Plural Hot Or Cold Junction Arranged In A Single Line Patents (Class 136/211)
  • Patent number: 8039726
    Abstract: A device includes a first thermally conductive substrate having a first patterned electrode disposed thereon and a second thermally conductive substrate having a second patterned electrode disposed thereon, wherein the first and second thermally conductive substrates are arranged such that the first and second patterned electrodes are adjacent to one another. The device includes a plurality of nanowires disposed between the first and second patterned electrodes, wherein the plurality of nanowires is formed of a thermoelectric material. The device also includes a joining material disposed between the plurality of nanowires and at least one of the first and second patterned electrodes.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: An-Ping Zhang, Fazila Seker, Reed Roeder Corderman, Shixue Wen, Fred Sharifi, Melissa Suzanne Sander, Craig Douglas Young
  • Publication number: 20110197942
    Abstract: For the thin-film thermo-electric generator and fabrication method of this invention, a P-type thermo-electric thin-film layer, an insulating thin-film layer and a N-type thermo-electric thin-film layer is deposited on a substrate to form a three-layer PN junction, multiple three-layer PN junctions in series are available, an insulating thin-film layer is provided between every to serial three-layer PN junctions, and electrodes are extracted from the substrate and the outermost thin-film layer of the last three-layer thin-film PN junctions.
    Type: Application
    Filed: December 9, 2009
    Publication date: August 18, 2011
    Applicant: SHENZHEN UNIVERSITY
    Inventors: Ping Fan, Dongping Zhang, Zhuangghao Zjemg, Guangxing Liang
  • Patent number: 7969738
    Abstract: A computer includes a casing in which an opening is formed, a heat generating element which is provided inside of the casing, a main cooling unit which is disposed between the opening of the casing and the heat generating element and cools heat which is generated from the heat generating element, and an auxiliary cooling unit which is provided inside of the casing and additionally cools inside air directed to the main cooling unit.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyung-ha Koo
  • Publication number: 20110150036
    Abstract: Provided are a flexible thermoelectric generator, a wireless sensor node including the same and a method of manufacturing the same. The flexible thermoelectric generator includes a plurality of P-type semiconductors and a plurality of N-type semiconductors, which are alternately arranged, an upper metal for connecting upper surfaces of the adjacent P-type semiconductor and N-type semiconductor, a lower metal for connecting lower surfaces of the adjacent P-type semiconductor and N-type semiconductor, and alternately disposed with respect to the upper metal, a P-type metal connected to at least one P-type semiconductor among the plurality of P-type semiconductors, and an N-type metal connected to at least one N-type semiconductor among the plurality of N-type semiconductors.
    Type: Application
    Filed: November 18, 2010
    Publication date: June 23, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jae Woo Lee, Yil Suk Yang, Se Wan Heo, Moon Gyu Jang, Jong Dae Kim
  • Publication number: 20110132422
    Abstract: A thermoelectric generation method using a thermoelectric generator includes: placing a thermoelectric generator in a temperature-changing atmosphere; drawing to outside a current that is generated due to a temperature difference between first and second support members when the temperature of the second support member is higher than that of the first support member, and that flows from a second thermoelectric conversion member to a first thermoelectric conversion member, using first and second output sections as a positive terminal and a negative terminal, respectively; and drawing to outside a current that is generated due to a temperature difference between the first and second support members when the temperature of the first support member is higher than that of the second support member, and that flows from a fourth thermoelectric conversion member to a third thermoelectric conversion member, using third and fourth output sections as a positive terminal and a negative terminal, respectively.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 9, 2011
    Applicant: SONY CORPORATION
    Inventors: Masakazu Yajima, Masayoshi Kanno, Shinichiro Yamada
  • Publication number: 20110114145
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Application
    Filed: August 21, 2008
    Publication date: May 19, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado
  • Patent number: 7939744
    Abstract: A thermoelectric element formed of a sintered body of a semiconductor comprising at least two kinds of elements selected from the group consisting of Bi, Te, Se and Sb, and having a micro-Vickers' hardness of not smaller than 0.5 GPa. The thermoelectric element has a hardness of not smaller than 0.5 GPa, and exhibits a large resistance against deformation, and is not easily broken by deformation. As a result, breakage due to deformation is prevented and a highly reliable thermoelectric element is realized even when a shape factor which is a ratio of the sectional area of the thermoelectric element to the height thereof, is increased and even when the element density is increased.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: May 10, 2011
