Radioactive, Ionic, Or Thermo Photo Patents (Class 136/253)
  • Patent number: 10978988
    Abstract: A selective emitter exhibiting heat resistance up to 1000° C., comprising a metal body, a first dielectric layer provided on one surface of the metal body, a composite layer provided on another surface of the first dielectric layer at an opposite side to the metal body side, and a second dielectric layer provided on another surface of the composite layer at an opposite side to the first dielectric layer, the composite layer being a layer provided with a metal or semiconductor dispersed in an oxide of the metal or the semiconductor.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 13, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinji Tokumaru, Tomohiro Uno
  • Patent number: 10954449
    Abstract: The present invention includes a method for converting renewable energy source electricity and a hydrocarbon feedstock into a liquid fuel by providing a source of renewable electrical energy in communication with a synthesis gas generation unit and an air separation unit. Oxygen from the air separation unit and a hydrocarbon feedstock is provided to the synthesis gas generation unit, thereby causing partial oxidation reactions in the synthesis gas generation unit in a process that converts the hydrocarbon feedstock into synthesis gas. The synthesis gas is then converted into a liquid fuel.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 23, 2021
    Assignee: INENTEC, INC.
    Inventors: Daniel R. Cohn, Jeffrey E. Surma, Leslie Bromberg
  • Patent number: 10699820
    Abstract: According to one embodiment, a product includes an array of three dimensional structures, where each of the three dimensional structure includes a semiconductor material; a cavity region between each of the three dimensional structures; and a first material in contact with at least one surface of each of the three dimensional structures, where the first material is configured to provide high energy particle and/or ray emissions.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 30, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Rebecca J. Nikolic, Adam P. Conway, Roger A. Henderson, Victor P. Karpenko, Qinghui Shao, Dawn A. Shaughnessy, Mark A. Stoyer, Lars F. Voss
  • Patent number: 10665359
    Abstract: Embodiments of the present disclosure relate to compositions including a doped material, batteries including the composition, photovoltaic devices including the battery, and the like.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 26, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Juan Claudio Nino, Paul M. Johns, James Edward Baciak
  • Patent number: 10591650
    Abstract: A solar thermophotovoltaic system includes a heat exchange pipe containing a heat exchange fluid, and a thin-film integrated spectrally-selective plasmonic absorber emitter (ISSAE) in direct contact with an outer surface of the heat exchange pipe, the ISSAE including an ultra-thin non-shiny metal layer comprising a metal strongly absorbing in a solar spectral range and strongly reflective in an infrared spectral range, the metal layer having an inner surface in direct contact with an outer surface of the heat exchange pipe. The system further includes a photovoltaic cell support structure having an inner surface in a concentric configuration surrounding at least a portion of the ISSAE; and an airgap separating the support structure and the outer surface of the metal layer.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: March 17, 2020
    Assignee: IP EQUITY MANAGEMENT, LLC
    Inventors: Gennady Shvets, Chih-Hui Wu
  • Patent number: 10547006
    Abstract: In one aspect, composite layers are described herein demonstrating phase-separated architectures which, in some embodiments, can mitigate performance disadvantages of prior organic layers of optoelectronic devices. A composite organic layer described herein comprises nanocluster nodes and carbon nanoparticles disposed in a conjugated polymeric host, wherein the carbon nanoparticles are substantially phase separated from the conjugated polymeric host forming lamellar structures of carbon nanofibrils radiating from the nanocluster nodes.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: January 28, 2020
    Assignee: Wake Forest University
    Inventor: David Carroll
  • Patent number: 10497821
    Abstract: A thermophotovoltaic (TPV) energy converter includes a thermal emitter to generate photons of energy in response to receiving heat and a thermal receiver arranged at a distance from the thermal emitter. The thermal receiver includes a photovoltaic cell converting the received photons into electric energy. The thermal emitter includes a first layer of material arranged on a surface of the thermal emitter closest to the thermal receiver. The thermal receiver includes a second layer of material arranged on a surface of the thermal receiver closest to the thermal emitter. The first layer of material and the second layer of material have surface resonant frequencies above a bandgap of the photovoltaic cell.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 3, 2019
