Particulate Or Spherical Semiconductor Patents (Class 136/250)
  • Patent number: 7253017
    Abstract: Charge splitting networks for optoelectronic devices may be fabricated using a nanostructured porous film, e.g., of SiO2, as a template. The porous film may be fabricated using surfactant temptation techniques. Any of a variety of semiconducting materials including semiconducting metals and metal oxides (such as TiO2, CdSe, CdS, CdTe, or CuO) may be deposited into the pores of the porous template film. After deposition, the template film may be removed by controlled exposure to acid or base without disrupting the semiconducting material leaving behind a nanoscale network grid. Spaces in the network grid can then be filled with complementary semiconducting material, e.g., a semiconducting polymer or dye to create a exciton-splitting and charge transporting network with superior optoelectronic properties for an optoelectronic devices, particularly photovoltaic devices.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: August 7, 2007
    Assignee: Nanosolar, Inc.
    Inventors: Martin R. Roscheisen, Brian M. Sager, Jacqueline Fidanza, Klaus Petritsch, Gregory A. Miller, Dong Yu
  • Patent number: 7205473
    Abstract: A flexible photovoltaic cell integrated onto an active card, such as a greeting card or “smart” card, may be fabricated separately and then integrated with additional electronics on the active card. Alternatively, the photovoltaic cell may be fabricated on the active card itself, constituting, if desired, part or all of its surface design.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: April 17, 2007
    Assignee: Konarka Technologies, Inc.
    Inventors: Lian Li, Edmund Montello
  • Patent number: 7195721
    Abstract: A nanocomposite having enhanced energy conversion between thermal, electron, phonons, and photons energy states. The composition comprises a synergistic blend of nanoscale powders wherein the powders have nanoscale layered surface modifiers and a conductive medium. The powders and conductive medium are optionally altered through non-thermal modifiers and made into energy conversion devices.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: March 27, 2007
    Inventor: Michael H. Gurin
  • Patent number: 7196834
    Abstract: This invention relates to a transparent flat body including two transparent cover layers (1, 2) that confine between them an active layer (3) whose transparency varies in an electric field and disposed between two electrode layers (6, 7) optionally subdivided into sections, and a photovoltaic element that is connected to two electrode layers (6, 8), preferably via a control stage (11), and that includes a photoactive layer (4) between the two electrode layers (6, 8) of the photovoltaic element (5), characterized in that the photoactive layer (4) is made of two transparent molecular components in a manner known per se, one of the two electrode layers (6, 7) of the active layer (3) is simultaneously one of the two electrode layers (6, 8) of the photovoltaic element (5), and the two transparent cover layers (1, 2) confine between them both the photovoltaic element (5) and the active layer (3).
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 27, 2007
    Assignee: Konarka Austria Forschungs-und Entwicklungs GmbH
    Inventors: Christoph Brabec, Erhard Glöetzl, Franz Padinger, Niyazi Serdar Sariciftci
  • Patent number: 7157641
    Abstract: A bi-layer photovoltaic cell, and method (100) of making same, with an electric field applied at the p-n heterojunction interface. The cell includes a first semiconductor layer including a binder, nanocrystals of an n-type semiconductor, and spatially bound cations and a second semiconductor layer contacting the first semiconductor layer that includes a binder, nanocrystals of a p-type semiconductor, and spatially bound anions. The cell further includes a p-n heterojunction at the contacting interface between the first and second semiconductor layers. An electric field is created by the spatially bound cations and anions that are located in the layers proximal to the p-n heterojunction. The nanocrystals are single crystals of organic semiconductors that are less than 50 nanometers in size and that comprise a majority of the volume of their respective layers. The binder is a polymer matrix, such as an epoxy. The cell includes electrical contacts abutting the semiconductor layers.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: January 2, 2007
    Assignee: Midwest Research Institute
    Inventor: Brian A Gregg
  • Patent number: 7141735
    Abstract: The present invention relates to an organic dye-sensitized semiconductor device and to a solar cell using it and, particularly, to a photoelectric conversion device using semiconductor fine particles sensitized with a dye having an acrylic acid part and a solar cell using it. According to the present invention, a low-cost photoelectric conversion device having favorable conversion efficiency and a solar cell can be obtained.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: November 28, 2006
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Masaaki Ikeda, Koichiro Shigaki, Teruhisa Inoue
  • Patent number: 7087831
    Abstract: A photoelectric conversion device comprising at least an electron acceptive charge transfer layer, an electron donative charge transfer layer, and a light absorption layer existing between the charge transfer layers, wherein either one of the charge transfer layers comprises a semiconductor acicular crystal layer comprising an aggregate of acicular crystals or a mixture of an acicular crystal and another crystal, and a method of producing the device are disclosed. Consequently, a photoelectric conversion device being capable of smoothly carrying out transfer of electrons and having high photoelectric conversion efficiency is provided.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: August 8, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Hiroshi Okura