    Assignee: Kyocera Corporation
    Inventors: Masato Fukudome, Kazuhiro Nishizono, Koichi Tanaka, Kenichi Tajima
  • Patent number: 7932459
    Abstract: A first conductive member and a second conductive member having different Seebeck coefficients are joined together by a joining member to form a plurality of thermoelectric conversion elements, and these thermoelectric conversion elements are disposed in at least two different temperature environments. The first conductive members of respective thermoelectric conversion elements or the second conductive members thereof are connected to each other by an electric wiring to form a direct energy conversion electric circuit system, and electric potential energy is picked up from an arbitrary portion on this electric wiring. Accordingly, the direct energy conversion electric circuit system from thermal energy to electric energy is formed.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: April 26, 2011
    Assignees: Meidensha Corporation, Yoshiomi Kondoh
    Inventor: Yoshiomi Kondoh
  • Publication number: 20100319748
    Abstract: The invention relates to a thermopile wire (1), a winding support for such a thermopile wire, as well as a method and a machine (11) for producing a thermoelectric generator including a thermopile wire (1). The invention takes into account that the effective winding diameter changes from one winding layer of the thermopile wire (1) to the next when the thermopile wire (1) is wound.
    Type: Application
    Filed: February 20, 2008
    Publication date: December 23, 2010
    Applicant: ISABELLENHUETTE HEUSLER GMBH & CO. KG
    Inventor: Ullrich Hetzler
  • Patent number: 7812246
    Abstract: There is provided a self driving energy direct conversion system capable of restricting global warming by using a recycle-type and open-system thermoelectric effect device which uses a natural heat energy (reusable, non polluting, and omnipresent) and which is capable of obtaining an energy source. With a group of Peltier effect elements separated at a certain distance and a group of Seebeck effect elements separated at a certain distance, a heat energy transfer section, a power generator section, and an electrolysis section are provided. Making artificially a heat energy transfer, an electric potential energy conversion, and a chemical potential energy source (of a hydrogen gas and an oxygen gas) allows use of the heat energy, an electric power and a chemical potential energy. Hereinabove, the chemical potential energy source is made by a water electrolysis circuit using water that is easy to pressurize, compress, store, accumulate and convey.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 12, 2010
    Assignees: Kabushiki Kaisha Meidensha
    Inventor: Yoshiomi Kondoh
  • Patent number: 7696668
    Abstract: A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 ?m. A second conductive lead is electrically coupled to the collector layer.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: April 13, 2010
    Assignee: UT-Battelle, LLC
    Inventor: Zhiyu Hu
  • Patent number: 7569763
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 4, 2009
    Assignee: Micropower Global Limited
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Patent number: 7317159
    Abstract: The present invention provides a thermoelectric conversion element that has high efficiency even at reduced thickness. In this thermoelectric conversion element, striped p-type thermoelectric conversion parts are arranged on one surface of an insulating layer, and striped n-type thermoelectric conversion parts are arranged on the other surface. The two sets of stripes form overlapped portions. At one or more of the overlapped portions, a first p-type thermoelectric conversion part and a first n-type thermoelectric conversion part are electrically connected via a first conducting portion arranged within the insulating layer, a second p-type thermoelectric conversion part and a second n-type thermoelectric conversion part are electrically connected via a second conducting portion arranged within the insulating layer, and the first conducting portion and the second conducting portion are electrically isolated.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: January 8, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideaki Adachi, Satoshi Yotsuhashi, Yasunari Sugita, Tsutomu Kanno
  • Patent number: 7178332
    Abstract: In an exhaust heat recovery system, electric power generation efficiency of a thermoelectric conversion element can be improved, and warming-up of a catalyst can be completed early, without using a complicated device. The exhaust heat recovery system according to the invention includes an exhaust pipe in which exhaust gas discharged from an internal combustion engine flows; a catalyst which purifies the exhaust gas; a heat recovery portion which is fitted to the exhaust pipe, and which recovers heat contained in the exhaust gas; a thermoelectric conversion element which generates electric power using thermoelectric conversion; and a heat pipe which connects the heat recovery portion to the thermoelectric conversion element, and which transfers the heat recovered in the heat recovery portion to the thermoelectric conversion element. An operation starting temperature of the heat pipe is set so as to be higher than an activation temperature of the catalyst.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: February 20, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Toshitake Sasaki