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Chungwei Lin, Bingnan Wang, Koon Hoo Teo
  • Patent number: 10465995
    Abstract: Energy storage systems are disclosed. The systems may store energy as heat in a high temperature liquid, and the heat may be converted to electricity by absorbing radiation emitted from the high temperature liquid via one or more photovoltaic devices when the high temperature liquid is transported through an array of conduits. Some aspects described herein relate to reducing deposition of sublimated material from the conduits onto the photovoltaic devices.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: November 5, 2019
    Assignee: Massachusetts Institute of Technology
    Inventor: Asegun Henry
  • Patent number: 10401282
    Abstract: A modular infrared radiation source is provided, including a support provided with a flat wall; a membrane including front and rear faces essentially parallel to each other, the membrane being configured to emit infrared radiation by the front and rear faces, and being maintained in suspension with respect to the support, the rear face facing the wall at a distance therefrom, the wall being configured to reflect infrared radiation; and an electrostatic actuator including first and second electrodes arranged facing each other, configured to vary the distance by application of a difference in electrostatic potential between the first and second electrodes, the membrane and the electrostatic actuator arranged such that, for each wavelength, infrared radiation emitted by the rear face is reflected by the wall, passes through the membrane from the rear face to the front face, and interferes with infrared radiation emitted by the front face.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: September 3, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Salim Boutami, Emerick Lorent
  • Patent number: 10373723
    Abstract: The invention provides methods, devices and systems for excimer fluorescence energy conversion from isotopes. Unprocessed spent nuclear fuel can be used as an isotope, and processed spent nuclear fuel can be used as an isotope. A method includes placing an excimer in the path of radiation decay from the isotope. The excimer is selected according to the isotope to absorb the radiation decay and emit photons in response. Surrounding environment is shielded from the radiation decay. Photons generated from the fluorescence of the excimer are received with photovoltaic material to generate electrical energy. The electrical energy is applied to a load. Systems of the invention can be based upon spent storage casks and handle unprocessed spent nuclear fuel, or can be greatly reduced in size and handle processed fuel, with single isotope isolation allowing consumer battery sized systems.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: August 6, 2019
    Assignee: The Curators of the University of Missouri
    Inventors: Robert V. Tompson, Jr., Mark A. Prelas
  • Patent number: 10304579
    Abstract: Herein is disclosed a quantum cell from top to down including: an N-type ohmic contact electrode, an N-type ?-orbital semiconductor substrate, an N-type ?-orbital semiconductor epitaxy layer, a SiO2 passivation layer, a graphite contact layer, a Schottky contact electrode, a binding layer, and a radioisotope layer. The N-type ?-orbital semiconductor substrate includes an organic semiconductor material with an aromatic group or a semiconductor material with a carbon-carbon bond. The N-type ?-orbital semiconductor epitaxy layer has a doping concentration of 1×1013-5×1014 cm?3 and is formed by injection of a cationic complex in a dose of 6×1013-1×1015 cm?3.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: May 28, 2019
    Inventor: Bor-Ruey Chen
  • Patent number: 10224448
    Abstract: A solar cell module including: a solar cell; a first protection member provided on the light receiving surface side of the solar cell; a second protection member provided on the rear surface side of the solar cell; an encapsulant layer, including a first encapsulant layer disposed between the solar cell and the first protection member, and a second encapsulant layer disposed between the solar cell and the second protection member, which seals the solar cell; and a wavelength conversion substance, contained in at least the first encapsulant layer, which absorbs light having a specified wavelength, and converts the wavelength. The concentration of the wavelength conversion substance is higher in the first encapsulant layer than in the second encapsulant layer, and a resin constituting the second encapsulant layer has a smaller diffusion coefficient of the wavelength conversion substance than the diffusion coefficient of a resin constituting the first encapsulant layer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 5, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., Ltd.
