurs Infrarouges-SofradirInventors: Sylvain Paltrier, Thierry Miguet
-
Patent number: 8735905Abstract: Provided is a method for producing inexpensive and high-quality aluminum nitride crystals. Gas containing N atoms is introduced into a melt of a Ga—Al alloy, whereby aluminum nitride crystals are made to epitaxially grow on a seed crystal substrate in the melt of the Ga—Al alloy. A growth temperature of aluminum nitride crystals is set at not less than 1000 degrees C. and not more than 1500 degrees C., thereby allowing GaN to be decomposed into Ga metal and nitrogen gas.Type: GrantFiled: July 14, 2011Date of Patent: May 27, 2014Assignees: Sumitomo Metal Mining Co., Ltd., Tohoku UniversityInventors: Hiroyuki Fukuyama, Masayoshi Adachi, Akikazu Tanaka, Kazuo Maeda
-
Publication number: 20140133014Abstract: The present invention relates to a borate birefringent crystal applicable to ultraviolet (UV) or deep ultraviolet (DUV) range, with chemical formula of Ba2Mg(B3O6)2. The borate birefringent crystal belongs to a trigonal system, with space group of R-3 wherein a=0.70528(3) nm, c=1.65520(9) nm and Z=12. The barium magnesium borate birefringent crystal is negative uniaxial (ne<no) with a birefringence of 0.077-0.229 and a transmission range of 177-3000 nm. The crystal is easy to cut, grind, polish, and preserve, and is stable in air and is not easy to deliquesce. The barium magnesium borate birefringent crystal can be grown by the Czochralski method, flux method or the method of spontaneous crystallization from a melt, and has larger birefringence (no?ne=0.077-0.229). The crystal has important applications in the fields of optics and communications, e.g. for fabricating the polarizing beam splitter prism.Type: ApplicationFiled: February 17, 2012Publication date: May 15, 2014Inventors: Rukang Li, Yingying Ma
-
Patent number: 8721788Abstract: A method for charging with liquefied ammonia comprising sequentially a feeding step of feeding gaseous ammonia in a condenser, a liquefaction step of converting the gaseous ammonia into a liquefied ammonia in the condenser, and a charging step of feeding the liquefied ammonia formed in the condenser to a vessel to thereby charge the vessel with the liquefied ammonia wherein a cooling step of feeding the liquefied ammonia formed in the condenser to the vessel and cooling the vessel by the latent heat of vaporization of the liquefied ammonia and a circulation step of feeding the gaseous ammonia formed through vaporization of the liquefied ammonia in the previous cooling step to the condenser are carried out between the liquefaction step and the charging step.Type: GrantFiled: September 24, 2008Date of Patent: May 13, 2014Assignee: Mitsubishi Chemical CorporationInventors: Yuuichi Katou, Takao Watanabe, Kazunori Hiruta
-
Patent number: 8702864Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C prepared by dissolving C into the melt that contains Cr and X, which consists of at least one element of Ce and Nd, such that a proportion of Cr in a whole composition of the melt is in a range of 30 to 70 at. %, and a proportion of X in the whole composition of the melt is in a range of 0.5 at. % to 20 at. % in the case where X is Ce, or in a range of 1 at. % to 25 at. % in the case where X is Nd, and the silicon carbide single crystal is grown from the solution.Type: GrantFiled: January 14, 2009Date of Patent: April 22, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yukio Terashima, Yasuyuki Fujiwara
-
Patent number: 8685163Abstract: A method for growing a silicon carbide single crystal on a single crystal substrate comprising the steps of heating silicon in a graphite crucible to form a melt, bringing a silicon carbide single crystal substrate into contact with the melt, and depositing and growing a silicon carbide single crystal from the melt, wherein the melt comprises 30 to 70 percent by atom, based on the total atoms of the melt, of chromium and 1 to 25 percent by atom, based on the total atoms of the melt, of X, where X is at least one selected from the group consisting of nickel and cobalt, and carbon. It is possible to improve morphology of a surface of the crystal growth layer obtained by a solution method.Type: GrantFiled: November 18, 2008Date of Patent: April 1, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yukio Terashima, Yasuyuki Fujiwara
-
Patent number: 8679248Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.Type: GrantFiled: November 23, 2010Date of Patent: March 25, 2014Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
-