  • Patent number: 7109408
    Abstract: A solid-state energy converter with a semiconductor or semiconductor-metal implementation is provided for conversion of thermal energy to electric energy, or electric energy to refrigeration. In n-type heat-to-electricity embodiments, a highly doped n* emitter region made of a metal or semiconductor injects carriers into an n-type gap region. A p-type layer is positioned between the emitter region and gap region, allowing for discontinuity of corresponding Fermi-levels and forming a potential barrier to sort electrons by energy. Additional p-type layers can optionally be formed on the collector side of the converter. One type of these layers with higher carrier concentration (p*) serves as a blocking layer at the cold side of the converter, and another layer (p**) with carrier concentration close to the gap reduces a thermoelectric back flow component. Ohmic contacts on both sides of the device close the electrical circuit through an external load to convert heat to electricity.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: September 19, 2006
    Assignee: Eneco, Inc.
    Inventors: Yan R. Kucherov, Peter L. Hagelstein
  • Patent number: 7100369
    Abstract: A thermoelectric generating device has a thermoelectric element which utilizes an exhaust gas from an engine as a high temperature heat source and an engine coolant as a low temperature heat source in order to generate electricity. An introducing passage introduces a part of the exhaust gas passed through the thermoelectric element into an intake of the engine. An introducing valve opens and closes the introducing passage. A controller controls an opening degree of the introducing valve according to a load of the engine.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: September 5, 2006
    Assignee: DENSO Corporation
    Inventors: Hiroo Yamaguchi, Yasutoshi Yamanaka
  • Patent number: 6958443
    Abstract: Disclosed is a foil segment for a thermoelectric generator comprising a top plate disposed in spaced relation above a bottom plate. An array of the foil segments is perpendicularly disposed in side-by-side arrangement between and in thermal contact with the bottom and top plates. Each foil segment comprises a substrate having a thickness of about 7.5-50 microns, opposing front and back substrate surfaces and a series of spaced alternating n-type and p-type thermoelectric legs disposed in parallel arrangement on the front substrate surface. Each of the n-type and p-type legs is formed of a bismuth telluride-based thermoelectric material having a thickness of about 5-100 microns, a width of about 10-100 microns and a length of about 100-500 microns. The alternating n-type and p-type thermoelectric legs are electrically connected in series and thermally connected in parallel such that a temperature differential between the bottom and top plates results in the generation of power.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: October 25, 2005
    Assignee: Applied Digital Solutions
    Inventors: Ingo Stark, Peter Zhou
  • Patent number: 6951456
    Abstract: A generally toroidal counterflow heat exchanger is the main element of a combustor that operates at a micro scale. The combustor includes a central combustion region with openings to a reactant gas channel and an exhaust gas channel. The reactant channel and exhaust channels are coiled around each other in a spiral configuration that reduces heat loss. An electric current microgenerator is similar and also includes a thermoelectric active wall composed of n-type and p-type thermoelectric elements as part of a channel wall of the microcombustor. The thermoelectric active wall includes fins configured to increase the temperature differential across the thermoelectric elements relative to the temperature difference between the thermoelectric elements and the reactant and exhaust gases. A method of monolithically fabricating such microdevices by electrodepositing multiple layers of material is also provided.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 4, 2005
    Assignee: University of Southern California
    Inventors: Adam L. Cohen, Paul D. Ronney, Uri Frodis, Lars Sitzki, Eckart H. Meiburg, Steffen Wussow
  • Patent number: 6894215
    Abstract: A thermoelectric module with a simple structure with less breakage by thermal stress is provided. For this purpose, the thermoelectric module includes p-type and n-type thermoelectric elements (13, 14) which are alternately placed, and outer electrodes (15) and inner electrodes (16), which are alternately placed between the thermoelectric elements (13, 14), and at least part of at least either one of the outer electrode (15) or the inner electrode (16) has a shape approximately along an object which exchanges heat with the electrodes (15, 16). The inner electrodes (16) surround an object which exchanges heat with the electrodes (15, 16).
