Halide Containing (e.g., Fluorphlogopite, Fluor-mica) {c30b 29/12} Patents (Class 117/940)
  • Patent number: 6488769
    Abstract: In order to provide a fluoride refining method and a fluoride crystal manufacturing method that have great general-purpose properties and can reduce the manufacturing cost and to provide at a low cost a fluoride crystal, an optical part and an aligner the transmission characteristics of which are hardly degraded even when repeatedly irradiated with a high-output light of a short wavelength for a long term, there is provided a method of refining a fluoride comprising the heating step of heating a solid scavenger-added fluoride raw material to melt the raw material and the cooling step of cooling the molten fluoride material to solidify the melt, wherein the environment of a chamber housing the fluoride raw material is changed to such an environment that a gas in the chamber is discharged to the outside of the chamber more easily than the environment before the change, during the heating step.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: December 3, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomoru Oba
  • Patent number: 6429318
    Abstract: An organic-inorganic perovskite having alternating layers of an inorganic anion layer and an organic cation layer is provided. More particularly, the inorganic anion layer of the organic-inorganic perovskite has a trivalent or higher valent metal halide framework and the organic cation layer has a plurality of organic cations capable of templating the metal-deficient inorganic anion layers within the perovskite structure. Methods of preparing the organic-inorganic perovskite according to the present invention are also provided.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporaiton
    Inventor: David Brian Mitzi
  • Patent number: 6423136
    Abstract: A crucible having an inner surface which is not wetted by a melt which shrinks when it solidifies, is provided with indentations in its walls, the indentatons located remote from its rim. The indentations are located beneath a lateral plane through the walls of the crucible, at about two-thirds (66.6%) of the vertical height of the walls, measured from the floor of the crucible, support an ingot grown in it. Supporting the crystal provides a gap between the bottom of the ingot and the inner surface of the bottom of the crucible. The gap allows more uniform heat transfer from the bottom of the crucible than is provided when there is no gap; the gap provides a controllable temperature gradient between the interior and exterior of the crucible. To direct propagation of the growth of a macrocrystal, the bottom of the crucible is provided with at least one set of multiple grooves in parallel relationship with each other.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 23, 2002
    Inventor: Carl Francis Swinehart
  • Patent number: 6369392
    Abstract: A crystal having good optical transmission between 260 nm and 280 nm and strongly absorbing at 285 nm and higher, which is nonhydroscopic and stable at temperatures to 250° C. An example of such a crystal is Cerium doped YLiF4. These properties make YLiF4 crystals doped with Ce3+ excellent materials for use as UV filters in the missile early warning spectral band. Optical devices including missile detection systems are also provided.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: April 9, 2002
    Assignee: Inrad
    Inventors: Warren Ruderman, Ilya Zwieback, Shai Livneh
  • Patent number: 6342312
    Abstract: A calcium fluoride crystal in which the light transparency does not deteriorate with consecutive irradiation by high output short wavelength light over long time periods. A calcium fluoride crystal in accordance with the present invention has an internal transmittance of 70% or more for light of a 135-nm wavelength or more. A calcium fluoride crystal contains any one of strontium, aluminum, silicon and magnesium, with the strontium content ranging from 1 ppm to 600 ppm, the aluminum content ranging from 1 ppm to 50 ppm, the silicon content ranging from 1 ppm to 50 ppm, or the magnesium content ranging from 1 ppm to 10 ppm. A calcium fluoride crystal has an internal transmittance of 70% or more for light of a 135-nm wavelength or more and contains 1 ppm or less of La and 10 ppm or less of Y. An optical system for an excimer laser in accordance with the present invention comprises a lens comprising any calcium fluoride crystal set forth above.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: January 29, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoru Oba, Toshio Ichizaki
  • Patent number: 6332922
    Abstract: A manufacturing method for a single crystal of calcium fluoride by which it is possible to obtain a single crystal of calcium fluoride with adequately small double refraction, which can be used in optical systems for photolithography, and in particular, a single crystal of calcium fluoride with a large diameter (ø 200 mm or larger) having superior optical properties, which can be used for photolithography with a wavelength of 250 nm or less.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: December 25, 2001
    Assignee: Nikon Corporation
    Inventors: Shigeru Sakuma, Tsutomu Mizugaki, Kazuo Kimura, Shuuichi Takano
  • Patent number: 6306212