    Inventors: Tasuku Ishiguro, Naoto Imada, Junpei Irikawa, Akimichi Maekawa
  • Patent number: 10197711
    Abstract: Thin-film integrated spectrally-selective plasmonic absorber/emitter (ISSAE) that is simultaneously (i) an efficient sunlight absorber; (ii) an efficient heat insulator that enables modest sunlight concentration to produce a high temperature by reducing infrared emission by a hot surface; (iii) a spectrally-selective infrared emitter that supplies infrared photons of the right energy to a targeted photovoltaic cell, thereby matching its bandgap. Additionally, said ISSAE is sufficiently thin to enable its use as a wrapping/cloaking material for use with hot storage pipes containing heat exchange fluid. Said ISSAE is incorporated into a number of solar-conversion apparatus, taking advantage of the unique properties of said ISSAE.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: February 5, 2019
    Assignee: IP EQUITY MANAGEMENT, LLC
    Inventors: Gennady Shvets, Chih-Hui Wu
  • Patent number: 10174659
    Abstract: Switchable radiative energy harvesting systems and methods of harvesting radiation are disclosed. A system includes an optical filter that includes at least one of an active material and a passive material. The optical filter is switchable between a shield mode and a harvesting mode such that the at least one of the active material and the passive material is in a reflecting state during the shield mode such that the optical filter blocks passage of radiation from a thermal emitter to a thermophotovoltaic cell and a transmitting state during the harvesting mode such that that the optical filter allows the radiation to pass from the thermal emitter to the thermophotovoltaic cell.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 8, 2019
    Assignee: TOYOTA MANUFACTURING ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shailesh N. Joshi, Debasish Banerjee, Shashi Honnikoppa
  • Patent number: 10096393
    Abstract: Various embodiments of a nuclear radiation particle power converter and method of forming such power converter are disclosed. In one or more embodiments, the power converter can include first and second electrodes, a three-dimensional current collector disposed between the first and second electrodes and electrically coupled to the first electrode, and a charge carrier separator disposed on at least a portion of a surface of the three-dimensional current collector. The power converter can also include a hole conductor layer disposed on at least a portion of the charge carrier separator and electrically coupled to the second electrode, and nuclear radiation-emitting material disposed such that at least one nuclear radiation particle emitted by the nuclear radiation-emitting material is incident upon the charge carrier separator.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: October 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Andreas Fenner, David A. Ruben, Anna J. Malin, Paul F. Gerrish, Bruce C. Fleischhauer, Larry E. Tyler
  • Patent number: 10002982
    Abstract: A thermo-photovoltaic system including an infrared radiation emitter including a body including a first external surface and a second external surface, the first and second external surfaces being distinct, the first external surface facing a concentrator for receiving a concentrated solar radiation, the second external surface facing a thermo-photovoltaic cell, and the body further including at least one gas and/or liquid combustion chamber therein, and an igniter is provided for causing combustion in the combustion chamber.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 19, 2018
    Assignee: Commissariat à l'énergie atomigue et aux énergies alternatives
    Inventor: Emmanuel Ollier
  • Patent number: 9951949
    Abstract: A solid-state energy conversion device in combination with an ultra-high energy density buoyant combustor generating high radiant, and high emissivity “heat” achieves ultra-high energy conversion efficiency and ultra-high radiant/emissive “flame” preferably creating electromagnetic waves, hot carriers, photons, phonons and/or plasmons created within the high buoyancy combustor to achieve high energy conversion rates. The buoyant combustor can alternatively operate void of the solid-state energy conversion to replace a traditional burner for boiler/furnace.