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: May 17, 2005
    Assignee: Komatsu Ltd.
    Inventor: Hironori Akiba
  • Patent number: 6872879
    Abstract: A thermoelectric generator comprising a plurality of semi-conductor elements of type n an type p alternatingly disposed and connected at the ends thereof to form a plurality of thermocouples on two opposite faces of the generator, said elements being thin polycrystalline semi-conductor ceramic layers deposited on a microporous support by means of serigraphy and fixed to said support by sintering.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: March 29, 2005
    Assignees: Institut Francais due Petrole
    Inventors: Edouard Serras, Jean-Marie Gaillard, Patrick Flament
  • Patent number: 6855880
    Abstract: A thermoelectric semiconductor module (10) includes a plurality of semiconductor pellets (14, 18) having Peltier characteristics are mechanically interconnected and arranged in an electrical series circuit with heat transferring means (12, 16, 20) with all interconnections being directly made. The means (12, 16, 20) can be of platelike construction with an L-shaped cross-section or, alternatively, with a U-shaped cross-section. A large number of modules (10) can be arranged in a two-dimensional or three-dimensional stack (30) with adjacent lines or planes of modules electrically interrelated by end segment connectors (32). In a further version, one side of a modular plane has heat exchanger fins (44-50) while the other side is electrically connected by ceramic segments (58) with deposited conductors (56). In yet another version, the modules are mounted onto rotating discs (94, 96) so as to act as a fluid impeller moving therepast enhancing thermal efficiency.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: February 15, 2005
    Inventor: Steve Feher
  • Publication number: 20040231714
    Abstract: Disclosed is a foil segment for a thermoelectric generator comprising a top plate disposed in spaced relation above a bottom plate. An array of the foil segments is perpendicularly disposed in side-by-side arrangement between and in thermal contact with the bottom and top plates. Each foil segment comprises a substrate having a thickness of about 7.5-50 microns, opposing front and back substrate surfaces and a series of spaced alternating n-type and p-type thermoelectric legs disposed in parallel arrangement on the front substrate surface. Each of the n-type and p-type legs is formed of a bismuth telluride-based thermoelectric material having a thickness of about 5-100 microns, a width of about 10-100 microns and a length of about 100-500 microns. The alternating n-type and p-type thermoelectric legs are electrically connected in series and thermally connected in parallel such that a temperature differential between the bottom and top plates results in the generation of power.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 25, 2004
    Inventors: Ingo Stark, Peter Zhou
  • Publication number: 20040177877
    Abstract: A thermoelectric semiconductor element includes a first section and a second section. A heat path of the first section is greater than a heat path of the second section.
    Type: Application
    Filed: September 10, 2003
    Publication date: September 16, 2004
    Applicant: ENHANCED ENERGY SYSTEMS, INC.
    Inventor: Adrian Hightower
  • Publication number: 20040177876
    Abstract: A semiconductor thermoelectric module includes a first semiconductor element formed from a first composition. A second semiconductor element is formed from a second composition. The second semiconductor element is connected electrically in series with the first semiconductor element via an electrical conductor, and the second composition differs from the first composition.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 16, 2004
    Applicant: ENHANCED ENERGY SYSTEMS, INC.
