Titanate, Germanate, Molybdate, Or Tungstate Containing {c30b 29/32} Patents (Class 117/949)
  • Patent number: 9005466
    Abstract: In accordance with the present invention, there is provided a method for producing a single LTGA crystal from a polycrystalline starting material prepared from a mixture of La2O3, Ta2O5, Ga2O3, and Al2O3, wherein a mixture having a composition represented by y(La2O3)+(1?x?y?z)(Ta2O5)+z(Ga2O3)+x(Al2O3) (in the formula, 0<x?0.40/9, 3.00/9<y?3.23/9, and 5.00/9?z<5.50/9) is used as the polycrystalline starting material, and a single LTGA crystal is grown using the Z-axis as a crystal growth axis. The grown LTGA single crystal is preferably subjected to a vacuum heat treatment. The single LTGA crystal grown by the method according to the present invention, which is highly insulative and highly stable, can be utilized in such applications as a piezoelectric element of a highly reliable combustion pressure sensor useful in measurement of a combustion pressure in a combustion chamber of an internal combustion engine.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: April 14, 2015
    Assignee: Citizen Finetech Miyota Co., Ltd.
    Inventors: Takayuki Hayashi, Toshimitsu Aruga, Makoto Matsukura, Yutaka Anzai, Akio Miyamoto, Sadao Matsumura, Yasunori Furukawa
  • Patent number: 8597535
    Abstract: A ternary single crystal relaxor piezoelectric of PMN-PZ-PT grown from a novel melt using the Vertical Bridgeman method. The ternary single crystals are characterized by a Curie temperature, Tc, of at least 150° C. and a rhombohedral to tetragonal phase transition temperature, Trt, of at least about 110° C. The ternary crystals further exhibit a piezoelectric coefficient, d33, in the range of at least about 1200-2000 pC/N.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 3, 2013
    Assignee: TRS Technologies, Inc.
    Inventors: Jun Luo, Wesley Hackenberger
  • Patent number: 8454747
    Abstract: A method for producing a single-crystal thin film includes, for example, applying a chemical solution containing raw materials for a single-crystal thin film composed of (BaxSryCaz)TiO3 (wherein x+y+z=1.0) by spin coating on a thin film composed of BaZrO3 formed on a MgO(100) surface of a MgO(100) substrate and subjecting the applied chemical solution to heat treatment at a temperature at which orientation occurs, thereby epitaxially growing a single-crystal thin film composed of (BaxSryCaz)TiO3.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadasu Hosokura
  • Patent number: 8142678
    Abstract: A perovskite type oxide of a single crystal structure or a uniaxial-oriented crystal structure is represented by ABO3. Site A includes Pb as a main component and site B includes a plurality of elements. The perovskite type oxide includes a plurality of crystal phases selected from the group consisting of tetragonal, rhombohedral, orthorhombic, cubic, pseudo-cubic and monoclinic systems and the plurality of crystal phases are oriented in the direction of <100>.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: March 27, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Katsumi Aoki, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo, Shintaro Yokoyama
  • Patent number: 8075996
    Abstract: A ceramics sintered compact is provided in which a relative dielectric constant and an electromechanical coupling coefficient are improved in superior balance and which shows a relatively high piezoelectric coefficient. A ceramics sintered compact having a perovskite structure is provided in which a (002)/(200) ratio by X-ray diffraction after polarization is applied is 1.0 or greater.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: December 13, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventor: Genei Nakajima
  • Patent number: 7998362
    Abstract: A main component of a piezoelectric substance is PZT which has a perovskite type structure expressed as Pb(ZrxTi1-x)O3, in which x expresses an element ratio Zr/(Zr+Ti) of Zr and Ti in the formula, an element ratio Pb/(Zr+Ti) of Pb, Zr and Ti of the piezoelectric substance is 1.05 or more, an element ratio Zr/(Zr+Ti) of Zr and Ti is 0.2 to 0.8 inclusive, and a Curie temperature Tc of the piezoelectric substance and a Curie temperature Tc0 in bulk at an element ratio of Zr and Ti of the piezoelectric substance satisfy a relation of Tc>Tc0+50° C.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: August 16, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshihiro Ifuku, Takanori Matsuda, Katsumi Aoki
  • Patent number: 7972527
    Abstract: A ternary single crystal relaxor piezoelectric grown from a novel melt using the Vertical Bridgeman method. The ternary single crystals are characterized by a Curie temperature, Tc, of at least 150° C. and a rhombohedral to tetragonal phase transition temperature, Trt, of at least about 110° C. The ternary crystals further exhibit a piezoelectric coefficient, d33, in the range of at least about 1200-2000 pC/N.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 5, 2011
    Assignee: TRS Technologies, Inc.
