By Liquid Phase Epitaxy {c30b 29/06} Patents (Class 117/934)
  • Patent number: 8440017
    Abstract: To grow a gallium nitride crystal, a seed-crystal substrate is first immersed in a melt mixture containing gallium and sodium. Then, a gallium nitride crystal is grown on the seed-crystal substrate under heating the melt mixture in a pressurized atmosphere containing nitrogen gas and not containing oxygen. At this time, the gallium nitride crystal is grown on the seed-crystal substrate under a first stirring condition of stirring the melt mixture, the first stirring condition being set for providing a rough growth surface, and the gallium nitride crystal is subsequently grown on the seed-crystal substrate under a second stirring condition of stirring the melt mixture, the second stirring condition being set for providing a smooth growth surface.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 14, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Takanao Shimodaira, Takayuki Hirao, Katsuhiro Imai
  • Patent number: 7918934
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 5, 2011
    Assignee: Sumco Techxiv Corporation
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7118625
    Abstract: With respect to a liquid phase growth method for a silicon crystal in which the silicon crystal is grown on a substrate by immersing the substrate in a solvent or allowing the substrate to contact the solvent, a gas containing a raw material and/or a dopant is supplied to the solvent after at least a part of the gas is decomposed by application of energy thereto. In this manner, a liquid phase growth method for a silicon crystal, the method capable of achieving continuous growth and suitable for mass production, a manufacturing method for a solar cell and a liquid phase growth apparatus for a silicon crystal are provided.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: October 10, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shoji Nishida, Takehito Yoshino, Masaaki Iwane, Masaki Mizutani
  • Patent number: 7077901
    Abstract: A process for producing a single crystal silicon wafer, comprising the steps of forming a porous layer on a single crystal silicon substrate comprising a silicon whose concentration of mass number 28 silicon isotope is less than 92.5% on an average; dissolving a starting silicon whose concentration of mass number 28 silicone isotope whose mass number is more than 98% on an average in a melt for liquid-phase epitaxy until said starting silicon becomes to be a supersaturated state in said melt under reductive atmosphere maintained at high temperature: immersing said single crystal silicon substrate in said melt to grow a single crystal silicon layer on the surface of said porous layer of said single crystal silicon substrate; and peeling said single crystal silicon layer from a portion of said porous layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: July 18, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumi Nakagawa, Takao Yonehara, Kazuaki Ohmi, Shoji Nishida
  • Patent number: 6946029
    Abstract: An inexpensive sheet with excellent evenness and a desired uniform thickness can be obtained by cooling a base having protrusions, dipping the surfaces of the protrusions of the cooled base into a melt material containing at least one of a metal material and a semiconductor material for crystal growth of the material on the surfaces of the protrusions. In addition, by rotating a roller having on its peripheral surface protrusions and a cooling portion for cooling said protrusions, the surfaces of the cooled protrusions can be dipped into a melt material containing at least one of a metal material and a semiconductor material for crystal growth of the material on the surfaces of the protrusions. Thus, a sheet with a desired uniform thickness can be obtained without slicing process.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: September 20, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Tsukuda, Hiroshi Taniguchi, Kozaburou Yano, Kazuto Igarashi, Hidemi Mitsuyasu, Tohru Nunoi
  • Patent number: 6869863
    Abstract: Metal-grade silicon is melted and solidified in a mold to form a plate-shaped silicon layer and a crystalline silicon layer is made thereon, thereby providing a cheap solar cell without a need for a slicing step.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: March 22, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shoji Nishida
  • Patent number: 6468348
    Abstract: An open form is produced with a plurality of in each case two-dimensionally structured layers. The form is made of silicon which is etchable in dependence on its doping. A first silicon layer is first produced, and a portion of the first layer which belongs to the form to be produced, is marked by doping at least one zone of the first layer. Subsequently, at least one further silicon layer is applied, and a portion belonging to the form is also marked therein. Finally, every unmarked portion of the layers is removed by etching depending on the respective doping of each layer. The open form is, in particular, a photonic crystal.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: October 22, 2002
    Assignee: Infineon Technologies AG
    Inventors: Ulrike GrĂ¼ning, Hermann Wendt, Volker Lehmann, Reinhard Stengl, Hans Reisinger
  • Patent number: 6387780
    Abstract: Metal-grade silicon is melted and solidified in a mold to form a plate-shaped silicon layer and a crystalline silicon layer is made thereon, thereby providing a cheap solar cell without a need for a slicing step.
    Type: Grant
    Filed: September 18, 1997
    Date of Patent: May 14, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shoji Nishida
  • Patent number: 6231667
    Abstract: A liquid phase growth apparatus of a dipping system has a plurality of liquid phase growth chambers and liquid phase growth operations of semiconductors are carried out on a plurality of substrates in the growth chambers. Another liquid phase growth apparatus of the dipping system has a liquid phase growth chamber and an annealing chamber, and is constructed in such structure that liquid phase growth of a semiconductor on one substrate is carried out in the liquid phase growth chamber and that an annealing operation of another substrate different from the aforementioned substrate is carried out in the annealing chamber. Another liquid phase growth apparatus of the dipping system has a liquid phase growth chamber and an annealing chamber, and is constructed in such structure that a semiconductor material is dissolved into a solvent in the liquid phase growth chamber and that the annealing operation of a substrate is carried out in the annealing chamber.