    Inventor: Adrian Hightower
  • Patent number: 6759586
    Abstract: Disclosed is a thermoelectric module, comprising a plurality of p-type thermoelectric elements each comprising a p-type semiconductor having a skutterdite crystal structure, a plurality of n-type thermoelectric elements each comprising a n-type semiconductor having a skutterdite crystal structure, at least one first electrode, at least one second electrode, at least one first alloy layer and at least one second alloy layer, wherein said at least one first alloy layer and said at least one second alloy layer contain Sb and at least one transition metal element selected from the group consisting of Ag, Au and Cu.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: July 6, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Shutoh, Hiromitsu Takeda, Naruhito Kondo
  • Patent number: 6700052
    Abstract: A flexible thermoelectric circuit is disclosed. Thermoelectric circuits have traditionally been of the rigid or substantially rigid form. Several different embodiments of thermoelectric circuits are disclosed which permit flexion in one or more directions to permit applications where flexible thermoelectric circuits are advantageous.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: March 2, 2004
    Assignee: Amerigon Incorporated
    Inventor: Lon E. Bell
  • Publication number: 20030183269
    Abstract: Apparatus having a cooling device capable of both power generation using heat from a heat-generating component and cooling of the heat-generating component is provided. The cooling device has a heat-receiving part which receives heat conducted from a CPU, which is an external heat-generating component, a thermoelectric conversion part arranged to absorb heat from the heat-receiving part and having operating modes including a mode of cooling the heat-receiving part by being supplied with a current and a power generation mode of converting heat received from the heat-receiving part into a current and outputting the current, and a selecting part which makes a selection according to a temperature condition of the CPU as to in which one of the modes the thermoelectric conversion part should be operated.
    Type: Application
    Filed: March 13, 2003
    Publication date: October 2, 2003
    Applicant: International Business Machines Corporation
    Inventors: Kazuhiko Maeda, Hiroaki Agata
  • Patent number: 6613972
    Abstract: A generally toroidal counterflow heat exchanger is the main element of a combustor that operates at a micro scale. The combustor includes a central combustion region with openings to a reactant gas channel and an exhaust gas channel. The reactant channel and exhaust channels are coiled around each other in a spiral configuration that reduces heat loss. An electric current microgenerator is similar and also includes a thermoelectric active wall composed of n-type and p-type thermoelectric elements as part of a channel wall of the microcombustor. The thermoelectric active wall includes fins configured to increase the temperature differential across the thermoelectric elements relative to the temperature difference between the thermoelectric elements and the reactant and exhaust gases. A method of monolithically fabricating such microdevices by electrodepositing multiple layers of material is also provided.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: September 2, 2003
    Assignee: University of Southern California
    Inventors: Adam L. Cohen, Paul Ronney, Uri Frodis, Lars Sitzki, Eckart Meiburg, Steffen Wussow
  • Patent number: 6599011
    Abstract: A temperature sensing assembly utilizing a multipoint thermocouple. The assembly comprises a vessel, e.g. a chemical reaction pressure vessel, into which a thermocouple is inserted. The thermocouple utilizes an elongated sheath having a plurality of sensors therein. The sensors are arranged to detect temperature at a plurality of unique locations within the vessel.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: July 29, 2003
    Assignee: Daily Thermetrics
    Inventors: Jeffrey N. Daily, Robert F. Poteet, Michael W. Rahn, Larry D. Welch
  • Patent number: 6550963
    Abstract: A multipoint thermocouple for sensing temperature. The thermocouple comprises a sheath having a plurality of conductor pairs disposed within the sheath. Each conductor pair has two conductors of dissimilar materials joined at a unique junction point along the sheath. The unique junction points permit sensing of temperature at different locations along the length of the multipoint thermocouple.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: April 22, 2003
    Assignee: Daily Instruments
    Inventors: Jeffrey N. Daily, Robert F. Poteet, Michael W. Rahn, Larry D. Welch
  • Patent number: 6150601
    Abstract: Electric power is generated downhole in a well using a thermoelectric device. A temperature gradient or differential .DELTA.T present in the well is applied to the thermoelectric device to produce a voltage potential across the output terminals of the device. The thermoelectric device includes a first thermocouple coupled to a heat source and a second thermocouple coupled to a heat sink source. The electric power generated by the thermoelectric device is used to recharge battery packs located downhole or to power electrical devices or systems.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 21, 2000
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mark A. Schnatzmeyer, Clark E. Robison