  • Patent number: 7087832
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
  • Patent number: 6916981
    Abstract: The objects of the present invention are to provide semiconductor layers for obtaining solar cells having a relatively high energy conversion efficiency, solar cells using the same, and their production methods and uses; all of which are solved by providing semiconductor layers that are used in solar cells and constructed by semiconductor particle groups having a plurality of peaks in particle size distribution, solar cells using the same, and their production methods and uses.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: July 12, 2005
    Assignee: Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
    Inventors: Fumio Matsui, Hirofumi Mitekura, Kentaro Yano, Toshiki Koyama, Yoshio Taniguchi
  • Patent number: 6897085
    Abstract: A method of fabricating a photovoltaic solar cell is provided. A plurality of generally spherical semiconductor elements are provided. Each of the semiconductor elements has a core and an outer surface surface forming a p-n junction. An anti-reflection coating is deposited on the outer surface of each of the semiconductor elements and each of the semiconductor elements is bonded into a perforated aluminum foil array thereby providing ohmic contact to a first side of the p-n junction. The anti-reflection coating is removed from a portion of each of the semiconductor elements and then the core is exposed, thereby allowing ohmic contact to be made to a second side of the p-n junction.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: May 24, 2005
    Assignee: Spheral Solar Power, Inc.
    Inventors: Milfred Dale Hammerbacher, Gary Don Stevens, Paul Ray Sharrock, Aline Wullur, Frederic Rivollier
  • Patent number: 6838743
    Abstract: This invention relates an optoelectronic material comprising a uniform medium with a controllable electric characteristic; and semiconductor ultrafine particles dispersed in the medium and having a mean particle size of 100 nm or less, and an application device using the same.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuka Yamada, Takehito Yoshida, Shigeru Takeyama, Yuji Matsuda, Katsuhiko Mutoh
  • Publication number: 20040206388
    Abstract: There is disclosed a photoelectric conversion device comprising a substrate 1 serving as a lower electrode; first conductivity-type crystalline semiconductor particles 3 deposited on the substrate; second conductivity-type semiconductor layers 4 formed on the crystalline semiconductor particles 3; an insulator layer 2 formed among the crystalline semiconductor particles; and an upper electrode layer 5 formed on the second conductivity-type semiconductor layers 4, wherein the second conductivity-type semiconductor layers 4 each have a smaller thickness at or below an equator of each of the crystalline semiconductor particles than at a zenith region thereof, and the second conductivity-type semiconductor layers 4 include an impurity element with a concentration gradient decreasing with proximity to the crystalline semiconductor particles.
    Type: Application
    Filed: February 18, 2004
    Publication date: October 21, 2004
    Applicant: KYOCERA CORPORATION
    Inventors: Shin Sugawara, Atsuo Hatate, Akiko Komoda, Hisao Arimune
  • Publication number: 20040168718
    Abstract: Method for producing a hybrid organic solar cell having the general structure
    Type: Application
    Filed: March 12, 2004
    Publication date: September 2, 2004
    Inventors: Gabrielle Nelles, Akio Yasuda, Hans-Werner Schmidt, Mukundan Thelakkat, Christoph Schmitz
  • Publication number: 20040140001
    Abstract: A method of fabricating a photovoltaic solar cell is provided. A plurality of generally spherical semiconductor elements are provided. Each of the semiconductor elements has a core and an outer surface surface forming a p-n junction. An anti-reflection coating is deposited on the outer surface of each of the semiconductor elements and each of the semiconductor elements is bonded into a perforated aluminum foil array thereby providing ohmic contact to a first side of the p-n junction. The anti-reflection coating is removed from a portion of each of the semiconductor elements and then the core is exposed, thereby allowing ohmic contact to be made to a second side of the p-n junction.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 22, 2004
    Inventors: Milfred Dale Hammerbacher, Gary Don Stevens, Paul Ray Sharrock, Aline Wullur, Frederic Rivollier
  • Patent number: 6762359
    Abstract: A method of producing a photovoltaic panel, including the steps of producing a light-transmitting, photovoltaic-element holding member which holds, along a reference surface, a plurality of photovoltaic elements each of which includes a P-type layer and an N-type layer, and forming, on one of opposite sides of the photovoltaic-element holding member, a first electrode which is electrically connected to the respective P-type layers of the photovoltaic elements, and a second electrode which is electrically connected to the respective N-type layers of the photovoltaic elements.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: July 13, 2004
    Assignee: Fuji Machine Mfg. Co., Ltd.