    Inventors: Jun Luo, Wesley S. Hackenberger
  • Patent number: 7736433
    Abstract: BaTiO3—PbTiO3 series single crystal is single-crystallized by heating BaTiO3—PbTiO3 compact powder member or sintered member having a smaller Pb-containing mol number than Ba-containing mol number, while keeping the powder or substance in non-molten condition. In this way, this single crystal can be manufactured at a crystal growing speed faster still and stabilized more, significantly contributing to improving the dielectric loss and electromechanical coupling coefficient for the provision of excellent BaTiO3—PbTiO3 series single crystal in various properties, as well as for the provision of piezoelectric material having a small ratio of lead content, which is particularly excellent in piezoelectric property and productivity.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: June 15, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Aoto, Akira Unno, Tetsuro Fukui, Akio Ikesue
  • Patent number: 7544245
    Abstract: Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiO3 and a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 9, 2009
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Paul-Francois Paradis, Takehiko Ishikawa, Shinichi Yoda
  • Patent number: 7465354
    Abstract: A process, for patterning a thin film that is highly resistant to conventional etching processes and that is to be deposited at a high substrate temperature, is disclosed. The process uses a liftoff method wherein a refractory material has been substituted for the conventional organic resin. The method is particularly useful for the fabrication of tunable microwave devices and ferroelectric memory elements.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: December 16, 2008
    Assignee: National University of Singapore
    Inventors: Chong Kim Ong, Chin Yaw Tan
  • Patent number: 7402206
    Abstract: A method of synthesizing or growing a compound having the general formula Mn+1AXn(16) where M is a transition metal, n is 1, 2, 3 or higher, A is an A-group element and X is carbon, nitrogen or both, which comprises the step of exposing a substrate to gaseous components and/or components vaporized from at least one solid source (13, 14, 15) whereby said components react with each other to produce the Mn+1AXn (16) compound.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: July 22, 2008
    Assignee: ABB AB
    Inventors: Peter Isberg, Jens-Petter Palmquist, Ulf Jansson, Lars Hultman, Jens Birch, Timo Seppänen
  • Patent number: 7090785
    Abstract: A perovskite compound of the formula, (Na1/2Bi1/2)1-xMx(Ti1-yM?y)O3±z, where M is one or more of Ca, Sr, Ba, Pb, Y, La, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb and Lu; and M? is one or more of Zr, Hf, Sn, Ge, Mg, Zn, Al, Sc, Ga, Nb, Mo, Sb, Ta, W, Cr, Mn, Fe, Co and Ni, and 0.01<x<0.3, and 0.01<y<0.3, and z<0.1 functions as an electromechanically active material. The material may possess electrostrictive or piezoelectric characteristics.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: August 15, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Sossity A. Sheets, Gregory W. Farrey, Nesbitt W. Hagood, IV, Andrey Soukhojak, Haifeng Wang
  • Patent number: 7077904
    Abstract: The present invention relates to a method for forming silicon oxide films on substrates using an atomic layer deposition process. Specifically, the silicon oxide films are formed at low temperature and high deposition rate via the atomic layer deposition process using a Si2Cl6 source unlike a conventional atomic layer deposition process using a SiCl4 source. The atomic layer deposition apparatus used in the above process can be in-situ cleaned effectively at low temperature using a HF gas or a mixture gas of HF gas and gas containing —OH group.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung Ha Cho, Yong Il Kim, Cheol Ho Shin, Won Hyung Lee, Jung Soo Kim, Sang Tae Sim
  • Patent number: 6986955
    Abstract: Epitaxial and reduced grain boundary materials are deposited on substrates for use in electronic and optical applications. A specific material disclosed is epitaxial barium strontium titanate (14) deposited on the C-plane of sapphire (12).