    Type: Grant
    Filed: August 2, 2014
    Date of Patent: April 24, 2018
    Inventor: Michael H Gurin
  • Patent number: 9935226
    Abstract: Photovoltaic module (11) comprising a plurality of electrically connected photovoltaic cells (12), characterized in that it has a square shape and comprises at least two contact pads (17, 18) in each corner of the module so as to comprise at least four connectors (14, 15) on each edge (21; 22; 23; 24) of the module.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 3, 2018
    Assignee: Commissariat a L'energie Atomique et aux Energies Alternatives
    Inventors: Nicolas Chaintreuil, Paul Messaoudi, Eric Pilat
  • Patent number: 9929288
    Abstract: Fabrication methods and structures are provided for the formation of monolithically isled back contact back junction solar cells. In one embodiment, base and emitter contact metallization is formed on the backside of a back contact back junction solar cell substrate. A trench stop layer is formed on the backside of a back contact back junction solar cell substrate and is electrically isolated from the base and emitter contact metallization. The trench stop layer has a pattern for forming a plurality semiconductor regions. An electrically insulating layer is formed on the base and emitter contact metallization and the trench stop layer. A trench isolation pattern is formed through the back contact back junction solar cell substrate to the trench stop layer which partitions the semiconductor layer into a plurality of solar cell semiconductor regions on the electrically insulating layer.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: March 27, 2018
    Inventors: Mehrdad M. Moslehi, Virendra V. Rana, Heather Deshazer, Pawan Kapur
  • Patent number: 9910471
    Abstract: An array of backup battery units that can be reconfigured to provide different currents and/or voltages depending upon load conditions. The backup battery units are attached to a bus and can be reconfigured, for example, between a configuration in which the battery backup units are wired in series to a configuration where the battery backup units are wired in parallel. Additional embodiments are directed to an array of backup battery units that can isolate a single battery backup unit so that the battery backup unit can be removed from the bus while the bus is under load. The removed battery backup unit can then be tested, maintained, and/or replaced.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: March 6, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Michael David Marr, Peter George Ross, David Edward Bryan, Samuel J. McKelvie
  • Patent number: 9891685
    Abstract: A backup battery unit that can be reconfigured to provide different currents and/or voltages depending upon load conditions. The backup battery unit can be reconfigured, for example, between a configuration in which battery cells for the battery unit are wired in series to a configuration where the battery cells are wired in parallel. Additional embodiments are directed to a backup battery unit that can isolate a battery cell and remove the cell from a circuit for the battery while the battery is under load or being charged. The isolated cell can then be serviced or tested.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: February 13, 2018
    Assignee: Amazon Technologies, Inc.
    Inventors: Michael David Marr, Peter George Ross, David Edward Bryan, Samuel J. McKelvie
  • Patent number: 9882249
    Abstract: An autonomous, modular energy generation, storage and transmission apparatus, system, and method is provided. An apparatus is tube shaped and includes solar and thermionic energy conversion layers, and a battery module. A system of modular apparatuses may be connected together to form an transmission network. Such devices are particularly suited for outdoor application on highway jersey walls, and for indoor application on office cubicle walls. A method of charging battery modules in the apparatus is provided, along with a method of distributing the same in commerce.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 30, 2018
    Assignee: Solaroad Technologies Group, LLC
    Inventor: Kahrl L. Retti
  • Patent number: 9742193
    Abstract: A system for controlling power utilization from hybrid energy sources to reduce energy consumption costs and maximize use of renewable energy; the system comprises a plurality of switches for switching power between a plurality of power sources; a control unit for controlling the switches to switch between the power sources to supply power from at least one of said power sources to said loads; the control unit preventing back-feeding of power between the power sources; the control unit reducing excess power generated from multiple inverters equally or storing it in a battery bank; the control unit diverting the excess power to the battery bank in the event that loading of at least one of said power sources falls below a predetermined value.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: August 22, 2017
    Assignee: MAHINDRA EPC SERVICES PVT. LTD.
    Inventors: Apurav Jain, Basant Jain, Suhas Sutar, Prejith Edayankara Kadankottu
  • Patent number: 9711670
    Abstract: Self-powered portable electronic devices are disclosed that have the capacity to generate their own electrical power, store electrical charge, and distribute electrical power to similarly designed devices in close proximity. Devices generate power in part using one or more non-solar thermal energy sources that have increased stability and efficiency compared to current solar cell powered devices. Devices comprise components including, control processors, data storage, energy storage, dedicated energy and power management processors, and thermophotovoltaic cells that convert thermal energy into electrical power. Devices are capable of transmitting and receiving energy, power, voice and data information using standard frequencies associated with portable devices. Additionally, the invention discloses methods, systems, and apparatuses comprising circuitry that can control power generation from multiple thermophotovoltaic cells and traditional power sources.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: July 18, 2017