    Inventors: Koichi Asai, Yasuo Muto, Kazuya Suzuki, Kazutoshi Sakai
  • Publication number: 20040123896
    Abstract: In accordance with a first aspect of the invention, an article is formed by selectively sintering a layer of film material on a substrate by exposure to microwave energy.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Lemmon, James Spivack
  • Publication number: 20040074532
    Abstract: A photoelectric conversion device comprising an organic dye-sensitizing semiconductor fine particle thin film is prepared by using a dye having a barbituric acid structure as a partial structure and by adsorbing the dye on a semiconductor thin film electrode, and thereby a low-cost photoelectric conversion device having high conversion efficiency, and a solar cell using the device are provided.
    Type: Application
    Filed: September 2, 2003
    Publication date: April 22, 2004
    Inventors: Masaaki Ikeda, Koichiro Shigaki, Teruhisa Inoue
  • Publication number: 20040060591
    Abstract: A photoelectric conversion device comprising at least an electron acceptive charge transfer layer, an electron donative charge transfer layer, and a light absorption layer existing between the charge transfer layers, wherein either one of the charge transfer layers comprises a semiconductor acicular crystal layer comprising an aggregate of acicular crystals or a mixture of an acicular crystal and another crystal, and a method of producing the device are disclosed. Consequently, a photoelectric conversion device being capable of smoothly carrying out transfer of electrons and having high photoelectric conversion efficiency is provided.
    Type: Application
    Filed: September 17, 2003
    Publication date: April 1, 2004
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Tohru Den
  • Patent number: 6706959
    Abstract: A photoelectric conversion element is disposed in each of a plurality of recesses of a support. Light reflected by the inside surface of the recess shines on the photoelectric conversion element. The photoelectric conversion element has an approximately spherical shape and has the following structure. The outer surface of a center-side n-type amorphous silicon (a-Si) layer is covered with a p-type amorphous SiC (a-SiC) layer having a wider optical band gap than a-Si does, whereby a pn junction is formed. A first conductor of the support is connected to the p-type a-SiC layer of the photoelectric conversion element at the bottom or its neighborhood of the recess. A second conductor, which is insulated from the first conductor by an insulator, of the support is connected to the n-type a-Si layer of the photoelectric conversion element.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: March 16, 2004
    Assignee: Clean Venture 21 Corporation
    Inventors: Yoshihiro Hamakawa, Mikio Murozono, Hideyuki Takakura
  • Patent number: 6689950
    Abstract: A solar cell has an active structure including a paint voltage source having a first paint layer structure comprising p-type pigment particles dispersed in a first-layer binder, and a second paint layer structure comprising n-type pigment particles dispersed in a second-layer binder. The second paint layer structure is in electrical contact with the first paint layer structure. The active structure further includes an electrically conductive contact structure having a first electrically conductive contact to the first paint layer structure, and a second electrically conductive contact to the second paint layer structure. At least one of the first electrically conductive contact and the second electrically conductive contact permits light to pass therethrough to the paint voltage source. A capacitive paint layer may be included to store electrical charge produced by the active structure. The active structure may be affixed to a support.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: February 10, 2004
    Assignee: The Boeing Company
    Inventor: James F. Cordaro
  • Publication number: 20040016456
    Abstract: A photovoltaic device comprising a plurality of spherical photovoltaic elements, a support and a first conductor layer and its production method are disclosed. Each of the photovoltaic elements comprises a spherical first semiconductor and a second semiconductor layer covering the surface thereof, the second semiconductor layer having an opening through which a part of the first semiconductor is exposed. An electrode is formed on each of the exposed part of the first semiconductor and the outer surface of the second semiconductor layer. The support has a plurality of recesses, each having a connection hole in its bottom, and comprises an electric insulator layer having the connection holes and a second conductor layer which is formed on the electric insulator layer except around the connection holes and which constitutes the inner surface of the recesses. The first conductor layer is disposed on the backside of the support.