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: January 17, 2006
    Assignee: nGimat Co.
    Inventors: Jerome Schmitt, George Guang-Ji Cui, Henry A. Luten, III, Fang Yang, Fe Alma Gladden, Scott Flanagan, Yongdong Jiang, Andrew Tye Hunt
  • Patent number: 6893500
    Abstract: A method of constructing optical filters using alternating layers of materials with “low” and “high” indices of refraction and deposited with atomic layer control. The multilayered thin film filter uses, but is not limited to, alternating layers of single crystal, polycrystalline or amorphous materials grown with self-limiting epitaxial deposition processes well known to the semiconductor industry. The deposition process, such as atomic layer epitaxy (ALE), pulsed chemical beam epitaxy (PCB E), molecular layer epitaxy (MLE) or laser molecular beam epitaxy (laser MBE) can result in epitaxial layer by layer growth and thickness control to within one atomic layer. The alternating layers are made atomically smooth using a Chemical Reactive-Ion Surface Planarization (CRISP) process. Intrinsic stress is monitored using an in-situ cantilever based intrinsic stress optical monitor and adjusted during filter fabrication by deposition parameter modification.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: May 17, 2005
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 6872251
    Abstract: A method for manufacturing single crystal ceramic powder is provided. The method includes a powder supply step for supplying powder consisting essentially of ceramic ingredients to a heat treatment area with a carrier gas, a heat treatment step for heating the powder supplied to the heat treatment area at temperatures required for single-crystallization of the powder to form a product, and a cooling step for cooling the product obtained in the heat treatment step to form single crystal ceramic powder. The method provides single crystal ceramic powder consisting of particles with a very small particle size and a sphericity being 0.9 or higher.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: March 29, 2005
    Assignee: TDK Corporation
    Inventors: Minoru Takaya, Yoshiaki Akachi, Hiroyuki Uematsu, Hisashi Kobuke
  • Patent number: 6790278
    Abstract: The present invention provides a method for preparing a novel low-resistance p-type SrTiO3 capable of opening the way for oxide electronics in combination with an already developed low-resistance n-type SrTiO3. The method is characterized in that an acceptor and a donor are co-doped into a perovskite-type transition-metal oxide SrTiO3 during crystal growth.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: September 14, 2004
    Assignee: Japan Science and Technology Agency
    Inventors: Hiroshi Yoshida, Kiyoshi Betsuyaku, Tomoji Kawai, Hidekazu Tanaka
  • Patent number: 6758898
    Abstract: The invention relates to a method for growing single crystals of barium titanate [BaTiO3] and barium titanate solid solutions [(BaxM1−x)(TiyN1−y)O3]. This invention is directed to a method for growing single crystals of barium titanate or barium titanate solid solutions showing the primary and secondary abnormal grain growths with increasing temperature higher than the liquid formation temperature, characterized by comprising the step for a few secondary abnormal grains to continue to grow at a temperature slightly below the critical temperature where the secondary abnormal grain growth starts to occur. The method for growing single crystals of barium titanate or barium titanate solid solutions according to this invention has the advantage of providing an effective low cost in manufacturing process for single crystals by using a conventional heat-treatment process without the need of special equipment.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: July 6, 2004
    Assignee: Ceracomp Co. Ltd.
