With Means To Reposition Solar Collector For Optimum Radiation Exposure Patents (Class 126/600)
  • Patent number: 6953038
    Abstract: A concentrating solar energy system with a reflector having a specularly reflecting inner side and realized as a parabolic mirror with two axis steering which is carried by a base frame arranged in a support plane and which is provided with a receiver arranged in operation at, in front of or after the focal point of the parabolic mirror, with the parabolic mirror moreover being rotatable about an axis which stands at least substantially perpendicular to the support plane. The parabolic mirror is pivotable upwardly and downwardly about a pivot axis arranged in at least one of the region of the support plane and at a distance above or below the support plane. The pivot axis being displaceably arranged in at least one of a plane parallel to the support plane and in the support plane and with the displacement of the pivot axis contributing to the corresponding pivotal movement of the parabolic mirror.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: October 11, 2005
    Inventor: Andreas Nohrig
  • Patent number: 6923174
    Abstract: A solar installation is described. It has a solar element and a diffractively and/or refractively operating optical apparatus by way of which the incident sunlight is passed directedly perpendicularly on to the solar element. The optical apparatus is caused to track the position of the sun by way of a tracking device. The optical apparatus uses a light-deflecting foil having portions of different natures with a structure having a different optical action. By virtue of the action of the tracking device the holographic foil is moved relative to the solar element so that different portions of the foil move into an operative position above the solar element in succession during the tracking procedure.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: August 2, 2005
    Assignee: Leonhard Kurz GmbH & Co.
    Inventor: Walter Kurz
  • Patent number: 6857426
    Abstract: The present disclosure relates to an absorber element for solar high-temperature heat generation. The absorber element includes a light focusing unit, an outer tube composed of a translucent material and an absorber which is arranged in the absorber element. The absorber is surrounded by at least one reflector channel having an opening gap. A focal line of the light focusing unit lies on a center axis of the outer tube and the absorber does not lie on the center axis of the outer tube. The opening gap of the at least one reflector channel, through which the solar rays fall on the absorber, lies on the center axis of the outer tube, and hence on the focal line.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: February 22, 2005
    Inventor: Dirk Besier
  • Patent number: 6848442
    Abstract: A tilt mechanism associated with a solar panel assembly whereby effort required to tilt panel assemblies comprising the solar panel assembly is reduced or minimized by appropriate placement of first and second tilt axes with respect to the center of mass and/or center of pressure of the panel assemblies due to wind. These arrays are suitable for use on mobile or static installations. The tilt mechanism is suited for harnessing wind energy if the panels are suitably shaped.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: February 1, 2005
    Inventor: Michael B. Haber
  • Publication number: 20040261786
    Abstract: A solar energy conversion system comprising: a solar radiation reflector having a plurality of elongate reflective members that are fixed in position relative to each other, said solar radiation reflector being mounted for rotation about a single axis; a rotation device operatively connected to said radiation reflector for rotating said radiation reflector about said single axis; at least one solar radiation transducer located at a position coincident with at least one focal area of the plurality of angled reflective members of said solar radiation reflector; and a solar tracking unit for tracking the relative movement of the sun relative to the earth; said solar tracking unit causing said rotation device to rotate said solar radiation device toward the sun.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 30, 2004
    Inventor: Wayne Anthony Kirk
  • Publication number: 20040231660
    Abstract: An autonomous heliostat (1) having an independent autonomous control function and eliminating the need for a complicated control by a computer or the like is provided. The heliostat includes a target sensor (19) for controlling reflected light (R) from a mirror component (5) to direct it to the target sensor 19, and a search sensor (12) for catching sunlight (S) to guide reflected light from the mirror component to the target sensor, thereby to autonomously start control by the target sensor.
    Type: Application
    Filed: January 9, 2004
    Publication date: November 25, 2004
    Inventor: Katsushige Nakamura
  • Publication number: 20040216734
    Abstract: An array of elongated concave parabolic trough-shaped reflectors is disclosed. The orientation of the array is biaxially kept essentially perpendicular to rays of the sun by an optical control such that sunlight is reflected and concentrated along a focal line of each elongated reflector by which (a) water in a tube disposed at the focal line is heated by reflected line focused sunlight impinged thereon and/or (b) line focused reflected sunlight is optically transformed into point focused reflected sunlight using Fresnel lenses from which electricity is generated using solar cells upon which the point focused reflected sunlight is impinged.