    Type: Application
    Filed: July 18, 2003
    Publication date: January 29, 2004
    Applicant: CLEAN VENTURE 21 CORPORATION
    Inventors: Mikio Murozono, Yoshimitsu Hiroshima, Ryoji Okazaki, Takeo Takayanagi, Satoshi Omae
  • Publication number: 20040003839
    Abstract: Nano photovoltaic/solar cells each include a layer of plastic, conductive paint on the layer of plastic, dielectric adhesive colloid film on the conductive paint, nano photovoltaic/solar elements in the dielectric adhesive colloid film and contacting the conductive paint, clear conductive coating on the nano photovoltaic/solar elements, and a contact transfer release sheet on the clear conductive coating. The nano photovoltaic/solar elements each include a conductive bottom, a P type layer on the conductive bottom, an N type layer on the P type layer, and a clear conductive top on the N type layer. The nano photovoltaic/solar elements may include more than one P and N junction between the conductive bottom and clear conductive top.
    Type: Application
    Filed: February 4, 2003
    Publication date: January 8, 2004
    Inventor: Lawrence F. Curtin
  • Publication number: 20040003838
    Abstract: Nano photovoltaic/solar cells each include a layer of plastic, conductive paint on the layer of plastic, glue on the conductive paint, nanocone photovoltaic/solar elements in the glue and contacting the conductive paint, clear conductive coating on the nanocone photovoltaic/solar elements, and a contact transfer release sheet on the clear conductive coating. The nanocone photovoltaic/solar elements each include a conductive bottom, a P type layer on the conductive bottom, an N type layer on the P type layer, and a clear conductive top on the N type layer. The nanocone photovoltaic/solar elements may include more than one P and N junction between the conductive bottom and clear conductive top.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 8, 2004
    Inventor: Lawrence F. Curtin
  • Patent number: 6664567
    Abstract: A photoelectric conversion device is provided, which comprises: a substrate serving as an electrode; numerous crystalline semiconductor particles containing a first conductivity-type impurity deposited on the substrate to join thereto; an insulator provided among the crystalline semiconductor particles; and a semiconductor layer containing an impurity of the opposite conductivity-type to which another electrode is connected, which semiconductor layer being provided over the crystalline semiconductor particles, wherein the crystalline semiconductor particles comprise silicon, and the insulator comprises a glass material which contains at least 1 wt % and at most 20 wt % tin oxide. By this arrangement, it is possible to form a good insulator capable of filling spaces among the crystalline semiconductor particles and preventing defects such as cracking, bubbling and abnormal deposition from occurring, and consequently to provide a photoelectric conversion device with high reliability at low cost.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Jun Fukuda, Shinya Kawai, Hisao Arimune
  • Patent number: 6653552
    Abstract: There is provided a photoelectric conversion device comprising a lower electrode, numerous crystalline semiconductor particles of one conductivity type deposited on the lower electrode, an insulator interposed among the crystalline semiconductor particles, and a semiconductor layer of the opposite conductivity type provided over the crystalline semiconductor particles, in which a pyramidal projection having a cross section in the shape of a trapezoid or triangle and a lateral face that faces one of the crystalline semiconductor particles is provided between the crystalline semiconductor particles. In this device, light incident on areas among the crystalline semiconductor particles is reflected or refracted by the pyramidal projection and directed into the crystalline semiconductor particles. Accordingly, this device can achieve high conversion efficiency.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 25, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune, Toshifumi Kiyohara, Ken Watanuki
  • Patent number: 6649824
    Abstract: A photoelectric conversion device comprising at least an electron acceptive charge transfer layer, an electron donative charge transfer layer, and a light absorption layer existing between the charge transfer layers, wherein either one of the charge transfer layers comprises a semiconductor acicular crystal layer comprising an aggregate of acicular crystals or a mixture of an acicular crystal and another crystal, and a method of producing the device are disclosed. Consequently, a photoelectric conversion device being capable of smoothly carrying out transfer of electrons and having high photoelectric conversion efficiency is provided.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: November 18, 2003
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Hiroshi Okura
  • Publication number: 20030205268
    Abstract: A photoelectric conversion device comprising a particulate semiconductor layer, wherein the particulate semiconductor layer is prepared by a method comprising a step of irradiating semiconductor particles with electromagnetic wave or a step of heating semiconductor particles at a temperature of 50° C. or higher and lower than 350° C. under a pressure of 0.05 MPa or lower.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 6, 2003
    Applicant: FUJI PHOTO FILM CO., LTD.