  • Patent number: 6043423
    Abstract: On a top surface of a substrate, a first and a second electrode are formed. A p-type semiconductor film is formed over substantially the entire exposed area on the top surface of the substrate and over the first electrode. An n-type semiconductor film is also formed over substantially the entire surface, but does not cover the first electrode, the p-type semiconductor film and the second electrode. A junction surface between the p-type and n-type semiconductor films extends over substantially the entire substrate, thereby providing a thermoelectric device which can cool or heat a wide surface area. The inclusion of the junction surface between p-type and n-type films, which extends over substantially the entire surface of the substrate, provides a unit whose top surface serves as a heat-absorbing portion and whose bottom surface serves as a heat-releasing portion.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: March 28, 2000
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masafumi Satomura, Ichiro Yamasaki, Ryousuke Yamanaka
  • Patent number: 6034318
    Abstract: The invention refers to a thermoelectric generator unit comprising a plurality of thermoelectric elements (1) of alternately p and n character and electrically series connected by means of metal connector members (2), the elements having essentially cylindrical shape.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: March 7, 2000
    Assignee: Volvo Aero Corporation
    Inventors: Hans Lycke, Lennart Holmgren
  • Patent number: 6020671
    Abstract: A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: February 1, 2000
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert Pento, James E. Marks, Clifford D. Staffanson
  • Patent number: 5837928
    Abstract: A thermoelectric radiator for generating a direct current while providing at least a portion of the necessary cooling is formed with a first and second plurality of interdigitated thermoelectric lamella which are electrically joined and are connected to the positive and negative portions of the electrical system. The result is direct current flow when a heated coolant is passed over the lamella.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: November 17, 1998
    Inventor: Robert D. Zinke
  • Patent number: 5824947
    Abstract: A thermoelectric device fabricated of at least two dissimilar thermoelements and at least one of the thermoelements has a conductor in parallel therewith increasing the Figure of Merit. The thermoelements are also surrounded by a conductor along the leg lengths thereby simplifying the manufacturing process.
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: October 20, 1998
    Inventor: Chris Macris
  • Patent number: 5726380
    Abstract: A thermo-electric power generating element has the structure that two kinds of metal sheets, or foils, which form a thermocouple combination are laminated together and alternately connected at one end and the other end so as to form a plurality of thermocouples connected in series. When hot junctions are held at a high temperature, a temperature gap along the thermal flux is generated in the sheets, or foils. Electromotive force at every thermocouple derived from the temperature gap is summed up to a voltage level effective for outputting electric power through takeoff leads. This power generator is useful for converting waste heat to electric power. When the thermocouple pile is made from corrugated sheets, or foils, electric power is outputted with high efficiency.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: March 10, 1998
    Assignees: Nisshin Steel Co., Ltd., Ohara Metal Industries Co., Ltd.
    Inventors: Michio Ozutsumi, Toshihiko Takemoto, Shinsuke Ohara
  • Patent number: 5705770
    Abstract: A thermoelectric module includes a switching circuit for switching the connection between a first thermoelectric element and a second thermoelectric element between series connection and parallel connection, a voltage detecting circuit for controlling the switching circuit by detecting the voltage of the second thermoelectric element, and a storage battery circuit for storing electricity utilizing the voltages generated by the first thermoelectric element and the second thermoelectric element connected by the switching circuit. A voltage generated from an applied temperature difference is detected by the voltage detecting circuit. If there is a sufficient temperature difference, the first thermoelectric element and second thermoelectric element are connected in parallel by the switching circuit to charge the electricity in the storage battery circuit using the doubled current.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: January 6, 1998
    Assignee: Seiko Instruments Inc.
    Inventors: Kenji Ogasawara, Keisuke Tsubata
  • Patent number: 5644185
    Abstract: A thermoelectric generator system including a refrigerator of the of the absorption type having no moving parts and operating with ammonia, water and hydrogen to extract heat from a heat source and discharge heat from an absorber and having at least one thermocouple positioned to intercept heat flow from the heat source to the boiler and/or from the condenser to the evaporator. The system is arranged such that a boiler from one system absorbs heat discharged from the absorber of one or more other identical systems so that systems can be ganged together to produce a combine system having increased efficiency.