    Type: Application
    Filed: May 27, 2004
    Publication date: November 4, 2004
    Inventor: Paul Lawheed
  • Publication number: 20040159318
    Abstract: A solar radiation concentrator rotated about a straight line vertical to the reflector arrangement surfaces so that the incident solar radiation can be led onto the reflector arrangement surface along the specified direction and a method of concentrating solar radiation; the concentrator, comprising a plurality of reflectors (10) disposed on reflector arrangement surfaces, a plurality of reflector vertical bars (20) connected to the plurality of reflectors, rotating center holding members (30) for holding the center points of the rotating motions of the plurality of reflector vertical bars, motion members (40) for collectively rotating the plurality of reflector vertical bars, and guide members (50) for guiding the motions of the plurality of reflector vertical bars so that the plurality of reflector vertical bars can be rotated along specified reflector vertical bar routes, wherein the motion members perform motions along the specified motion member routes according to a variation in the incident angle of th
    Type: Application
    Filed: February 20, 2004
    Publication date: August 19, 2004
    Inventor: Mikio Kinoshita
  • Publication number: 20040118395
    Abstract: A solar concentrated module with a bidimensional parabolic profile geometry, comprises one or more rigid self-supporting panels having a parabolic cross section and a rectilinear longitudinal extension. The said panels comprise a central sandwich structure including a central honeycomb core and two thin outer skins of a high resistance material, forming a lightweight and particularly rigid construction. The panels adapted to support thin reflecting surfaces, the geometry of which is such as to concentrate incident sunlight rays along a longitudinal receiving tube, within which a fluid to be headed flows. An automated driver may be provided for moving the panels to follow the movement of the sun during the day.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 24, 2004
    Inventors: Carlo Rubbia, Mauro Vignolini, Diego Ettore Prischich, Adio Miliozzi, Giuseppe Mauro Giannuzzi
  • Publication number: 20040074490
    Abstract: A heliostat which comprises a reflector element and a carrier that is arranged to support the reflector element above a ground plane. A drive means is arranged to impart pivotal drive to the carrier about a fixed, first axis that is, in use of the heliostat, disposed substantially parallel to the ground plane. The heliostat further comprises a means mounting the reflector element to the carrier in a manner which permits pivotal movement of the reflector element with respect to the carrier and about a second axis that is not parallel to the first axis. A drive means arranged to impart pivotal movement to the reflector element about the second axis. The reflector element, which may be flat or curved, may be constituted by a plurality of sub-reflector elements. Also, a plurality of the reflector elements may be supported by a single carrier.
    Type: Application
    Filed: November 10, 2003
    Publication date: April 22, 2004
    Inventors: David Mills, Philipp Schramek
  • Patent number: 6722357
    Abstract: A solar collector array is formed of multiple parallel rows of solar panels, each said row being made of one or more building blocks with an east-west oriented torsion tube defining an east-west axis for the row, an array of flat generally rectangular solar panels, and a set of panel rails and rail claims attaching the panels onto the torsion tube. A row of piers aligned on the east-west axis each have a footing that is supported in the earth, and a pier cap affixed onto a top end of the pier. The pier cap holds the torsion tube non-rotationally such that the torsion tube and panels are held at a preset elevation angle. The torsion tube may serve as a conduit for power conductors from the panels.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: April 20, 2004
    Assignee: Powerlight Corporation
    Inventor: Jefferson Shingleton
  • Patent number: 6696637
    Abstract: An array of elongated concave parabolic trough-shaped reflectors is disclosed. The orientation of the array is biaxially kept essentially perpendicular to rays of the sun by an optical control such that sunlight is reflected and concentrated along a focal line of each elongated reflector by which (a) water in a tube disposed at the focal line is heated by reflected line focused sunlight impinged thereon and/or (b) line focused reflected sunlight is optically transformed into point focused reflected sunlight using Fresnel lenses from which electricity is generated using solar cells upon which the point focused reflected sunlight is impinged.
    Type: Grant
    Filed: September 21, 2002
    Date of Patent: February 24, 2004
    Assignee: The Sun Trust, L.L.C.