    Inventors: Yoshisada Nakamura, Yoshio Tadakuma, Yoshikatsu Kagawa
  • Publication number: 20030192584
    Abstract: The invention, in various embodiments, is directed to photovoltaic cells, modules and methods for making the same, wherein a plurality of discrete portions of metal foil having an interconnected nanoparticle material formed thereon are disposed, preferably as strips having a controlled size and relative spacing, between first and second flexible substrates.
    Type: Application
    Filed: January 24, 2003
    Publication date: October 16, 2003
    Applicant: Konarka Technologies, Inc.
    Inventors: Bill Beckenbaugh, Russell Gaudiana, Alan Montello, Edmund Montello
  • Patent number: 6620996
    Abstract: An insulator is formed on a substrate, on which numerous first conductivity-type crystalline semiconductor particles are deposited on and brought into contact with the substrate. A second conductivity-type semiconductor layer for forming a PN-junction between the layer and the crystalline semiconductor particles is formed over the crystalline semiconductor particles and the insulator. The second conductivity-type semiconductor layer comprises a semiconductor layer including a crystalline semiconductor and an amorphous semiconductor in a mixed manner.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: September 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Patent number: 6620997
    Abstract: In a photoelectric conversion device having numerous crystalline semiconductor grains deposited on a substrate, the substrate includes an aluminum layer or an aluminum alloy layer, an intermediate layer, and a base material layer, in which the intermediate layer is arranged such that it is composed mainly of one or a plurality of elements selected from among nickel, titanium, chromium, and cobalt. With the constitution as above, it is possible to suppress reaction between the aluminum electrode layer and the base material layer, thereby maintaining the high adhesiveness of the aluminum electrode layer. A photoelectric conversion device with high reliability and high conversion efficiency is therefore realized.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: September 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune, Nobuyuki Kitahara
  • Patent number: 6610920
    Abstract: Plasma is generated from a plasma generating gas comprising an inert gas and hydrogen gas. Silicon material is passed through the plasma and heated so as to form a crystalline silicon particle containing hydrogen at a concentration of 1×1016-1×1020. A great number of the crystalline silicon particles of p-type or n-type are deposited on a substrate as the electrode of one side. An insulator is formed among the crystalline silicon particles on the substrate, and a n-type or p-type semiconductor layer is formed over the crystalline silicon particles, thereby fabricating a photoelectric conversion device. The photoelectric conversion device using the crystalline silicon particles exhibits high photoelectric conversion efficiency.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: August 26, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Hisao Arimune
  • Patent number: 6586670
    Abstract: A method for producing a photoelectric conversion device comprising a conductive support and a photosensitive layer containing a semiconductor fine particle on which a dye is adsorbed, wherein the semiconductor fine particle is treated with a compound represented by the following general formula (I): wherein X represents an oxygen atom, a sulfur atom, a selenium atom or NY, in which Y represents a hydrogen atom, an aliphatic hydrocarbon group, a hydroxyl group or an alkoxy group; R1, R2, R3 and R4 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, —N(R5)(R6), —C(═O)R7, —C(═S)R8, —SO2R9 or —OR10; R5 and R6 independently have the same meaning as the R1, R2, R3 and R4; R7, R8 and R9 independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aryl group, a heterocyclic group, —N(R5)(R6), —OR10 or —SR11; and R10 and R11 independently represent a hydrogen atom or an
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: July 1, 2003
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Masaru Yoshikawa
  • Patent number: 6563041
    Abstract: This photoelectric conversion device comprises a lower electrode, numerous p-type crystalline semiconductor particles deposited thereon, an insulator formed among the crystalline semiconductor particles, and a n-type semiconductor layer formed on the side of the upper portions of the crystalline semiconductor particles. The insulator is formed of a translucent material, and the surface of the lower electrode has been subjected to roughening treatment. Roughening the surface of the lower electrode allows light incident on the surface of the lower electrode to be scattered and directed to the crystalline semiconductor particles so that the photoelectric conversion efficiency is improved.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Kyocera Corporation
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune
  • Patent number: 6555741
    Abstract: The present invention relates to multi-cell regenerative photovoltaic photoelectrochemical (RPEC) devices. The invention describes the structure of a multi-cell RPEC device where conductive interconnects are formed by a matrix mounting conductive particles, formed between extended portions of opposed planar conductive members.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: April 29, 2003
    Assignee: Sustainable Technologies Australia Limited
    Inventors: Jason Andrew Hopkins, George Phani, Igor Lvovich Skryabin
  • Publication number: 20030056821
    Abstract: A method of making a photovoltaic cell includes contacting a cross-linking agent with semiconductor particles, and incorporating the semiconductor particles into the photovoltaic cell.