Publication number: 20140070370Abstract: Objects of the present invention are to provide a method for producing a Group III nitride semiconductor single crystal, which method enables production of a Group III nitride semiconductor single crystal having a flat surface by means of a crucible having any inside diameter; to provide a self-standing substrate obtained from the Group III nitride semiconductor single crystal; and to provide a semiconductor device employing the self-standing substrate. The production method includes adding the template, a flux, and semiconductor raw materials to a crucible and growing a Group III nitride semiconductor single crystal while the crucible is rotated. In the growth of the semiconductor single crystal, the crucible having an inside diameter R (mm) is rotated at a maximum rotation speed ? (rpm) satisfying the following conditions: ?1?4????1+4; ?1=10z; and z=?0.78×log10(R)+3.1.Type: ApplicationFiled: July 26, 2013Publication date: March 13, 2014Applicant: TOYODA GOSEI CO., LTD.Inventors: Shiro Yamazaki, Miki Moriyama
-
Publication number: 20140026809Abstract: A seed crystal substrate 10 includes a supporting body 1, and a seed crystal film 3A formed on the supporting body 1 and composed of a single crystal of a nitride of a Group 13 metal element. The seed crystal film 3A includes main body parts 3a and thin parts 3b having a thickness smaller than that of the main body parts 3a. The main body parts 3a and thin part 3b are exposed to a surface of the seed crystal substrate 10. A nitride 15 of a Group 13 metal element is grown on the seed crystal film 3A by flux method.Type: ApplicationFiled: September 17, 2013Publication date: January 30, 2014Applicant: NGK INSULATORS, LTD.Inventors: Makoto Iwai, Takanao Shimodaira, Shuhei Higashihara, Takayuki Hirao, Masahiro Sakai, Katsuhiro Imai
-
Patent number: 8637761Abstract: One embodiment of the present invention provides a method for fabricating a solar cell. The method includes: melting a metallurgical-grade (MG) Si feedstock, lowering a single-crystalline Si seed to touch the surface of the molten MG-Si, slowly pulling out a single-crystal Si ingot of the molten MG-Si, processing the Si ingot into single crystal Si wafers to form MG-Si substrates for subsequent epitaxial growth, leaching out residual metal impurities in the MG-Si substrate, epitaxially growing a layer of single-crystal Si thin film doped with boron on the MG-Si substrate, doping phosphor to the single-crystal Si thin film to form an emitter layer, depositing an anti-reflection layer on top of the single-crystal Si thin film, and forming the front and the back electrical contacts.Type: GrantFiled: December 23, 2008Date of Patent: January 28, 2014Assignee: Silevo, Inc.Inventors: Jianming Fu, Zheng Xu, Peijun Ding, Chentao Yu, Guanghua Song, Jianjun Liang
-
Publication number: 20140014028Abstract: A gallium nitride layer is produced using a seed crystal substrate by flux method. The seed crystal substrate 8A includes a supporting body 1, a plurality of seed crystal layers 4A each comprising gallium nitride single crystal and separated from one another, a low temperature buffer layer 2 provided between the seed crystal layers 4A and the supporting body and made of a nitride of a group III metal element, and an exposed layer 3 exposed to spaces between the adjacent seed crystal layers 4A and made of aluminum nitride single crystal or aluminum gallium nitride single crystal. The gallium nitride layer is grown on the seed crystal layers by flux method.Type: ApplicationFiled: September 20, 2013Publication date: January 16, 2014Applicant: NGK INSULATORS, LTD.Inventors: Katsuhiro Imai, Makoto Iwai, Takanao Shimodaira, Masahiro Sakai, Shuhei Higashihara, Takayuki Hirao
-
Publication number: 20140000509Abstract: The present invention provides a semiconductor crystal removal apparatus which realizes effective removal of a semiconductor crystal from a crucible through rapid melting of a solidified flux, and a method for producing a semiconductor crystal. The semiconductor crystal removal apparatus includes a crucible support for supporting a crucible so that the opening of the crucible is directed downward; a heater for heating the crucible supported on the crucible support; and a semiconductor crystal receiving net for receiving a semiconductor crystal falling from the opening of the crucible. The semiconductor crystal removal apparatus further includes a determination portion for determining removal of the semiconductor crystal on the basis of a change in weight through falling of the semiconductor crystal.Type: ApplicationFiled: June 14, 2013Publication date: January 2, 2014Inventors: Shiro YAMAZAKI, Seiji NAGAI, Miki MORIYAMA
-