    Inventor: Paul Lawheed
  • Patent number: 6691701
    Abstract: A solar radiation collection and distribution system includes a solar collection system which includes a primary reflector, a secondary reflector and a planar reflector. The focal points of the primary and secondary reflectors are offset by the same number of degrees, and the primary and secondary reflectors are rigidly fixed in an assembly such that their focal points lie along a common optical axis. The assembly is pivotable in elevation and rotatable in azimuth such that the primary reflector continuously tracks the sun. A pivotable planar reflector, which reflects downwardly the beam from the secondary reflector, pivots at one-half the angular rate at which the assembly pivots. This beam consists essentially of sunlight and is maintained in a substantially constant orientation independent of assembly elevation and azimuth.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: February 17, 2004
    Inventor: Karl Frederic Roth
  • Patent number: 6688303
    Abstract: A method and system is described for controlling a solar collector. A microprocessor receives inputs from one or more sensors in the system and determines the level of operation of an energy conversion device. If the level of operation reaches a predetermined setpoint below a maximum level at which the device is to operate, a variable focus solar concentrator is defocused to reduce energy input into the energy conversion device. When the system cools down and operates at a second predetermined level, lower than the first predetermined level, the concentrator is then refocused to increase the power input to the energy conversion device.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: February 10, 2004
    Assignee: Science Applications International Corporation
    Inventors: Roger L. Davenport, David C. Smith
  • Patent number: 6662801
    Abstract: A celestial tracking apparatus (20) has a support (26), a tracking assembly (28) coupled to the support (26) by an azimuth pivot (36), a collector assembly (30) coupled to the tracking assembly (28) by an elevation pivot (38), a wind-speed sensor (172), and a controller (150) coupled to the azimuth and elevation pivots (36,38) and configured to cause the collector assembly (30) to assume a wind-stow position (66) when the sensor (172) detects a wind having a speed greater than a predetermined speed, upon failure of a component of the apparatus (20), or upon receipt of a wind-stow command. The collector assembly (30) has a solar collector (22) with a substantially flat surface (24), a center of gravity (52), and a target axis (54) substantially perpendicular to the substantially flat surface (24) and passing through the center of gravity (52).
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: December 16, 2003
    Assignee: Pinnacle West Capital Corporation
    Inventors: Herbert T. Hayden, James C. Warrick, Jefferson G. Shingleton, Raymond S. Zuckerman
  • Patent number: 6663750
    Abstract: Cultivated field water is desalinated by a series of independent units that float on the water surface, taking up the saline water with a wick, evaporating the water from the wick in desalinating relation by concentrating incident solar radiation with a combination of a lenses and cooperating mirrors onto the upper end portion of the wick while the wick lower end portion is immersed in the field water, capturing the desalinated vapor resulting by condensing within the unit and returning the condensed, desalinated water to the field, and periodically renewing the wick by rinsing the salt from it at a cleaning station beyond the field.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: December 16, 2003
    Inventor: Warren Coon
  • Patent number: 6656326
    Abstract: An apparatus for the desalination or purification of water includes a non-solid vessel (3) having a bottom defining an opening, the vessel (3) capable of being partially submerged below the surface of a body of water, a pan (5) located within the vessel (3), the pan (5) being flexibly connected to the inner wall of the vessel (3) and being located beneath the surface of the water (13), a lens fixably connected to the top of the vessel (3), wherein the lens is focused beneath the surface of the water (13) and above the surface of the pan (5) a device for varying the orientation of the vessel (3) in accordance with the location of the sun, and a device for condensing steam generated in the non-solid vessel (3), whereby steam generated in the non-solid vessel (3) is condensed outside of the non-solid vessel (3).
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 2, 2003
    Inventor: Lawrence Nagler
  • Publication number: 20030172922
    Abstract: A tilt mechanism (11, 11A) associated with a solar panel assembly (10, 10A) whereby effort required to tilt panel assemblies (12, 13, 14) comprising the solar panel assembly (10, 10A) is reduced or minimized by appropriate placement of first and second tilt axes (18, 18A) with respect to the centre of mass and/or centre of pressure of the panel assemblies (12, 13, 14) due to wind. These arrays are suitable for use on mobile or static installations. The tilt mechanism is suited for harnessing wind energy if the panels are suitably shaped.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 18, 2003
    Inventor: Michael B Haber
  • Publication number: 20030169200
    Abstract: A method and apparatus are disclosed to track the position of the sun and direct an object to the direction of the sun, regardless of weather conditions or geographical location, among other disruptive or interrupting factors. The object may include a solar collector, solar cell, or test panel, among other possible devices or applications requiring near continuous exposure to rays of the sun. The apparatus uses a GPS device to determine the position of the object on the earth. The apparatus includes a controller operatively coupling to the GPS device. The controller calculates the relative position of the sun with respect to the object. The controller operatively couples to a positioning system. The positioning system includes a first drive and a second drive coupled to the object. Commands from the controller operate the positioning system to articulate the object and automatically direct it towards the relative position of the sun.