    Abstract: An insulator layer for single crystal gallium arsenide substrates in which the insulator layer is compliantly matched with the substrate and the insulator layer is free of defects causing surface roughness and crystalline defect problems which, otherwise, could impair device performance. To accomplish this, the insulator layer is formed on a gallium arsenide substrate as an integral composite or variegated structure including (a) a uniform homogenous film of Group IIa metal atoms attached directly onto a gallium arsenide substrate surface in the form of a monolayer, and (b) a single crystal epitaxial film of a Group IIa metal fluoride deposited on the monolayer.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 23, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Tak Kin Chu, Michael F. Stumborg, Kevin A. Boulais
  • Patent number: 6277351
    Abstract: A crucible having an inner surface is not wetted by a melt which shrinks when it solidifies is provided with indentations in the walls of the crucible to support an ingot grown in it. Supporting the crystal provides a gap between the bottom of the ingot and the inner surface of the bottom of the crucible. The gap allows more uniform heat transfer from the bottom of the crucible than is provided when there is no gap; the gap provides a controllable temperature gradient between the interior and exterior of the crucible. To direct propagation of the growth of a macrocrystal, the bottom of the crucible is provided with at least one set of multiple grooves in parallel relationship with each other. Preferably a second set of multiple grooves in parallel relationship with each other intersect the grooves of the first set at an angle chosen depending upon the lattice structure of the macrocrystal to be grown. A macrocrystal grown in a crucible with twin sets of angulated grooves produces single crystals.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: August 21, 2001
    Inventor: Carl Francis Swinehart
  • Patent number: 6270570
    Abstract: An object of the present invention is to provide a fluoride crystal having a high transmittance with respect to an excimer laser and an excellent resistance with respect to a high output laser, and a production method therefore. The fluoride crystal of the present invention contains at least one kind of atom selected from the group consisting of Zn, Cd, Pb, Li, Bi and Na with a content of 10 ppm or less, and has an internal transmittance of 70% or more with respect to 135 nm wavelength light. The method of the present invention of producing a fluoride crystal comprises conducting a refining step of adding a scavenger to a calcium fluoride raw material and refining the raw material at least once, and a crystal growth step of further adding the scavenger to the refined raw material and growing a crystal by using a crucible lowering method, wherein the amount of the scavenger to be added in the first refining step is 0.04 to 0.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoru Ohba, Toshio Ichizaki
  • Patent number: 6238479
    Abstract: The present invention provides a raw material for manufacturing an inexpensive fluoride crystal with excellent optical characteristics, and a method of manufacturing a fluoride crystal using a carbon fluoride-based gas that can easily be handled and is capable of preventing gases from being taken into a crystal to avoid degradation of transmittance, etc., and provides further a fluoride crystal and a manufacturing method thereof.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: May 29, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomoru Oba
  • Patent number: 6200385
    Abstract: A crucible 40 having an inner surface 42 not wetted by a melt which shrinks when it solidifies is provided with indentations 41 in the walls of the crucible to support an ingot grown in it. Supporting the crystal provides a gap between the bottom of the ingot 44 and the inner surface of the bottom of the crucible. The gap allows more uniform heat transfer from the bottom of the crucible than is provided when there is no gap; the gap provides a controllable temperature gradient between the interior and exterior of the crucible. To direct propagation of the growth of a macrocrystal, the bottom of the crucible is provided with at least one set of multiple grooves in parallel relationship with each other. Preferably a second set of multiple grooves in parallel relationship with each other intersect the grooves of the first set at an angle chosen depending upon the lattice structure of the macrocrystal to be grown. A macrocrystal grown in a crucible with twin sets of angulated grooves produces single crystals.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: March 13, 2001
    Inventor: Carl Francis Swinehart
  • Patent number: 6150536
    Abstract: The present invention relates to an organic-inorganic hybrid material comprising an organic component and an inorganic component. The organic component comprises a dye that fluoresces in the visible range. In addition, an optically inert component may replace a portion of the organic dye component to increase fluorescence.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: November 21, 2000
    Assignee: International Business Machines Corporation
    Inventors: Konstantinos Chondroudis, David Brian Mitzi
  • Patent number: 6146456
    Abstract: An annealing method for a single crystal of fluoride is provided. The method includes the steps of removing at least one of attached objects and absorbed objects from the surface of the single crystal of fluoride to clean the surface, thereafter annealing the single crystal of fluoride, including heating the single crystal of fluoride and gradually cooling the heated single crystal of fluoride, and removing a deteriorated layer which is formed on the surface of the single crystal of fluoride during the annealing step.