    Type: Grant
    Filed: November 27, 1998
    Date of Patent: May 15, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masaaki Iwane, Isao Tanikawa, Katsumi Nakagawa, Tatsumi Shoji, Shoji Nishida, Noritaka Ukiyo
  • Patent number: 5544616
    Abstract: A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 3.times.10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution of Si in a Cu/Al solvent at about 20 to about 40 at. % Si at a temperature range of about 850.degree. to about 1100.degree. C. in an inert gas; immersing or partially immersing a substrate in the saturated liquid solution; super saturating the solution by lowering the temperature of the saturated solution; holding the substrate in the saturated solution for a period of time sufficient to cause Si to precipitate out of solution and form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: August 13, 1996
    Assignee: Midwest Research Institute
    Inventors: Theodore F. Ciszek, Tihu Wang
  • Patent number: 5503103
    Abstract: A method for the formation of a layer on at least one substrate. A liquid, which contains the material for forming the layer, flows over the surface of the substrate of the substrate to be coated. A concentration gradient of the layer-forming material is produced in a direction, perpendicular to the direction of the flow of the liquid. As a result, the concentration of the layer-forming material becomes a maximum at one side of the liquid.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: April 2, 1996
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenshaften e.V., Berlin
    Inventors: Elisabeth Bauser, Mitsubaru Konuma
  • Patent number: 5425808
    Abstract: A process for selective formation of a III-V group compound film comprises applying a compound film forming treatment, in a gas phase including a starting material for supplying the group III atoms of Periodic Table and a starting material for supplying the group V atoms of Periodic Table, on a substrate having a non-nucleation surface (S.sub.NDS) with small nucleation density and a nucleation surface (S.sub.NDL) with a larger nucleation density (ND.sub.L) than the nucleation density (ND.sub.S) of said non-nucleation surface (S.sub.NDS) and a large area sufficient for a number of nuclei to be formed, and forming selectively a III-V group compound film only on said nucleation surface (S.sub.NDL).
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: June 20, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Tokunaga, Takao Yonehara
  • Patent number: 5397735
    Abstract: The invention relates to the "hardening" (resistance to ionizing radiations) of MOS-type components. In order to avoid the effects of these radiations (creation of electron-hole pairs), there is deposited on a substrate (1) of monocrystalline Si a layer of YSZ (2), and then a thin layer of monocrystalline Si (3). The other steps of production of the components are the same as conventional.
    Type: Grant
    Filed: July 27, 1990
    Date of Patent: March 14, 1995
    Assignee: Thomson-CSF
    Inventors: Louis Mercandalli, Didier Pribat, Bernard Dessertenne, Leonidas Karapiperis, Dominique Dieumegard
  • Patent number: 5356509
    Abstract: A method for growing a compound semiconductor, such as GaAs or InP, on a non-lattice matched substrate, such as Si, utilizes close-spaced vapor transport to deposit nucleation enhancing interlayer and liquid phase epitaxy to form the compound semiconductor. When used in conjunction with a growth mask, the method is also adapted to selective area epitaxy.
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: October 18, 1994
    Assignee: AstroPower, Inc.
    Inventors: Nancy Terranova, Allen M. Barnett
  • Patent number: 5314571
    Abstract: A liquid phase epitaxy method for forming thin crystalline layers of device quality silicon having less than 5X10.sup.16 Cu atoms/cc impurity, comprising: preparing a saturated liquid solution melt of Si in Cu at about 16% to about 90% wt. Si at a temperature range of about 800.degree. C. to about 1400.degree. C. in an inert gas; immersing a substrate in the saturated solution melt; supersaturating the solution by lowering the temperature of the saturated solution melt and holding the substrate immersed in the solution melt for a period of time sufficient to cause growing Si to precipitate out of the solution to form a crystalline layer of Si on the substrate; and withdrawing the substrate from the solution.
    Type: Grant
    Filed: May 13, 1992
    Date of Patent: May 24, 1994
    Assignee: Midwest Research Institute
    Inventor: Theodore F. Ciszek
  • Patent number: 5310446
    Abstract: A method for producing a semiconductor film comprising steps of: preparing a first substrate and a second substrate; superposing the first substrate on the second substrate to form an assembly of combined substrates; applying energy to the assembly of combined substrates to melt a portion within the assembly to form a molten portion therein; cooling the molten portion to crystallize the portion to form a single crystal structure therein; and separating the first substrate from the second substrate. The method makes it possible to control the crystal axis orientation of the recrystallized single crystal structure.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: May 10, 1994
    Assignee: Ricoh Company, Ltd.
    Inventors: Junichi Konishi, Kouichi Maari, Toshihiko Taneda, Akiko Kishimoto