    Type: Application
    Filed: March 7, 2002
    Publication date: September 11, 2003
    Inventors: Marek W. Urban, James M. Evans
  • Publication number: 20030156337
    Abstract: This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Inventors: Mark Davidson, Mario Rabinowitz
  • Publication number: 20030136397
    Abstract: A solar radiation reflector comprising a plurality of arms arranged in parallel, a plurality of driver mechanisms driven, respectively, by the arms, a plurality of reflectors turned, respectively, by the driven mechanisms, a plurality of reflection direction designating members connected, respectively, with the driven mechanisms to designate a predetermined direction of reflection of reflectors, respectively, a common link for turning the arms simultaneously, and a drive mechanism for driving the common link to direct the arms in parallel with the incident direction of solar radiation, and a solar energy system comprising the solar radiation reflector and a solar energy converter. The driven mechanisms driven simultaneously by the driving mechanism through the common link and the arms so that the reflectors may reflect solar radiation, respectively, toward specified directions turn the reflectors, respectively.
    Type: Application
    Filed: December 22, 2002
    Publication date: July 24, 2003
    Inventor: Mikio Kinoshita
  • Patent number: 6563040
    Abstract: A tilted single-axis tracking system (20) for collecting solar energy includes a structure (22) for supporting an array (26) of photovoltaic (PV) modules (24) above a surface (28). The structure (22) includes a frame (34) having first and second legs (40, 42) configured to extend upwardly from the surface (28) and join at an apex (54). A base tensioning member (44) of the frame (34) is interposed between the first and second legs (40, 42). A torque tube (36) is pivotally retained by the frame (34) at the apex (54) and is configured for attachment of the array (26) of PV modules (24). A foot member (38) pivotally retains a tube end (60) of the torque tube (36) and is configured to rest on the surface (22). A first tensioning member (106) is coupled between the foot member (38) and the first leg (40), and a second tensioning member (108) is coupled between the foot member (38) and the second leg (42).
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: May 13, 2003
    Assignee: Pinnacle West Capital Corporation
    Inventors: Herbert T. Hayden, Jefferson G. Shingleton
  • Patent number: 6552257
    Abstract: An apparatus for enabling a solar panel to track a solar or other energy source, comprising a panel; a mast; a first collar slidingly receiving the mast; a sleeve slidingly receiving the mast and the link tube; a controller second collar slidingly receiving the mast; a universal joint comprising a first section and a second section, both sections pivotably joined, the first section fixedly attached to one end of the mast; a first arm fixedly attached to the controller second collar; a second arm fixed attached to the first collar; a link pivotably joining the first arm and the second arm; a first stop associated with the first collar; wherein the mast is capable of vertical movement within the first collar such that the panel can tilt and be displaced angularly.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: April 22, 2003
    Assignee: American Signal Company
    Inventors: Stephen P. Hart, Donald John Stuart, Patrick Henry Ryan, Jr.
  • Publication number: 20030062037
    Abstract: A celestial tracking apparatus (20) has a support (26), a tracking assembly (28) coupled to the support (26) by an azimuth pivot (36), a collector assembly (30) coupled to the tracking assembly (28) by an elevation pivot (38), a wind-speed sensor (172), and a controller (150) coupled to the azimuth and elevation pivots (36,38) and configured to cause the collector assembly (30) to assume a wind-stow position (66) when the sensor (172) detects a wind having a speed greater than a predetermined speed, upon failure of a component of the apparatus (20), or upon receipt of a wind-stow command. The collector assembly (30) has a solar collector (22) with a substantially flat surface (24), a center of gravity (52), and a target axis (54) substantially perpendicular to the substantially flat surface (24) and passing through the center of gravity (52).
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Inventors: Herbert T. Hayden, James C. Warrick, Jefferson G. Shingleton, Raymond S. Zuckerman
  • Publication number: 20030034029
    Abstract: A solar collector array is formed of multiple parallel rows of solar panels, each said row being made of one or more building blocks with an east-west oriented torsion tube defining an east-west axis for the row, an array of flat generally rectangular solar panels, and a set of panel rails and rail claims attaching the panels onto the torsion tube. A row of piers aligned on the east-west axis each have a footing that is supported in the earth, and a pier cap affixed onto a top end of the pier. The pier cap holds the torsion tube non-rotationally such that the torsion tube and panels are held at a preset elevation angle. The torsion tube may serve as a conduit for power conductors from the panels.