    Assignee: FLUXPHOTON CORPORATION
    Inventors: Craig Grimes, Kevin Kreisler
  • Patent number: 9691920
    Abstract: A thermophotovoltaic (TPV) converter includes spectrally-selective metamaterial emitters disposed on peripheral walls of an all-metal box-like enclosure, and associated photovoltaic (PV) cells configured to efficiently convert in-band photons having optimal conversion spectrums into electricity. The peripheral walls surround a substantially rectangular interior cavity having an inlet opening through which heat energy (e.g., concentrated sunlight) is supplied, and an outlet opening through which waste heat exits the cavity. Concentrated sunlight passing through the box-like enclosure heats the peripheral walls to a high temperature (i.e., above 1000° K), causing thermally excited surface plasmons generated on the emitters' concentric circular ridges to produce highly-directional radiant energy beams having a peak emission wavelength roughly equal to a fixed grating period separating the ridges.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: June 27, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Bernard D. Casse
  • Patent number: 9656861
    Abstract: A solar power system includes a sunlight concentrating system (e.g., a heliostat), a thermophotovoltaic (TPV) converter and a thermal power system. The TPV converter includes a metamaterial emitter formed on a box-like enclosure, and an associated photovoltaic (PV) cell. The sunlight concentrating system directs the concentrated sunlight through an inlet opening of the box-like enclosure to heat the metamaterial emitter above 1000° K. Bull's eye structures formed on outward-facing surfaces of the box-like enclosure utilize concentric circular ridges spaced at a fixed grating period that, when heated, generate a radiant energy beam having a peak emission wavelength roughly equal to the grating period. The PV cell converts the radiant energy to produce primary electrical energy. Unconverted solar “waste” heat energy exits the box-like enclosure and is converted by the thermal power system (e.g., using a steam generator) to produce secondary electrical energy.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 23, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Bernard D. Casse
  • Patent number: 9520335
    Abstract: An object is to provide a method for manufacturing a wavelength selective heat radiation material in which a surface roughness of an upper portion of a cavity wall defining each microcavity is suppressed or in which microcavities each having an aspect ratio larger than 3.0 are formed. For the wavelength selective heat radiation material, a base material having a mask having predetermined openings tightly adhered to a surface thereof, or a base material in which depressions are previously formed on one surface thereof by pressing a die having projections arrayed so as to correspond to positions of microcavities thereagainst, is subjected to anisotropic etching, thereby providing a wavelength selective heat radiation material in which the surface roughness of the upper portion of the cavity wall defining each of the microcavities is suppressed or a wavelength selective heat radiation material having microcavities whose each aspect ratio is larger than 3.0.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: December 13, 2016
    Assignees: TOKYO METROPOLITAN UNIVERSITY, OKITSUMO INCORPORATED
    Inventors: Hideki Masuda, Toshiaki Kondo, Takashi Toyonaga, Naoshi Kimura, Fumitaka Yoshioka
  • Patent number: 9467088
    Abstract: A small sized power generator is provided, being highly efficient in power generation. The power generator can include a heat-light conversion element for converting heat to infrared light and a semiconductor power generation cell for converting the infrared light to electrical energy. The heat-light conversion element can include a material in which reflectance is higher on a long wavelength side of a predetermined infrared wavelength, relative to reflectance on a short wavelength side thereof. The material can cause radiation of the infrared light upon being heated. Heat from a heat source is transferred to the heat-light conversion element, thereby radiating the infrared light. The semiconductor power generation cell converts this infrared light to electrical energy, thereby performing thermal power generation.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: October 11, 2016
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventor: Takahiro Matsumoto
  • Patent number: 9466401
    Abstract: A device for producing electricity. The device comprises an indium gallium phosphide semiconductor material comprising a plurality of indium gallium phosphide material layers each layer having different dopant concentrations and doped with either n-type dopants or p-type dopants, a first terminal on a first surface of the semiconductor material, a beta particle source proximate the first surface for emitting beta particles that penetrate into the semiconductor material, and a second terminal on a second surface of the semiconductor material; the semiconductor material for producing current between the first and second terminals responsive to the beta particles penetrating into the semiconductor material.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: October 11, 2016
    Assignee: City Labs, Inc.
    Inventors: Peter Cabauy, Larry C Olsen, Noren Pan
  • Patent number: 9448608
    Abstract: Systems and methods for handling battery backup resources in a computer system differently in certain situations, such as catastrophic events, based upon an assigned layer of the datacenter components to which the battery backup resource provides backup power. The layer can be based, for example, on criticality of the resource to the system. Less critical layers can shed load or gracefully shut down to respond to the event, and the battery resources can be reallocated or reconfigured to provide battery power to the more critical layers.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 20, 2016
    Assignee: Amazon Technologies, Inc.