Publication number: 20130313478Abstract: The present invention relates generally to the field of synthetic crystal, and more particularly, this invention relates to doped low-temperature phase barium metaborate single crystal, growth method and frequency-converter. Molten salt method was adopted. The single crystal completely overcome the shortcomings of BBO with strong deliquescence, almost no deliquescence; its frequency doubling effect and optical damage threshold has improved greatly compared with the BBO; its hardness increased significantly, the single crystal with Shore hardness of 101.3 and Mohs hardness of 6, however, BBO with Shore hardness of 71.2 and Mohs hardness of 4. From the UV-Vis region transmittance curves tests, the cut-off wavelength of the single crystal is 190 nm, wavelength of absorption onset is 205 nm. BBSAG is widely applied in the fields of laser and nonlinear optics, and in terms of frequency-converter of ultraviolet and deep-ultraviolet due to its excellent properties better than BBO.Type: ApplicationFiled: May 7, 2013Publication date: November 28, 2013Applicant: FUJIAN INSTITUTE OF RESEARCH ON THE STRUCTURE OF MATTER, CHINESE ACADEMY OF SCIENCESInventor: FUJIAN INSTITUTE OF RESEARCH ON THE STRUCTURE OF MATTER, CHINESE ACADEMY OF SCIENCES
-
Publication number: 20130309472Abstract: A monolithic crystal having the atomic formula WnXmYpZr, with at least one dimension greater than about 10 mm. A method for top seed, solution growth of a monolithic crystal, wherein the method includes the steps of: preparing a precursor, forming a seed crystal, and forming the monolithic crystal. Some configurations of the method include the differential control of the crystal flux temperature in a furnace and the rotational frequency of a seed crystal in the crystal flux.Type: ApplicationFiled: November 5, 2012Publication date: November 21, 2013Applicant: UNIVERSITY OF HOUSTON SYSTEMInventor: University of Houston System
-
Patent number: 8562737Abstract: A crystal growth method, comprising the steps of: a) bringing a nitrogen material into a reaction vessel in which a mixed molten liquid comprising an alkaline metal and a group-III metal; and b) growing a crystal of a group-III nitride using the mixed molten liquid and the nitrogen material brought in by the step a) in the reaction vessel, wherein a provision is made such as to prevent a vapor of the alkaline metal from dispersing out of the reaction vessel.Type: GrantFiled: June 13, 2008Date of Patent: October 22, 2013Assignee: Ricoh Company, Ltd.Inventors: Seiji Sarayama, Masahiko Shimada, Hisanori Yamane, Masato Aoki
-
Patent number: 8529696Abstract: A method for producing hexagonal boron nitride single crystals including mixing boron nitride crystals with a solvent thereby obtaining a mixture, heating and melting the mixture under high-temperature and high-pressure thereby obtaining a melted mixture, and recrystallizing the melted mixture thereby producing hexagonal boron nitride single crystals, wherein the solvent is boronitride of alkaline earth metal, or boronitride of alkali metal and the boronitride of alkaline earth metal.Type: GrantFiled: July 30, 2012Date of Patent: September 10, 2013Assignee: National Institute for Materials ScienceInventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
-
Patent number: 8518178Abstract: Disclosed is: a single crystalline silicon carbide nanofiber having improved thermal and mechanical stability as well as a large specific surface area which is applicable to a system for purifying exhaust gas, silicon carbide fiber filter, diesel particulate filter having a high temperature stability and may be used in the form of nanostructures such as nanorods and nanoparticles.Type: GrantFiled: January 24, 2011Date of Patent: August 27, 2013Assignee: Korea Institute of Science and TechnologyInventors: Il Doo Kim, Seung Hun Choi, Seong Mu Jo, Jae-Min Hong
-
Patent number: 8512470Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.Type: GrantFiled: April 8, 2011Date of Patent: August 20, 2013Assignee: China Crystal Technologies Co. LtdInventor: Meng Zhu
-
Patent number: 8506705Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.Type: GrantFiled: September 9, 2009Date of Patent: August 13, 2013Assignee: NGK Insulators, Ltd.Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Patent number: 8501141Abstract: An object of the present invention is to effectively add Ge in the production of GaN through the Na flux method. In a crucible, a seed crystal substrate is placed such that one end of the substrate remains on the support base, whereby the seed crystal substrate remains tilted with respect to the bottom surface of the crucible, and gallium solid and germanium solid are placed in the space between the seed crystal substrate and the bottom surface of the crucible. Then, sodium solid is placed on the seed crystal substrate. Through employment of this arrangement, when a GaN crystal is grown on the seed crystal substrate through the Na flux method, germanium is dissolved in molten gallium before formation of a sodium-germanium alloy. Thus, the GaN crystal can be effectively doped with Ge.Type: GrantFiled: March 26, 2010Date of Patent: August 6, 2013Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka UniversityInventors: Takayuki Sato, Seiji Nagai, Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka
