Abstract: An apparatus and method for providing reduced crystal damage in a sugar centrifugal includes provisions for avoiding scratching and other crystal damage by eliminating asperities and sharp edges at the transition between the screening zone and the discharge zone of a centrifugal basket. In addition, the distance on an upper shroud ring across which high velocity crystals slide is minimized to reduce the likelihood of scratching crystals on the surface of the shroud ring. Finally, the tangential velocity at which crystals are released from the centrifugal basket is minimized to reduce impact damage to the crystals.
Abstract: An apparatus and method for reducing sugar, crystal impact damage and lump formation in a centrifugal provides a resilient barrier ring which absorbs most of the impact energy of the crystals and which deflects the crystals so they are not struck by trailing high speed crystals. An air flow causes vibration of the barrier ring to prevent crystal sticking which could lead to lump formation. This air flow also reduces moisture content in the sugar housing to further reduce lump formation.
Type:
Grant
Filed:
December 13, 1991
Date of Patent:
February 15, 1994
Assignee:
Silver Engineering Works, Inc.
Inventors:
Ted D. Milner, Robert V. Zimmerman, Myles G. Hill
Abstract: A sugar centrifugal operates at decreased speed to reduce crystal damage but suffers no loss of sugar crystal/molasses separation rate. This is accomplished by superposing a partial vacuum on the molasses chamber of the centrifugal which promotes removal of syrup and water from the sugar crystals through the centrifugal basket wall. Additional drying of the separated crystals is provided by injection of air above the sugar chamber to replace that which is extracted through the centrifugal basket wall.
Abstract: An apparatus and method for reducing sugar, crystal impact damage and lump formation in a sugar centrifugal includes a resilient deflector ring which absorbs most of the impact energy of the crystals while deflecting the crystals out of the path of trailing high speed crystals. An air flow parallel to the local surface of the deflector ring causes vibration of the deflector ring to reduce the tendency for crystals to stick while addition of a supply of water aspirated and atomized by the air flow maintains the ring surface free of syrup build-up which could cause crystals to adhere to the ring surface and form lumps.
Abstract: The invention provides an apparatus for controlling both the supersaturation of the mother liquor and the crystal content of massecuite by measuring di-electric constant and electrical conductivity at radio frequencies by means of a probe which is included in a circuit which may be tuned to a fixed setting or may be variably tuned, the combined impedance is measured as a function of the tuning and the measurements are compared with predetermined desired values. By suitable combination of the two signals, measurement of crystal content and mother liquor supersaturation can be controlled.
Abstract: A continuous separation system which continuously purges, washes, dries, and removes solids with a minimum amount of mechanical handling and consequential crystal breakage. A separator within the continuous separation system of the present invention comprises a stationary casing, a horizontal rotary screen within the casing, a fixed scraper mounted in the casing above the screen, an inlet conduit on one side of the scraper for depositing slurry on the screen to form a layer as the screen rotates, an outlet conduit on the other side of the scraper for carrying away dried solids, and gas nozzles for directing a gas stream at the solids as they encounter the scraper, entraining them, and directing them through the outlet conduit. The screen divides the casing interior into respective upper and lower chambers that are sealed from one another except through the screen. In operation, the gas stream carries the entrained solids to a separate receiver.
Abstract: A method for releasing compacted sugar crystals from a screen after centrifugation uses braking force for stopping rotation of the centrifuge. The brake stops rotation of the screen without simultaneously stopping rotation of the crystals accumulated adjacent the screen. The centrifuge may include one or more apertures in the base of the drum for exit of the sugar crystals.