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: November 14, 2000
    Assignee: Nikon Corporation
    Inventors: Tsutomu Mizugaki, Shuuichi Takano
  • Patent number: 6123764
    Abstract: A manufacturing method for a single crystal of calcium fluoride includes the steps of degassing calcium fluoride powder particles to desorb impurities from surfaces of the calcium fluoride powder particles, preprocessing the degassed calcium fluoride powder particles by fusing the degassed calcium fluoride powder particles in a crucible to obtain a preprocessed product, and re-fusing the preprocessed product in a crucible to grow a single crystal of calcium fluoride.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: September 26, 2000
    Assignee: Nikon Corporation
    Inventors: Tsutomu Mizugaki, Kazuo Kimura, Shuuichi Takano
  • Patent number: 5932006
    Abstract: Metal insulator semiconductor field effect transistors (MISFETs), charge coupled devices (CCDs), and capacitors based on an epitaxial barium fluoride (BF.sub.2) insulator layer deposited directly onto a single crystal gallium arsenide (GaAs) substrate.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: August 3, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Tak Kin Chu
  • Patent number: 5900057
    Abstract: A planar waveguide and a process for making a planar waveguide is disclosed. The waveguide has a layer of dope host material formed on a substrate. The host material is a trivalent material such as a metal fluoride, wherein the metal is selected from the Group III B metals and the lanthanide series rare earth metals of the Mendeleevian Periodic Table. The dopant is a rare earth metal such as erbium. The waveguide has an emission spectrum with a bandwidth of about 60 nm for amplification of an optical signal at a wavelength of about 1.51 .mu.m to about 1.57 .mu.m. The waveguide is made by forming the layer of doped host material on a substrate. The film is formed by evaporating materials from two separate sources, one source for the dopant material and a separate source for the host material and forming a film of the evaporated materials on a substrate.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: May 4, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: Christoph J. Buchal, Theo Siegrist
  • Patent number: 5876630
    Abstract: A cesium iodide based scintillation material is obtained exhibiting a low afterglow and high radiation hardness; its preparation method is developed, too.The cesium iodide based scintillation material doped by thallium iodide contains an additional admixture of compound having the general formulaMe.sub.x (CO.sub.3).sub.y,where Me is a cationic admixture,1.ltoreq.X.ltoreq.2,1.ltoreq.Y.ltoreq.5,This material has in its absorption spectrum a stretching vibration band of CO.sub.3.sup.2- -ion about 7 .mu.m and a bending vibration band about 11.4 .mu.m, the absorption coefficient of the latter being from 1.4.multidot.10.sup.-3 to 2.multidot.10.sup.-2 cm.sup.-1.Preparation method of this scintillation material comprises the raw material cesium iodide melting, adding of the activating thallium iodide dope, introduction of cesium carbonate (3.multidot.10.sup.-4 to 5.multidot.10.sup.-3 % by mass) and a sodium salt (3.multidot.10.sup.-4 to 7.5.multidot.10.sup.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: March 2, 1999
    Assignee: Amcrys-H
    Inventors: Eduard L'Vovich Vinograd, Valentin Ivanovich Goriletsky, Ludmila Vasil'evna Kovaleva, Sofiya Petrovna Korsunova, Alexandr Mihailovich Kudin, Anatolii Ivanovich Mitichkin, Alexandra Nikolaevna Panova, Vladimir Grigor'evich Protsenko, Klavdia Viktorovna Shakhova, Larisa Nikolaevna Shpilinskaya
  • Patent number: 5871579
    Abstract: A convenient two-step dipping technique for preparing high-quality thin films of a variety of perovskites is provided by the invention. Thin films of Mi.sub.2 (M=Pb, Sn) were first prepared by vacuum-depositing MI.sub.2 onto ash glass or quart substrates, which were subsequently dipped into a solution containing the desired organic ammonium cation for a short period of time. Using this technique, thin films of different layered organic-inorganic perovskites (RNH.sub.3).sub.2 (CH.sub.3 NH.sub.3).sub.n-1 M.sub.n I.sub.3n+1 (R=butyl, phenethyl; M=Pb, Sn; and n=1, 2) and three-dimensional perovskites CH.sub.3 NH.sub.3 MI.sub.3 (M=Pb, Sn; i.e. n=.infin.) were successfully prepared at room temperature. The lattice constants of these dip-processed perovskites are very similar to those of the corresponding compounds prepared by solution-growth or by solid state reactions. The layered perovskite thin films possess strong photoluminescence, distributed uniformly across the film areas.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: February 16, 1999