-
Publication number: 20130069078Abstract: A crystal producing apparatus includes a crystal forming unit and a crystal growing unit. The crystal forming unit forms a first gallium nitride (GaN) crystal by supplying nitride gas into melt mixture containing metal sodium (Na) and metal gallium (Ga). The first GaN crystal is sliced and polished to form GaN wafers. The crystal growing unit grows a second GaN crystal on a substrate formed by using a GaN wafer, by the hydride vapor phase epitaxy method, thus producing a bulked GaN crystal.Type: ApplicationFiled: November 16, 2012Publication date: March 21, 2013Inventors: Seiji Sarayama, Hirokazu Iwata
-
Patent number: 8398767Abstract: Bulk mono-crystalline gallium-containing nitride, grown on the seed at least in the direction essentially perpendicular to the direction of the seed growth, essentially without propagation of crystalline defects as present in the seed, having the dislocation density not exceeding 104/cm2 and considerably lower compared to the dislocation density of the seed, and having a large curvature radius of the crystalline lattice, preferably longer than 15 m, more preferably longer than 30 m, and most preferably of about 70 m, considerably longer than the curvature radius of the crystalline lattice of the seed.Type: GrantFiled: June 10, 2005Date of Patent: March 19, 2013Assignees: Ammono S.A., Nichia CorporationInventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara, Robert Kucharski
-
Patent number: 8388752Abstract: A method capable of stably manufacturing a SiC single crystal in the form of a thin film or a bulk crystal having a low carrier density of at most 5×1017/cm3 and preferably less than 1×1017/cm3 and which is suitable for use in various devices by liquid phase growth using a SiC solution in which the solvent is a melt of a Si alloy employs a Si alloy having a composition which is expressed by SixCryTiz wherein x, y, and z (each in atomic percent) satisfy 0.50<x<0.68, 0.08<y<0.35, and 0.08<z<0.35, or ??(1) 0.40<x?0.50, 0.15<y<0.40, and 0.15<z<0.35.??(2) x, y, and z preferably satisfy 0.53<x<0.65, 0.1<y<0.3, and 0.1<z<0.3.Type: GrantFiled: February 28, 2011Date of Patent: March 5, 2013Assignee: Sumitomo Metal Industries, Ltd.Inventors: Kazuhito Kamei, Kazuhiko Kusunoki, Nobuyoshi Yashiro, Akihiro Yauchi, Shinji Shimosaki
-
Patent number: 8377203Abstract: An oxide single crystal having a composition represented by RExSi6O1.5x+12 (RE: La, Ce, Pr, Nd, or Sm, x: 8 to 10) is grown by using the Czochralski method such that the crystal growth orientation coincides with the c-axis direction. The solidification rate (the weight of the grown crystal÷the weight of the charged raw material) in the crystal growth is less than 45%.Type: GrantFiled: April 27, 2006Date of Patent: February 19, 2013Assignee: Honda Motor Co., Ltd.Inventors: Katsuaki Takahashi, Keisuke Mochizuki, Shuichi Kawaminami, Yoshikatsu Higuchi, Masayuki Sugawara, Susumu Nakayama
-
Patent number: 8323405Abstract: An apparatus and associated method for large-scale manufacturing of gallium nitride is provided. The apparatus comprises a large diameter autoclave and a raw material basket. Methods include metered addition of dopants in the raw material and control of the atmosphere during crystal growth. The apparatus and methods are scalable up to very large volumes and are cost effective.Type: GrantFiled: August 3, 2009Date of Patent: December 4, 2012Assignee: Soraa, Inc.Inventor: Mark P. D'Evelyn
-
Patent number: 8287644Abstract: In a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by contacting the substrate with a solution containing C by dissolving C into the melt that contains Si, Cr and X, which consists of at least one element of Sn, In and Ga, such that the proportion of Cr in the whole composition of the melt is in a range of 30 to 70 at. %, and the proportion of X is in a range of 1 to 25 at. %, and the silicon carbide crystal is grown from the solution.Type: GrantFiled: January 14, 2009Date of Patent: October 16, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Yukio Terashima, Yasuyuki Fujiwara
-
Publication number: 20120255484Abstract: A method for growing high-resistivity single crystals includes placing a raw material in a vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the moisture in the raw material, exhausting the vaporized moisture from the vacuum-sealable ampoule, vacuum-sealing the vacuum-sealable ampoule, heating the raw material in the vacuum-sealable ampoule to vaporize the oxide compounds in the raw material, cooling a bulb in a cap on the vacuum-sealable ampoule to produce condensed oxide compounds on an inner surface of the bulb, removing the bulb and the condensed oxide compounds from the vacuum-sealable ampoule, wherein the raw material in the vacuum-sealable ampoule comprises carbon as an impurity, and placing the vacuum-sealable ampoule comprising the raw material in a crystal growth apparatus to grow a high-resistivity crystal from the raw material.Type: ApplicationFiled: April 8, 2011Publication date: October 11, 2012Inventor: Meng Zhu