    Type: Grant
    Filed: February 27, 1996
    Date of Patent: July 1, 1997
    Inventor: Joel V. Miller
  • Patent number: 5563368
    Abstract: A thermoelectric conversion member formed by a thermoelectric conversion element has a split ring shaped transverse cross section. Electrodes are disposed on ring ends of the thermoelectric conversion member facing each other. A magnetic field generating unit generates a magnetic field in a direction perpendicular to the transverse cross-sectional plane of the thermoelectric conversion member. A heating unit for heating one side of an annular wall of the thermoelectric conversion member and a cooling unit provided on the opposite side of the annular wall of the thermoelectric conversion member produces a temperature gradient in a direction radially of the thermoelectric conversion member. Electric field is induced in the direction perpendicular to both directions of the magnetic field and the temperature gradient, that is in the circumferential direction of the ring of the thermoelectric conversion member under the Nernst effect, enabling an electric voltage to be taken out at the electrodes.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: October 8, 1996
    Assignees: UniNet Co., Ltd., Shikoku Research Institute Inc.
    Inventor: Sataro Yamaguchi
  • Patent number: 5450869
    Abstract: A heater mechanism incorporating a thermoelectric converter for use with a self-powered, solid, liquid or gaseous fueled, heater. During operation of the heater mechanism the thermoelectric converter supplies sufficient electrical power to (a) sustain the heater in operation, (b) maintain the starter battery at full charge, and (c) provide auxiliary power to remove and transport heat to desired locations away from the heater. The converter is a highly compact design (high power output per unit volume of space) and lends itself to high volume (mass production) and automated assembly techniques to produce it inexpensively. The thermoelectric converter is made of fewer components than prior art devices. A number of components in the thermoelectric stack serve dual or even multi-functions. The thermoelectric stack components are bonded or mounted together in such a manner as to permit handling as a unit.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: September 19, 1995
    Assignee: Volvo Flygmotor AB
    Inventors: Wayne M. Brittain, Richard G. Hannah, John H. Himes, Alfred H. LaPorte, Joseph B. Moore
  • Patent number: 5430322
    Abstract: A thermoelectric element sheet includes at least two layered structures having a plurality of thermoelectric elements which are arranged between insulating films. In each layered structure the thermoelectric semiconductors are arranged in pairs and electrodes connect the thermoelectric semiconductors of each pair to provide a plurality of structural units. Further electrodes connect the structural units. The thermoelectric element sheet can be used in thermoelectric energy conversion systems which depend on the Seebeck, Peltier or Thomson effect to convert thermal energy to electrical energy or vice versa.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: July 4, 1995
    Assignee: Agency of Industrial Science and Technology
    Inventors: Tadamasa Koyanagi, Tsunehiro Oohira
  • Patent number: 5393350
    Abstract: A low voltage high amperage thermopile generating and electron storage unit is disclosed wherein current is formed by heating and cooling alternate junctions of dissimilar metals arranged in a circular fashion and may be enhanced with an electrical flux pump. Current may be withdrawn using an ultra fast thermopile type switch to connect to an electrical load source.
    Type: Grant
    Filed: October 8, 1993
    Date of Patent: February 28, 1995
    Inventor: Jon M. Schroeder
  • Patent number: 5393351
    Abstract: Multijunction thermal converters are formed in an integral multifilm membrane form over a through opening in a nonmagnetic, dielectric substrate. Through the use of conventional photolithographic and etching techniques, very compact, rugged and precise integrated structures are formed to include either single linear elongate heater elements, bifilar or trifilar heater elements, and multijunction thermopiles at reasonable cost. Disposition of the heater element and hot junctions of the thermopiles over a through opening in the substrate, with the cold junctions of the thermopiles disposed over the substrate thickness, enables the heating element to provide a substantially isothermal uniform heating of the thermocouple hot junctions to obtain high thermal efficiency and reduce Thompson and Peltier heating effects. Forming the essential elements into an integrated multifilm membrane also makes possible minimization of interconnections between the elements, and this results in minimized reactance.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: February 28, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Joseph R. Kinard, De-xiang Huang, Donald B. Novotny
  • Patent number: 5288336
    Abstract: A thermopile 30 comprises a stacked assembly of bimetallic layers in which there is full conductor interface contact over the distance separating hot and cold surfaces 31, 32. The assembly may include dielectric layers forming a capacitor stack. A.C. current through the stack is matched in strength to the Seebeck-generated thermoelectric current circulating in each bimetallic layer. The resulting current snakes through the stack to cause Peltier cooling at one heat surface and heating at the other. A.C. operation at a kilocycle frequency enhances the energy conversion efficiency as does heat flow parallel with the junction interface.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: February 22, 1994
    Assignee: Dr. Harold Aspden
    Inventors: John S. Strachan, Harold Aspden
  • Patent number: 5286304
    Abstract: A method of manufacturing a thermoelectric device including the steps of printing a patterned mask on both sides of a strip of copper foil, shielding one side and plating a pattern of nickel on the other side, removing the shield, securing the foil to a flexible film and etching copper from predesignated areas, creating the thermoelectric device.