    Assignee: International Business Machines Corporation
    Inventors: Kangning Liang, David Brian Mitzi, Michael T. Prikas
  • Patent number: 5865888
    Abstract: A semiconductor device epitaxial layer lateral growth rate control method using CBr.sub.4 gas involves regulating an epitaxial layer lateral growth rate in accordance with the CBr.sub.4 amount doped into the epitaxial layer during the epitaxial layer growth occurring on a patterned GaAs substrate by means of a metalorganic chemical vapor deposition (MOCVD) process. The lateral growth rate may be regulated by varying the growth temperature and the V/III doping ratio.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: February 2, 1999
    Assignee: Korea Institute of Science and Technology
    Inventors: Suk-Ki Min, Moo sung Kim, Seong-Il Kim
  • Patent number: 5837054
    Abstract: Crystals formed of a solid-solution of NiSiF.sub.6 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 115.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: November 17, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey, Robert Mazelski
  • Patent number: 5785756
    Abstract: A novel molecular beam epitaxy deposition process for precisely growing structurally robust films and coatings containing germanium and various fluoride compounds for use as an optical filter. The process comprises depositing two (2) materials having different indices of refraction via molecular beam epitaxy at a temperature significantly lower than the optimal growth temperature. At such lower temperature, layers of the respective compounds are grown, via molecular beam epitaxy, such that the layers contain large concentrations of dislocations. Once the film or coating has been grown to the desired thickness, the material deposited is allowed to cool to room temperature and may then be used in a wide range of applications.
    Type: Grant
    Filed: March 6, 1997
    Date of Patent: July 28, 1998
    Assignee: Northrop Grumman Corporation
    Inventor: Myung B. Lee
  • Patent number: 5690737
    Abstract: A process for growing single crystal epitaxial BaF.sub.2 layers on gallium rsenide substrates by slowly reacting Ba, BaCl.sub.2, Bal.sub.2, BaBr.sub.2, BaF.sub.2 .cndot.BaCl.sub.2, BaF.sub.2 .cndot.BaBr.sub.2, BaF.sub.2 .cndot.BaI.sub.2, BaCl.sub.2 .cndot.BaBr.sub.2, Ba.sub.3 (GaF.sub.6).sub.2, BAH.sub.2, or BaO.sub.2 vapor with a clean, hot GaAs substrate at 500.degree. C. to 700.degree. C. in high vacuum until a uniform, thin (.about.12 .ANG.) layer of reaction product is formed and then vapor depositing BaF.sub.2 onto the reaction layer at room temperature to 400.degree. C. to form the single crystal, epitaxial BaF.sub.2 layer.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: November 25, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Tak-Kin Chu, Michael Stumborg
  • Patent number: 5645638
    Abstract: The present invention has been achieved by perceiving the fact to the effect that a semiconductor production process-like manner such as CVD method or the like by which materials and film thickness can be controlled in an atomic scale may be utilized in case of preparing thin-film crystal, and employing such semiconductor production process-like manner being quite different from conventional technique.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: July 8, 1997
    Assignee: Rikagaku Kenkyusho
    Inventors: Hiroshi Kumagai, Kouichi Toyoda
  • Patent number: 5509189
    Abstract: An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: April 23, 1996
    Assignee: Massachusetts Institute of Technology, a MA corp.
    Inventors: Harry L. Tuller, Steve A. Kramer, Marlene A. Spears, Uday B. Pal
  • Patent number: 5435264
    Abstract: A process for growing single crystal epitaxial BaF.sub.2 layers on gallium arsenide substrates by slowly reacting BaF.sub.2 vapor with the clean, hot GaAs substrate at 500.degree. to 700.degree. C. in high vacuum until a uniform, thin (.about.12.ANG.) layer of reaction product is formed and then vapor depositing BaF.sub.2 onto the reaction layer at room temperature to 400.degree. C. to form the single crystal, epitaxial BaF.sub.2 layer.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: July 25, 1995
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francisco Santiago, Tak K. Chu, Michael F. Stumborg
  • Patent number: 5365876
    Abstract: An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: November 22, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Donald O. Nason, Arnold Burger