    Type: Application
    Filed: August 15, 2001
    Publication date: February 20, 2003
    Inventor: Jefferson Shingleton
  • Patent number: 6498290
    Abstract: An array of elongated concave parabolic trough-shaped reflectors is disclosed. The orientation of the array is biaxially kept essentially perpendicular to rays of the sun by an optical control such that sunlight is reflected and concentrated along a focal line of each elongated reflector by which (a) water in a tube disposed at the focal line is heated by reflected line focused sunlight impinged thereon and/or (b) line focused reflected sunlight is optically transformed into point focused reflected sunlight using Fresnel lenses from which electricity is generated using solar cells upon which the point focused reflected sunlight is impinged.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: December 24, 2002
    Assignee: The Sun Trust, L.L.C.
    Inventor: Paul Lawheed
  • Publication number: 20020179138
    Abstract: An array of elongated concave parabolic trough-shaped reflectors is disclosed. The orientation of the array is biaxially kept essentially perpendicular to rays of the sun by an optical control such that sunlight is reflected and concentrated along a focal line of each elongated reflector by which (a) water in a tube disposed at the focal line is heated by reflected line focused sunlight impinged thereon and/or (b) line focused reflected sunlight is optically transformed into point focused reflected sunlight using Fresnel lenses from which electricity is generated using solar cells upon which the point focused reflected sunlight is impinged.
    Type: Application
    Filed: May 29, 2001
    Publication date: December 5, 2002
    Inventor: Paul Lawheed
  • Patent number: 6459033
    Abstract: A removably mountable blind-type curtain is provided which includes a plurality of blinds removably securable to a curtain support. One or more of the blinds have a solar module secured thereto for converting solar energy to other energy. The blinds are connected to one another in a cable-free manner. An energy storage device is connected to the blinds for storing energy generated by the solar modules and an energy power take off device cooperates with an energy receiving device to effect the transfer of energy from the blind-type curtain to the energy receiving device. The energy storage device and the energy power take off device are mounted on the curtain support such that they are protected against external adverse environmental effects.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: October 1, 2002
    Inventor: Hermann-Frank Müller
  • Publication number: 20020023638
    Abstract: A solar seeker that automatically or manually tracks the sun for a maximum daily intake of solar energy to supply a predetermined amount of direct current electricity for various applications. The solar seeker includes a solar panel carriage assembly, a mounting assembly, and a travel assembly.
    Type: Application
    Filed: August 24, 2001
    Publication date: February 28, 2002
    Inventors: Victor Buron, Harry R. Beaupre
  • Patent number: 6349718
    Abstract: Device for heating with solar energy, which device contains at least one mirror construction (1) which is mounted on a frame (3) in a movable manner and which be directed towards the sun, and at least one collector (4) extending parallel to the mirror construction (1) in order to collect the solar radiation reflected by the mirror construction (1), characterized in that the mirror construction (1) contains a number of almost flat mirror strips (2) extending next to one another in the longitudinal direction of the collector (4) and which are each provided on the frame (3) such that they can rotate around their longitudinal direction, whereas the collector (4) is stationary in relation to the frame (3), whereby the mirror strips (2) are situated in an almost horizontal plane with their axes of rotation, whereby the device contains means (16) to rotate the mirror strips (2) and the mirroring surface of the mirror strips (2) such that the solar rays coming in on said surface can be reflected towards the collector
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 26, 2002
    Assignee: Suria Holdings, societe a responsabilite limitee
    Inventors: Livien Domien Ven, Michel Sureda
  • Publication number: 20010045212
    Abstract: A double reflecting solar concentrator utilizing a primary reflective surface which reflects incident light toward a secondary surface. The incident light reflects off the secondary surface away from the primary surface's natural focus point toward a secondary focal point positioned on or substantially near the surface of the primary reflective surface.