    Type: Grant
    Filed: October 24, 1991
    Date of Patent: February 15, 1994
    Assignee: Enerdyne Corporation
    Inventors: Chris Macris, John D. Anderson
  • Patent number: 5254178
    Abstract: A thermoelectric transducer apparatus comprises a group of thermoelectric elements having N-type elements and P-type elements alternately arranged in a single line and a number of alternately arranged heat-absorbing-type and heat-liberating-type plate electrodes to electrically and serially connect said N- and P-type elements.
    Type: Grant
    Filed: October 30, 1991
    Date of Patent: October 19, 1993
    Assignee: Nippondenso Co., Ltd.
    Inventors: Kenji Yamada, Yoshitaka Tomatsu, Tatsuya Oike, Kazutoshi Nishizawa
  • Patent number: 5232516
    Abstract: Thermoelectric heat pumps using recuperative heat exchange are described. These devices use sets of thermocouples (thermoelectric couples) arranged side-by-side to form a plate. The plate is positioned in a fluid-containing vessel and heat exchanging fluid is flowed down one side of the plate and up the other side. In these devices the heat flow, and thus the driving thermal gradient on each thermoelectric couple in the device, is in a direction from one side of the plate to the other side, i.e., other than the direction of the device's working thermal gradient, which is the direction of the flow of fluid. Generally these two directions (driving gradient on the thermoelectric couples and fluid flow-working thermal gradient) are essentially orthogonal to each other.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: August 3, 1993
    Assignee: Implemed, Inc.
    Inventor: Aharon Z. Hed
  • Patent number: 5232517
    Abstract: An assembly for permitting temperature measurements at a large number of locations within a vessel, which assembly has a spreader-reducer for compacting a significantly large number of thermocouple cables into a relatively small volume so as to permit passage through one or more vessel nozzles. The thermocouple cables each has a heat expansion portion as well as a seat, thereby permitting a series of horizontal arrays of thermocouple junctions positioned at different depths within the vessel.
    Type: Grant
    Filed: May 1, 1992
    Date of Patent: August 3, 1993
    Inventors: Howard L. Hilborn, Bennett J. Grieb, Herman E. Storey, Paul A. Fossey, Paul S. Johnson
  • Patent number: 5209786
    Abstract: Disclosed are integrity-enhanced thermoelectric devices and methods of their preparation. Such devices have the following characteristics: (1) there is, on average, no greater than about 10% incidence of function loss (failure) of the device on application to the device of a substantial impact or distortion force or corrosion exposure, and (2) the device have at least about 85% of the thermal performance of thermoelectric devices without integrity enhancement (i.e., thermal conductivity across the integrity-enhanced devices is significantly less than 0.0021 Cal-Cm/Cm.sup.2 Sec .degree.C., and is less than or equal to about 0.0015 Cal-Cm/Cm.sup.2 Sec .degree.C.; empirically expressed as maintenance of at least a 40.degree. C. temperature differential over the intra-plate distance which is about 3/16 to about 1/4 of an inch.).
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: May 11, 1993
    Assignee: Thermo Electron Technologies Corporation
    Inventors: Jonathan L. Rolfe, John S. Beaty