-
Patent number: 8231729Abstract: It is disclosed an apparatus for growing a nitride single crystal using a flux containing an easily oxidizable substance. The apparatus has a crucible for storing the flux; a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen gas; furnace materials disposed within the pressure vessel and out of the crucible; heaters attached to the furnace material; and alkali-resistant and heat-resistant metallic layers covering the furnace material.Type: GrantFiled: August 15, 2008Date of Patent: July 31, 2012Assignees: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.Inventors: Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
-
Patent number: 8231726Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.Type: GrantFiled: January 19, 2007Date of Patent: July 31, 2012Assignee: Panasonic CorporationInventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
-
Publication number: 20120125254Abstract: A method for reducing the range in resistivities of semiconductor crystalline sheets produced in a multi-lane growth furnace. A furnace for growing crystalline sheets is provided that includes a crucible with a material introduction region and a crystal growth region including a plurality of crystal sheet growth lanes. The crucible is configured to produce a generally one directional flow of material from the material introduction region toward the crystal sheet growth lane farthest from the material introduction region. Silicon doped with both a p-type dopant and an n-type dopant in greater than trace amounts is introduced into the material introduction region. The doped silicon forms a molten substance in the crucible called a melt. Crystalline sheets are formed from the melt at each growth lane in the crystal growth region. Co-doping the silicon feedstock can reduce the variation in resistivities among the crystalline sheets formed in each lane.Type: ApplicationFiled: November 23, 2010Publication date: May 24, 2012Applicant: EVERGREEN SOLAR, INC.Inventors: Brian D. Kernan, Gary J. Tarnowski, Weidong Huang, Scott Reitsma, Christine Richardson
-
Publication number: 20120125255Abstract: A method for producing a crystal of a metal nitride of Group 13 of the periodic table, the method comprises: preparing a solution or melt containing a raw material and a solvent, and growing a crystal of a metal nitride of Group 13 of the periodic table in the solution or melt in a crystal producing apparatus, to produce the crystal of a metal nitride of Group 13 of the periodic table, wherein a member in the crystal producing apparatus, which contacts with the solution or melt comprises: at least one metal selected from the elements of Groups 4 to 6 of the periodic table; and a nitride layer that contains a nitride of at least one selected from the elements of Groups 4 to 6 of the periodic table, on the surface of the member.Type: ApplicationFiled: December 5, 2011Publication date: May 24, 2012Applicant: MITSUBISHI CHEMICAL CORPORATIONInventor: Yuya SAITO
-
Publication number: 20120111264Abstract: A plurality of seed crystal films of a single crystal of a nitride of a metal belonging to group III are formed on a substrate, while a non-growth surface not covered with the seed crystal films is formed on the substrate. A single crystal of a nitride of a metal belonging to group III is grown on the seed crystal film. A plurality of the seed crystal films are separated by the non-growth surface and arranged in at least two directions X and Y. The maximum inscribed circle diameter “A” of the seed crystal film is 50 ?m or more and 6 mm or less, a circumscribed circle diameter “B” of the seed crystal film is 50 ?m or more and 10 mm or less, and the maximum inscribed circle diameter “C” of the non-growth surface 1b is 100 ?m or more and 1 mm or less.Type: ApplicationFiled: January 6, 2012Publication date: May 10, 2012Inventors: Takanao Shimodaira, Katsuhiro Imai, Makoto Iwai
-
Publication number: 20120111265Abstract: A nonlinear optical crystal having a chemical formula of YiLajAlkB16O48, where 2.8?i?3.2, 0.8?j?1.2, i and j sum to about four, and k is about 12 is provided. The nonlinear optical crystal is useful for nonlinear optical applications including frequency conversion. Nonlinear optical crystals in a specific embodiment are characterized by UV blocking materials (e.g., some transition metals and lanthanides) at concentrations of less than 1,000 parts per million, providing high transmittance over portions of the UV spectrum (e.g., 175-360 nm).Type: ApplicationFiled: October 10, 2011Publication date: May 10, 2012Applicant: Deep Photonics CorporationInventor: Theodore Alekel