    Inventors: Ho-Yong Lee, Jao-Suk Kim, Jong-Bong Lee, Tae-Moo Hur, Doe-Yeon Kim, Nong-Moon Hwang, Byoung-Ki Lee, Sung-Yoon Chung, Suk-Joong L. Kang
  • Patent number: 6514476
    Abstract: The disclosed invention relates to unsupported, anisotropically shaped, cubic SrTiO3 single crystal particles and their method of manufacture. The particles have a rectangular face and measure about 10-40 micron in edge length, and about 2-5 micron in thickness. The anisotropically shaped, cubic SrTiO3 single crystal particles are made by reacting tabular Sr3Ti2O7 with TiO2 in the presence of a molten alkali salt.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: February 4, 2003
    Assignee: Penn State Research Foundation
    Inventors: Gary L. Messing, Susan Trolier-McKinstry, Koji Watari
  • Patent number: 6482259
    Abstract: The invention relates to a method for growing single crystals of barium titanate [BaTiO3] and barium titanate solid solutions [(BaxM1-x)(TiyN1-y)O3]. This invention is directed to a method for growing single crystals of barium titanate or barium titanate solid solutions showing the primary and secondary abnormal grain growths with increasing temperature higher than the liquid formation temperature, characterized by comprising the step for a few secondary abnormal grains to continue to grow at a temperature slightly below the critical temperature where the secondary abnormal grain growth starts to occur. The method for growing single crystals of barium titanate or barium titanate solid solutions according to this invention has an advantage to provide an effective low cost in manufacturing process for single crystals by using usual heat-treatment process without special equipments.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: November 19, 2002
    Assignee: Ceracomp Co., Ltd.
    Inventors: Ho-Yong Lee, Jae-Suk Kim, Jong-Hong Lee, Tae-Moo Hur, Doe-Yeon Kim, Nong-Moon Hwang, Byoung-Ki Lee, Sung-Yoon Chung, Suk-Joong L. Kang
  • Patent number: 6475942
    Abstract: A process for converting a polycrystalline ceramic material to a single crystal material includes the steps of doping at least a first portion of the polycrystalline ceramic material with a conversion-enhancing dopant having a +6 valence state in the unfired ceramic material and heating the polycrystalline ceramic material to convert at least a second portion of the polycrystalline ceramic material to a single crystal ceramic material. Preferably, the ceramic material is alumina and the conversion-enhancing dopant is molybdenum or tungsten.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: James Anthony Brewer, Charles David Greskovich, Curtis Edward Scott
  • Patent number: 6440210
    Abstract: A method for producing self-polarized ferroelectric layers, in particular PZT layers, with a rhombohedral crystal structure includes providing a substrate and heating it to a temperature T1. Afterward the layer with a rhombohedral crystal structure is applied to the substrate by means of a sputtering method. This layer includes a Zr-deficient layer with a Curie temperature TC1 and a Zr-abundant layer with a Curie temperature TC2 wherein TC2<TC1<T1. After the ending of the application process, the heating of the substrate is also discontinued so that the substrate cools. As a result of the cooling the Zr-deficient layer and then the Zr-abundant layer reach their Curie temperature, and change into the ferroelectric phase and become self-polarized in the process. The polarization already present in the Zr-deficient layer induces the polarization in the Zr-abundant layer, with the result that both layers are self-polarized after the cooling process.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: August 27, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rainer Bruchhaus, Dana Pitzer, Robert Primig, Matthias Schreiter
  • Publication number: 20020036282
    Abstract: A perovskite compound of the formula, (Na½Bi½)1−xMx(Ti1−yM′y)O3±z, where M is one or more of Ca, Sr, Ba, Pb, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; and M′ is one or more of Zr, Hf, Sn, Ge, Mg, Zn, Al, Sc, Ga, Nb, Mo, Sb, Ta, W, Cr, Mn, Fe, Co and Ni, and 0.01<x<0.3, and 0.01<y<0.3, and z<0.1 functions as an electromechanically active material. The material may possess electrostrictive or piezoelectric characteristics.