    Type: Application
    Filed: June 10, 2002
    Publication date: March 27, 2003
    Inventors: Kethinni G. Chittibabu, Jin-An He, Lynne Ann Samuelson, Lian Li, Sukant Tripathy, Susan Tripathy, Jayant Kumar, Srinivasan Balasubramanian
  • Patent number: 6528717
    Abstract: Producing a photovoltaic panel, including forming holes in a first electrode plate, fitting, in the holes, photovoltaic elements, each having a P-N junction between a core and a shell, electrically connecting a first portion of the shell of each photovoltaic element to the first electrode plate, removing one second portion of the shell of each photovoltaic element located on both sides of the first portion of the shell, so that a third portion of the core of the each photovoltaic element that corresponds to the one second portion of the shell is exposed, and electrically connecting the third portion of the core of each photovoltaic element to a second electrode plate, wherein electrically connecting the first portion and electrically connecting the third portion includes soldering, a corresponding one of the first portion and the third portion to a corresponding one of the first electrode plate and the second electrode plate.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 4, 2003
    Assignee: Fuji Machine Mfg. Co., Ltd.
    Inventors: Koichi Asai, Yasuo Muto, Kazuya Suzuki
  • Publication number: 20020162585
    Abstract: There is provided a photoelectric conversion device comprising a lower electrode, numerous crystalline semiconductor particles of one conductivity type deposited on the lower electrode, an insulator interposed among the crystalline semiconductor particles, and a semiconductor layer of the opposite conductivity type provided over the crystalline semiconductor particles, in which a pyramidal projection having a cross section in the shape of a trapezoid or triangle and a lateral face that faces one of the crystalline semiconductor particles is provided between the crystalline semiconductor particles. In this device, light incident on areas among the crystalline semiconductor particles is reflected or refracted by the pyramidal projection and directed into the crystalline semiconductor particles. Accordingly, this device can achieve high conversion efficiency.