-
Patent number: 8133319Abstract: A Periodic Table Group 13 metal nitride crystal is grown by causing a reaction of a Periodic Table Group 13 metal phase with a nitride-containing molten salt phase to proceed while removing a by-product containing a metal element except for Periodic Table Group 13 metals, from the reaction field. According to this process, a high-quality Periodic Table Group 13 metal nitride bulk crystal can be produced under low pressure or atmospheric pressure.Type: GrantFiled: July 4, 2005Date of Patent: March 13, 2012Assignee: Mitsubishi Chemical CorporationInventors: Yoji Arita, Yoshinori Seki, Takeshi Tahara, Yuzuru Sato
-
Patent number: 8123856Abstract: In the flux method, a source nitrogen gas is sufficiently heated before feeding to an Na—Ga mixture. The apparatus of the invention is provided for producing a group III nitride based compound semiconductor. The apparatus includes a reactor which maintains a group III metal and a metal differing from the group III metal in a molten state, a heating apparatus for heating the reactor, an outer vessel for accommodating the reactor and the heating apparatus, and a feed pipe for feeding a gas containing at least nitrogen from the outside of the outer vessel into the reactor. The feed pipe has a zone for being heated together with the reactor by means of the heating apparatus, wherein the zone is heated inside the outer vessel and outside the reactor.Type: GrantFiled: April 5, 2007Date of Patent: February 28, 2012Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka UniversityInventors: Shiro Yamazaki, Makoto Iwai, Takanao Shimodaira, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
-
Patent number: 8118933Abstract: Silicon raw material is filled into a graphite crucible (10), the graphite crucible (10) is heated to form molten silicon (M), at least one rare earth element and at least one of Sn, Al, and Ge are added to molten silicon (M), and a temperature gradient is maintained in the molten silicon in which the temperature decreases from within the molten silicon toward the surface while growing an silicon carbide single crystal starting from an silicon carbide seed crystal (14) held immediately below the surface of the molten liquid.Type: GrantFiled: April 5, 2007Date of Patent: February 21, 2012Assignee: Toyota Jidosha Kabushiki KaishaInventors: Hidemitsu Sakamoto, Yukio Terashima
-
Patent number: 8088220Abstract: In accordance with various embodiments, crystalline structures are formed by providing, at a growth temperature, a liquid comprising AlN and having a quality factor greater than approximately 0.14 and forming solid AlN from the liquid, the growth temperature being lower than the melting point of AlN.Type: GrantFiled: May 23, 2008Date of Patent: January 3, 2012Assignee: Crystal IS, Inc.Inventors: Glen A. Slack, Sandra B. Schujman
-
Publication number: 20110297893Abstract: A method for producing n-type SiC single crystal, including: adding gallium and nitrogen, which is a donor element, for obtaining an n-type semiconductor during crystal growth of SiC single crystal, such that the amount of nitrogen as represented in atm unit is greater than the amount of gallium as represented in atm unit; an n-type SiC single crystal obtained according to this production method; and, a semiconductor device that includes the n-type SiC single crystal.Type: ApplicationFiled: February 18, 2010Publication date: December 8, 2011Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Akinori Seki, Yasuyuki Fujiwara
-
Patent number: 8038794Abstract: A method of manufacturing a group III-nitride crystal substrate including the steps of introducing an alkali-metal-element-containing substance, a group III-element-containing substance and a nitrogen-element-containing substance into a reactor, forming a melt containing at least the alkali metal element, the group III-element and the nitrogen element in the reactor, and growing group III-nitride crystal from the melt, and characterized by handling the alkali-metal-element-containing substance in a drying container in which moisture concentration is controlled to at most 1.0 ppm at least in the step of introducing the alkali-metal-element-containing substance into the reactor is provided. A group III-nitride crystal substrate attaining a small absorption coefficient and the method of manufacturing the same, as well as a group III-nitride semiconductor device can thus be provided.Type: GrantFiled: April 15, 2005Date of Patent: October 18, 2011Assignees: Sumitomo Electric Industries, Ltd.Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Fumio Kawamura, Seiji Nakahata, Ryu Hirota