    Type: Application
    Filed: July 10, 2001
    Publication date: November 29, 2001
    Inventor: Scott Frazier
  • Patent number: 6302099
    Abstract: The present invention offers a low cost, modular structure with a continuous, horizontal, rotatable spine supported on posts fixed to the ground, providing one axis of rotation for pointing solar collectors in the North-South direction and vertical roll axis bars mounted orthogonally to the spine providing an additional axis of rotation in the East-West direction. Push rods provide linear motion for control of any number of solar collector modules, with the linear motion being translated to rotary motion by pulleys and cables attached to wheels or arc segments mounted to the spine and roll axis bars. Thus, a whole array of solar collector modules can be driven by a single solar tracking device and two drive devices. Additionally, when arrayed in multiple rows of the number of solar collector modules controlled can be multiplied so that a “solar farm” covering a large area could be controlled by the single solar tracking device and a minimal number of drive devices.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: October 16, 2001
    Inventor: Patrick P. McDermott
  • Patent number: 6284968
    Abstract: A solar-tracking system that provides a polar rotation at a constant velocity of 366.25 revolutions clockwise per year, and orbital revolution that is one revolution per year in the counter-clockwise direction. The support for the orbital drive system is tilted from polar drive system at an angle of 23.45 degrees, and is constant, which angle is equal to the earth's axis tilt from orbital axis.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: September 4, 2001
    Inventor: Joseph Z. Niesyn
  • Patent number: 6239353
    Abstract: A solar tracker operates on a single axis, but partially simulates a dual-axis tracker by adjusting tilt angle as the tracker rotates. The tracker is disclosed in particular embodiments which fit efficiently within a hemispherical transparent dome.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: May 29, 2001
    Inventors: Christopher M. Hall, Frank Cava
  • Patent number: 6220241
    Abstract: Radiant energy collecting apparatus (11) which includes a platform assembly (13) floating on a body of liquid, the top side of which supports reflectors (16) of a solar concentrator and the underside of which is provided with a series of compartments (31) which are open on their lowermost sides and which contain air to provide buoyant lift to maintain the reflectors (16) above the level of liquid. Air may be supplied to the compartments (31) through an air duct (33) beneath the platform assembly (13), the duct (33) having a number of openings (35) through which the air passes.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: April 24, 2001
    Inventor: Allan J. Yeomans
  • Patent number: 6201181
    Abstract: A portable solar module cart is provided which comprises a platform, a pair of wheels attached to opposite sides of the platform, a pair of support struts attached to opposite sides of the platform and movable relative to the platform between a first retracted position in which they lie substantially parallel to the platform and a second erected position in which they extend at a selected angle to the platform so that a DC power source can be disposed on and supported by the platform, a solar panel pivotally mounted to the struts, the solar panel being movable on its pivot when the struts are in their erected position so as to be in a perpendicular relationship with an imaginary line connecting the sun and the solar panel, whereby to maximize the solar energy collected by the panel, and means for locking the solar panel in any selected position on its pivot.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: March 13, 2001
    Assignee: ASE Americas, Inc.
    Inventors: Moneer H. Azzam, Steven T. Slavsky, Brian A. Dalmaso, Mark W. Wheeler
  • Patent number: 6191352
    Abstract: A device for directing a defined light beam onto a photosensitive area, for testing the performance of a photovoltaic module including said photosensitive area, comprising a support structure (1) which can be turned about a vertical central axis (4) in accordance with the actual azimuthal sun position. Housing (7) receives the photovoltaic module with the photosensitive area (6) of said module in a horizontal position, the housing being located in the lower portion of the support structure. A first mirror (2) which can be tilted about a horizontal axis (3) in order adapt its position continuously to the sun elevation position and to optimize the sun light impact thereon, and a second mirror (5) is fixed to the support structure (1) vertically above the photosensitive area (6) of the module and receives the light beam from the first mirror (2) for reflexion towards said area (6).
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: February 20, 2001
    Assignee: European Community (EC)
    Inventors: Heinz Ossenbrink, Willem Zaaiman, Claas Helmke
  • Patent number: 6123067
    Abstract: A solar collector tracking system that has a solar collection device having multiple lens assemblies mounted on its front surface. An exoskeleton structure is secured to the rear surface of the solar collection device and it is pivotally secured about a horizontal axis to the front end of an azimuth platform assembly. A hydraulic elevation actuator is pivotally mounted in the azimuth platform assembly about a horizontal axis and the front end of its piston rod is pivotally connected to the rear surface of the solar collection device and this allows it to be pivoted approximately 90 degrees between a vertical operating position and a horizontal storage position. The azimuth platform assembly is journaled on the top end of a tower extending up from the ground. A tubular post is rigidly secured to the top end of the post. A drive head extends horizontally from the tubular post and it has a pivot pin that extends upwardly therefrom.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: September 26, 2000
    Assignee: Amonix, Inc.