    Type: Application
    Filed: February 22, 2002
    Publication date: November 7, 2002
    Inventors: Shin Sugawara, Takeshi Kyoda, Nobuyuki Kitahara, Hisao Arimune, Toshifumi Kiyohara, Ken Watanuki
  • Patent number: 6452092
    Abstract: A photovoltaic cell comprises an electrode layer, a photovoltaic layer, a hole transport layer, a conductive layer and a counter electrode layer stacked in this order.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: September 17, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Liyuan Han, Ryosuke Yamanaka
  • Patent number: 6441298
    Abstract: A surface-plasmon enhanced photovoltaic device including: a first metallic electrode having an array of apertures, an illuminated surface and an unilluminated surface, at least one of the surfaces having an enhancement characteristic resulting in a resonant interaction of incident light with surface plasmons; a second electrode spaced from the first metallic electrode; and a plurality of spheres corresponding to the array of apertures and disposed between the first metallic and second electrodes, each sphere having a first portion of either p or n-doped material and a second portion having the other of the p or n-doped material such that a p-n junction is formed at a junction between the first and second portions.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: August 27, 2002
    Assignee: NEC Research Institute, Inc
    Inventor: Tineke Thio
  • Patent number: 6437234
    Abstract: A method of manufacturing a photoelectric conversion device according to the present invention comprises the steps of: applying numerous glass particles having a particle size before baking being 5 to 25% of that of crystalline semiconductor particles to a substrate having an electrode of one side; depositing the crystalline semiconductor particles on the layer of the glass particles; pressing the crystalline semiconductor particles against the substrate; and subjecting them to baking, whereby manufacturing a photoelectric conversion device in which the crystalline semiconductor particles and the substrate have been joined together as well as an insulator has been interposed among the crystalline semiconductor particles. Accordingly, the photoelectric conversion device has good conversion efficiency and is manufactured at a low cost.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 20, 2002
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune
  • Publication number: 20020096207
    Abstract: Producing a photovoltaic panel, including forming holes in a first electrode plate, fitting, in the holes, photovoltaic elements, each having a P-N junction between a core and a shell, electrically connecting a first portion of the shell of each photovoltaic element to the first electrode plate, removing one second portion of the shell of each photovoltaic element located on both sides of the first portion of the shell, so that a third portion of the core of the each photovoltaic element that corresponds to the one second portion of the shell is exposed, and electrically connecting the third portion of the core of each photovoltaic element to a second electrode plate, wherein electrically connecting the first portion and electrically connecting the third portion includes soldering, a corresponding one of the first portion and the third portion to a corresponding one of the first electrode plate and the second electrode plate.
    Type: Application
    Filed: March 11, 2002
    Publication date: July 25, 2002
    Applicant: Fuji Machine MFG. Co., Ltd.
    Inventors: Koichi Asai, Yasuo Muto, Kazuya Suzuki
  • Publication number: 20020096206
    Abstract: A photoelectric conversion element is disposed in each of a plurality of recesses of a support. Light reflected by the inside surface of the recess shines on the photoelectric conversion element. The photoelectric conversion element has an approximately spherical shape and has the following structure. The outer surface of a center-side n-type amorphous silicon (a-Si) layer is covered with a p-type amorphous SiC (a-SiC) layer having a wider optical band gap than a-Si does, whereby a pn junction is formed. A first conductor of the support is connected to the p-type a-SiC layer of the photoelectric conversion element at the bottom or its neighborhood of the recess. A second conductor, which is insulated from the first conductor by an insulator, of the support is connected to the n-type a-Si layer of the photoelectric conversion element.
    Type: Application
    Filed: November 21, 2001
    Publication date: July 25, 2002
    Applicant: Clean Venture 21 Corporation
    Inventors: Yoshihiro Hamakawa, Mikio Murozono, Hideyuki Takakura, Yukio Yamaguchi, Jun Yamagata, Hidenori Yasuda
  • Patent number: 6420644
    Abstract: A solar battery having a board with a surface with a plurality of spherical segments projecting from the board surface. A primary electrode layer is provided on the board surface and the plurality of spherical segments. A semiconductor layer is provided on the primary electrode layer and has P-N connecting members. A secondary electrode layer on the semiconductor layer is made up of a translucent material.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: July 16, 2002
    Assignee: Mitsui High-tec, Inc.
    Inventors: Atsushi Fukui, Keisuke Kimoto
  • Patent number: 6417442
    Abstract: A method of forming a solar battery assembly. The method includes the steps of: providing a plurality of spherically-shaped cells, each having a semiconductor layer and an outer electrode layer; forming a solder layer between the plurality of spherically-shaped cells so as to maintain the plurality of spherically-shaped cells in a desired relationship; removing a part of the outer electrode layer to expose a part of the semiconductor layer; and placing an inner electrode in contact with the exposed part of the semiconductor layer.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: July 9, 2002
    Assignee: Mitsui High-tec, Inc.
    Inventors: Atsushi Fukui, Keisuke Kimoto, Migaku Ishida
  • Patent number: 6399412
    Abstract: Producing a photovoltaic panel, including forming holes in a first electrode plate, fitting, in the holes, photovoltaic elements, each having a P-N junction between a core and a shell, electrically connecting a first portion of the shell of each photovoltaic element to the first electrode plate, removing one second portion of the shell of each photovoltaic element located on both sides of the first portion of the shell, so that a third portion of the core of the each photovoltaic element that corresponds to the one second portion of the shell is exposed, and electrically connecting the third portion of the core of each photovoltaic element to a second electrode plate, wherein electrically connecting the first portion and electrically connecting the third portion includes soldering, a corresponding one of the first portion and the third portion to a corresponding one of the first electrode plate and the second electrode plate.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: June 4, 2002
    Assignee: Fuji Machine Mfg. Co., Ltd.