    Inventors: Michael David Marr, Peter George Ross, David Edward Bryan, Samuel J. McKelvie
  • Patent number: 9407197
    Abstract: Illustratively, an electrical generator includes a photovoltaic element which converts light produced by a surface into electrical power, the surface located in thermal communication with exhaust gases produced by an exothermic chemical reaction; a heat exchanger which takes at least a majority of thermal energy in the exhaust gases, after the thermal communication, and transfers the thermal energy to air input to the reaction; a catalytic converter, inside the heat exchanger, located to ensure that at least most of the exhaust gases are communicated into the catalytic converter and that heat generated by operation of the catalytic converter is transferred to the air input to the reaction; a sensor in the heat exchanger, located to monitor the reaction before the exhaust gases are communicated into the catalytic converter; a sensor located to sense after the exhaust gases are communicated into the catalytic converter, whether the catalytic converter is functioning properly.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: August 2, 2016
    Assignee: Green Light Industries, Inc
    Inventors: Gerald Peter Jackson, Jason Ryan Babcock, Joseph Matthew Zlotnicki
  • Patent number: 9376214
    Abstract: This disclosure generally relates to a hybrid solid-state propulsion system for aerial vehicles. The hybrid propulsion system includes a combustor, a thermophotovoltaic generator, and a thermoelectric generator. The combustor burns a chemical based fuel to produce radiation and heat that are converted into electricity used to power the aerial vehicle. The thermophotovoltaic generator is positioned to receive radiation and remnant heat generated by flames in the combustor while the thermoelectric generator receives heat from exhausted flue gases from the combustor.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: June 28, 2016
    Assignee: Reebeez, Inc.
    Inventor: Ankita Ghoshal
  • Patent number: 9322548
    Abstract: A combustor applied in thermophotovoltaic system comprises a combustion device and a reversed tube covering the combustion device. The combustion device includes a combustion body made of a transparent and temperature resistant material and a burning unit disposed in the combustion body. When a burning-supported medium is adopted during burning via the burning unit, the radiant intensity is increased. The reversed tube then further redirects the hot product gas for reheating an outer wall of the combustion body in combustion. Therefore, uniform illumination is accordingly resulted for enhancing the radiant intensity. Accordingly, a photovoltaic cell plate connected to the combustor preferably transforms light into electricity. The present invention fully utilizes a micro system as well as miniature energy to offer advanced electricity.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: April 26, 2016
    Assignee: National Cheng Kung University
    Inventors: Yueh-Heng Li, Guan-Bang Chen, Yei-Chin Chao, Tsarng-Sheng Cheng, Hong-Yuan Li
  • Patent number: 9323299
    Abstract: A power unit including multiple generators supplies power to a load or loads that may be variable. The generators can differ, e.g., in generating capacities, rates at which their outputs can be changed, maintenance requirements, and/or different energy-conversion efficiencies. A control unit throttles the generators independently according to a digitally implemented algorithm that may, but need not, use the difference(s) in supplying power to the load. In some cases, the controller regulates monitored power delivered to the load or loads. A power combiner is connected to the outputs of the generators. If desired, a buffer can be used between the generators and the load or loads to provide energy storage that can allow for the load or loads to change at a faster rate than the generators are throttled and for peak loads that temporarily exceed the capacity of the generators.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 26, 2016
    Assignee: Green Light Industries, Inc.
    Inventors: Gerald Peter Jackson, Thomas J. Phillips, Joseph Matthew Zlotnicki
  • Patent number: 9305674
    Abstract: A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 5, 2016
    Assignee: U.S. Department of Energy
    Inventors: Alan Kevin Wertsching, Troy Joseph Trantor, Rhonda Tranter, Matthias Anthony Ebner, Brad Curtis Norby
  • Patent number: 9281186
    Abstract: A colored photovoltaic module and method for its production, where the module includes: a photovoltaic cell; and an appearance modifying film, encapsulant or glazing; where the appearance modifying film, encapsulant or glazing includes: a light-control film; graphic material; a phosphor; a dichroic film; nano-particles; micro-dots; metal flakes; paint; an additive material for 3-D printing, Selective Laser Augmentation (SLA) or Selective Laser Sintering (SLS); or any combination thereof.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 8, 2016
    Assignee: ATS AUTOMATION TOOLING SYSTEMS INC.