    Inventor: James C. Warrick
  • Patent number: 6079408
    Abstract: A plurality of sun-ray collecting units connected to one another by parallel links and arranged in rows on first turning axes are supported on a pair of turning frames that can be turned about the first turning axes. Each of a pair of push-pull cables 54 is connected at one end thereof to a cable driving device and at the other end to one of the sun-ray collecting units which are supported in plurality on each of the turning frames. Thus, a space for placement of a sun-ray tracking system can be relatively reduced in size and the turning angle of each of the sun-ray collecting units about the first turning axis can be relatively increased. The sun-ray collecting units can be turned about the second turning axes in a simple structure using a single drive source.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: June 27, 2000
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Taro Fukuda
  • Patent number: 6067982
    Abstract: Apparatus and methods for collecting and concentrating solar radiation for the generation of electrical power, the apparatus comprising a rotatable reflector dish which is pivoted to one side so as to be positioned between a vertical position or lowered to a horizontal position. When horizontal, the dish is protected by a surrounding weathershield for protection against high winds. The reflector dish is preferably parabolic and mounted so as to concentrate and reflect the solar radiation into a receiver.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: May 30, 2000
    Inventor: John Harrison
  • Patent number: 6058930
    Abstract: A solar energy collector and tracker has at least one north-south oriented torsion tube supporting an array of flat rectangular solar panels. At least one pier, supported in the earth, has pivot member in which the torsion tube is journalled. A linear actuator has a body portion mounted on a footing separate from the pier footing and supported in the earth at a distance spaced from pier, and has a rod coupled to a torque arm on the torsion tube. The actuator can be horizontally or vertically oriented. The torsion tube is generally square cross section. The torsion tube may be formed of two or more sections joined end to end. In such case, one of the sections may have one end swaged to fit tightly into the end of a next successive section to form a tight, secure coupling between sections. The pivot member can have four plastic resin inserts within a cylindrical journal on respective sides of the square torsion tube.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: May 9, 2000
    Inventor: Jefferson Shingleton
  • Patent number: 6031177
    Abstract: A photovoltaic power source includes a shadowing timer comprising at least one shadowing member (i.e. vane element) secured proximal to an array of photovoltaic solar cells electrically connected in series. The shadowing members are arranged such that they shadow individual solar cells or rows of cells as the sun moves through diurnal and annual cycles. The shadows cast by two or more vanes can modulate the array output power on two independent time scales: time of day and time of year. Because the individual solar cells are connected in series, a small shadow significantly reduces the array output power, thus enabling fine-scale temporal control.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: February 29, 2000
    Inventor: Paul B. Voss
  • Patent number: 6020553
    Abstract: High radiation concentration photovoltaic cell system including at least one optical structure in the form of a three-dimensional body having a first surface adapted to receive thereon photovoltaic cells and a second surface to be, at least indirectly, exposed to light radiation. The body of the optical structure has formed between its first and second surfaces a two-dimensional array of contiguous light radiation concentrators each in the form of an individual prismatic body portion. Each prismatic body portion tapers in two dimensions toward said first surface along the entire length of the concentrator. Each concentrator defines on the first surface a photovoltaic cell-attaching area to be aligned with an active portion of a single photovoltaic cell to be attached thereto.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: February 1, 2000
    Assignee: Yeda Research and Development Co., Ltd.
    Inventor: Amnon Yogev
  • Patent number: 6018122
    Abstract: To provide a tracking-type solar module capable of high-performance sunlight-tracking with a simple configuration while simultaneously performing highly effective cooling of a solar cell, a solar cell is movably installed within a transparent cooling tube and is connected to a motor with a crank. A position detecting sensor is also installed inside the transparent cooling tube. Sunlight is refracted by a cooling medium filled inside the transparent cooling tube and is converged on the inner surface of the transparent cooling tube. The position detecting sensor detects the position at which sunlight is converged and the sunlight is tracked by the motor moving the solar cell to that position. Simultaneously, the cooling medium inside the transparent cooling tube directly cools the solar cell.