    Inventors: Koichi Asai, Yasuo Muto, Kazuya Suzuki
  • Patent number: 6372979
    Abstract: An apparatus is provided for generating electrical energy. The apparatus consists of a housing; particularly, a housing having a spherical surface; a natural gas light for generating radiation capable of being converted to electrical energy; and a plurality of photovoltaic cells for converting the radiation by the natural gas light to electrical energy.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: April 16, 2002
    Inventor: Foy Streetman
  • Publication number: 20020036009
    Abstract: A method of manufacturing a photoelectric conversion device according to the present invention comprises the steps of: applying numerous glassparticles having a particle size before baking being 5 to 25% of that of crystalline semiconductor particles to a substrate having an electrode of one side; depositing the crystalline semiconductor particles on the layer of the glassparticles; pressing the crystalline semiconductor particles against the substrate; and subjecting them to 3 baking, whereby manufacturing a photoelectric conversion device in which the crystalline semiconductor particles and the substrate have been joined together as well as an insulator has been interposed among the crystalline semiconductor particles. Accordingly, the photoelectric conversion device has good conversion efficiency and is manufactured at a low cost.
    Type: Application
    Filed: July 26, 2001
    Publication date: March 28, 2002
    Applicant: KYOCERA CORPORATION
    Inventors: Takeshi Kyoda, Shin Sugawara, Hisao Arimune
  • Patent number: 6355873
    Abstract: A spherical shaped solar diode having an n-type substrate surrounded by a p-type layer of semiconductor material is disclosed. In addition, a plurality of hetero-junction super lattice structures are formed surrounding the p-type layer. The plurality of hetero-junction super lattice structures include alternating layers of Si and SeBeTe. The plurality of hetero-junction super lattice structures adapt the diode to convert higher energy light (as compared to 1.1eV light) to electrical energy. The diodes are formed into a solar panel assembly. The panel assembly includes a wire mesh to secure the diodes and electrically contact one electrode of each diode. A dimpled sheet is also used for securing the diodes and electrically contacting the other electrode of each diode. The diodes are positioned adjacent to the dimpled sheet so that when light is applied to the solar panel assembly, the diodes are exposed to the light on a majority of each diode's surface.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: March 12, 2002
    Assignee: Ball Semiconductor, Inc.
    Inventor: Akira Ishikawa
  • Publication number: 20020023675
    Abstract: A method of forming a solar battery assembly. The method includes the steps of: providing a plurality of spherically-shaped cells, each having a semiconductor layer and an outer electrode layer; forming a solder layer between the plurality of spherically-shaped cells so as to maintain the plurality of spherically-shaped cells in a desired relationship; removing a part of the outer electrode layer to expose a part of the semiconductor layer; and placing an inner electrode in contact with the exposed part of the semiconductor layer.
    Type: Application
    Filed: December 18, 2000
    Publication date: February 28, 2002
    Inventors: Atsushi Fukui, Keisuke Kimoto, Migaku Ishida
  • Patent number: 6281427
    Abstract: A semiconductor-device-producing substrate and method for producing the substrate which is inexpensive and good in quality and which has a large-area surface layer. A photoelectric conversion device and method uses the semiconductor-device-producing substrate, with high efficiency being obtained by means of the large-area light-receiving surface and three-dimensional structure of the photoelectric conversion device. Semiconductor granular crystals are arranged in at least one layer on a semiconductor substrate and connected and fixed to one another by heating or by a chemical vapor-phase deposition method to thereby form a semiconductor-device-producing substrate. An active layer of one conduction type is formed on the substrate and then another active layer of the other conduction type is formed on the surface of the first-mentioned active layer by a chemical vapor-phase deposition method or by a diffusion method to thereby form a PN junction surface having a three-dimensional structure.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: August 28, 2001
    Assignee: Digital Wave Inc.
    Inventors: Maruyama Mitsuhiro, Maruyama Yasuhiro