    Type: Application
    Filed: April 6, 2001
    Publication date: March 28, 2002
    Inventors: Yet-Ming Chiang, Sossity A. Sheets, Gregory W. Farrey, Nesbitt W. Hagood, Andrey Soukhojak, Haifeng Wang
  • Patent number: 6077562
    Abstract: The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. Particularly contemplated is an apparatus and process for the deposition of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: June 20, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Charles Dornfest, Jun Zhao, Talex Sajoto, Lee Luo
  • Patent number: 5882399
    Abstract: The aluminum <111> crystal orientation content of an aluminum interconnect layer or the copper <111> crystal orientation content of a copper interconnect can be maintained at a consistently high value during the processing of an entire series of semiconductor substrates in a given process chamber. To provide the stable and consistent aluminum <111> content, or the stable and consistent copper <111> content, it is necessary that the barrier layer structure underlying the aluminum or the copper have a consistent crystal orientation throughout the processing of the entire series of substrates, as well. We have determined that to ensure the consistent crystal orientation content of the barrier layer structure, it is necessary to form the first layer of the barrier layer structure to have a minimal thickness of at least about 150 .ANG., to compensate for irregularities in the crystal orientation which may by present during the initial deposition of this layer.
    Type: Grant
    Filed: August 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Kenny King-tai Ngan, Barry Hogan, Seshadri Ramaswami
  • Patent number: 5556463
    Abstract: A method of forming a crystallographically oriented silicon layer over a glassy layer of, for example, SiO.sub.2. A templating layer of a layered perovskite, preferably Bi.sub.4 Ti.sub.3 O.sub.12, is deposited on the glassy layer under conditions favoring its crystallographic growth with its long c-axis perpendicular to the film. The silicon is then grown over the templating layer under conditions usually favoring monocrystalline growth. Thereby, it grows crystallographically aligned with the underlaying templating layer.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 17, 1996
    Inventor: Charles S. Guenzer
  • Patent number: 5514484
    Abstract: An orientative ferroelectric thin film has such a structure that an epitaxial or orientative buffer layer having a double layer structure constituted by two layers is formed on a semiconductor single crystal (100) substrate, and an epitaxial or orientative perovskite ABO.sub.3 type ferroelectric thin film is further formed on the buffer layer. The epitaxial or orientative buffer layer has a structure in which a perovskite ABO.sub.3 type thin film is formed on an MgO thin film. Also, an orientative ferroelectric thin film has such a structure that an opitaxial MgO buffer layer is formed on a single crystal Si (100) substrate, and an epitaxial or orientative perovskite ABO.sub.3 type ferroelectric thin film is formed on the buffer layer.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: May 7, 1996
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Keiichi Nashimoto
  • Patent number: 5501175
    Abstract: A process for preparing an oxide thin film which has a crystalline, clean and smooth surface on a substrate. The process is conducted by using an apparatus comprising a vacuum chamber in which an oxidizing gas of O.sub.2 including O.sub.3 can be supplied near the substrate so that pressure around the substrate can be increased while maintaining high vacuum near an evaporation source and Knudsen cell evaporation sources arranged in the vacuum chamber wherein the substrate is heated, molecular beam of constituent atoms of the oxide excluding oxygen are supplied from the K cell evaporation sources and an oxidizing gas is locally supplied to the vicinity of the substrate.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: March 26, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: So Tanaka, Michitomo Iiyama
  • Patent number: 5366583
    Abstract: A mixture of titanium dioxide and an oxide or carbonate of barium includes one or more transition metal elements selected from the group of V, Cr, Mn, Fe, Co, Ni and Cu, in the amount of 2 ppm or more. This mixture is used as a starting material. The mixture is heated to a predetermined temperature to make a melt. Then, a seed crystal of BaTiO.sub.3 is brought into contact with the melt under an environment with a low oxygen partial pressure of 0.02 atm. or less. From this state, the above melt is slowly cooled to grow a single crystal on the seed crystal. The thus obtained single crystal is heated in a temperature of 600 .degree. C. or more, under an oxidizing environment with its oxygen partial pressure more than 0.1 atm.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: November 22, 1994
    Assignee: Fujikura Ltd.
    Inventors: Akihito Kurosaka, Kazuhiko Tomomatu, Osamu Nakao, Shoji Ajimura, Haruo Tominaga