    Type: Grant
    Filed: March 5, 1997
    Date of Patent: January 25, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kouetsu Hibino, Kyoichi Tange, Tomonori Nagashima
  • Patent number: 6005236
    Abstract: A sun-following solar panel stand that includes a frame, a hollow box, rotating and pivoting apparatus, first, second, and third light apparatus, comparing apparatus, and combination determining and comparing apparatus. The frame is horizontally rotatively mountable to a surface and the hollow box is vertically pivotally mounted to the frame. The rotating apparatus rotates the frame as the sun traverses horizontally and the pivoting apparatus pivots the hollow box as the sun traverses vertically. The first light apparatus provide a first light apparatus output responsive to the horizontal position of the sun. The second light apparatus provide a second light apparatus output responsive to the vertical position of the sun. The third light apparatus provide a third light apparatus output responsive to the general position of the sun.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: December 21, 1999
    Inventors: John J. Phelan, Joseph P. Phelan, Richard L. Miller
  • Patent number: 5977475
    Abstract: There is provided a converging solar module of a simple structure which can accurately track the sun and efficiently generate electricity. A converging solar module comprises an electricity generating converging lens (10) made of resin having a flat shape, and a solar battery cell (12) placed in the vicinity of a focal area of the converging lens (10). The converging lens (10) and the solar cell (12) are rotatable as a unit. The electricity generating converging lens (10) is attached to a shaft (20) of a rotation driving motor (18). Using sunlight converged by a cylindrical position detecting converging lens (40), a position detecting sensor (42) locates the sun, and outputs information regarding the position of the sun as angle information to a controller (48).
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: November 2, 1999
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kouetsu Hibino
  • Patent number: 5961739
    Abstract: A hemispheric moving focus power plant (10) has a hemispheric solar reflector (12) for reflecting solar energy. A receiver (14) for receiving reflected solar energy and producing power therefrom is movably connected to the hemispheric solar reflector (12). The receiver (14) includes a frame with a top (24), to which a plurality of photovoltaic cells are connected, and a support (26). Further, a power conditioner (16) is connected to the receiver (14) for receiving power from the receiver (14) and conditioning the power for use.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: October 5, 1999
    Inventor: Michael J. Osborne
  • Patent number: 5950618
    Abstract: A solar energy baking apparatus comprises one or more baking containers for receiving material to be baked or dried; reflectors with respect to the baking containers for reflecting solar energy and collecting and focusing the light on the baking containers; and a driving device for moving the reflectors to locate above or below the baking container. The present device may be used to set the baking temperature and the operating time. Through monitoring the controlling device, two driving devices are controlled respectively for operating the baking container, and for causing the reflectors to move to the lower portion of the baking container for reflecting and collecting solar energy, or rotate to the upper portion of the baking container so as to prevent the solar energy to radiate the baking containers. Thus the baking temperature and time are controlled and the process of baking by solar energy is improved.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: September 14, 1999
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Yih Wu, Yang-Yih Hu, Tien-Yuan Li, Jennchen Tang, Ting-An Li
  • Patent number: 5934271
    Abstract: A solar collection antenna has a large aperture reflective dish which is mounted on a dish support fame. When the dish is pointed at the sun, it reflects received solar radiation into a zone of concentration, at which either a solar energy receiver or a secondary reflector (supported by an ancillary support) is located. To track the sun, the dish is rotated about a first axis which is transverse the dish aperture and a second, orthogonal axis (which intersects the first axis). The center of mass of the combination of the dish, its support frame, the solar energy receiver or secondary reflector and the ancillary support is relatively close to the lower edge of the dish, and lies substantially on the transverse axis of rotation, at the point where the first and second axes intersect (or almost intersect). The dish aperture is chosen so that the dish experiences balanced wind loading about its transverse axis of rotation.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: August 10, 1999
    Assignee: Anutech PTY Limited
    Inventor: Stephen Kaneff
  • Patent number: 5862799
    Abstract: Control of a heliostat field (1) in a solar energy plant is provided with a system (6) which controls the alignment of heliostat mirrors (2) in a controlled area of the heliostat field (1) with respect to a selected zone in a target plane (P). The control system (6) comprises a detection device (7) removed from the target plane (P) in the direction of propagation of radiation (R') directed by the heliostat mirrors towards the target plane (P). The detection device (7) has a detection surface (8) facing the radiation (R').
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: January 26, 1999
    Assignee: Yeda Research And Development Company Ltd.
    Inventors: Amnon Yogev, Vladimir Krupkin