    Inventor: Gerald R. Wootton
  • Patent number: 9252701
    Abstract: A system for integrating and co-generating renewable energies which achieves a combined powerful AC/DC electricity output, includes an enclosed volume chamber having an inner surface including a plurality of thermophotovoltaic cells located thereon and an opening for admitting a condensed high-temperature solar energy beam. A heat absorbing member located within the chamber for receiving a portion of the solar energy beam and acts as a thermal storage as well as a thermal emitter to supply thermal energy to the thermophotovoltaic cells to create DC electricity. Air is fed into the chamber to capture thermal energy from the emitter and any waste thermal energy, which is then converted into AC electricity. The system relies on the power of simplicity using a new twist in solar physics to allow for the highest conversion of sunlight energy to electricity at zero carbon emission while occupying significantly less space than typical solar energy systems.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: February 2, 2016
    Inventor: Hisham Tarabishi
  • Patent number: 9052425
    Abstract: A silicon solar cell is provided, including a first silicon layer that absorbing sunlight, a first layer of a structure of photonic crystals formed on the first silicon layer, and a second silicon layer formed on the first layer of a structure of photonic crystals and absorbing sunlight, wherein the first silicon layer and the second silicon layer absorb sunlight at different wavelengths and the first layer of structure of photonic crystals selectively reflects light of a wavelength absorbed by the second silicon layer.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: June 9, 2015
    Assignee: SAMWON FA CO., LTD.
    Inventors: Kyung-Wook Lee, Kyung-Yul Lee, Bong-Yul Lee, Wayne H. Choe
  • Patent number: 9029186
    Abstract: A method for forming an electrode of a solar battery on an electrode forming face of a semiconductor substrate, comprises: applying a resin containing a conductor material to be the electrode onto an electrode forming region of the electrode forming face; causing a pattern transfer member, on which a reverse pattern obtained by reversing a pattern of the electrode is formed, to face the electrode forming face, and registering the pattern transfer member on a position in which the electrode is to be formed in the electrode forming face; pressing the pattern transfer member against the electrode forming face to transfer the electrode pattern to the resin containing the conductor material; separating the pattern transfer member from the resin containing the conductor material; and baking the electrode pattern transferred to the resin containing the conductor material to form the electrode on the electrode forming face of the substrate.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 12, 2015
    Assignee: Mitsubishi Electric Coporation
    Inventor: Makoto Doi
  • Patent number: 9006955
    Abstract: A power converter comprises a nuclear radiation emitter having a first side and a second side, wherein the nuclear radiation emitter comprises a radiation-emitting radioisotope, a plurality of semiconductor substrates disposed over the first side of the nuclear radiation emitter, wherein each of the plurality of semiconductor substrates comprises a junction for converting nuclear radiation particles to electrical energy, and at least one high-density layer, wherein the high density layer has a density that is higher than a density of the semiconductor substrates, and wherein the high-density layer is disposed between two of the plurality of semiconductor substrates.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: Geoffrey D. Batchelder
  • Patent number: 8987578
    Abstract: According to one embodiment, an energy conversion device comprises a nuclear battery, a light source coupled to the nuclear battery and operable to receive electric energy from the nuclear battery and radiate electromagnetic energy, and a photocell operable to receive the radiated electromagnetic energy and convert the received electromagnetic energy into electric energy. The nuclear battery comprises a radioactive substance and a collector operable to receive particles emitted by the radioactive substance.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: March 24, 2015
    Assignee: Raytheon Company
    Inventors: Gary A. Frazier, Timothy J. Imholt, Alexander F. St. Claire
  • Patent number: 8987039
    Abstract: A process is provided for making a photovoltaic device comprising a silicon substrate comprising a p-n junction, the process comprising the steps of: forming an amorphous silicon carbide antireflective coating over at least one surface of the silicon substrate by chemical vapor deposition of a composition comprising a precursor selected from the group consisting of an organosilane, an aminosilane, and mixtures thereof, wherein the amorphous silicon carbide antireflective coating is a film represented by the formula SivCxNuHyFz, wherein v+x+u+y+z=100%, v is from 1 to 35 atomic %, x is from 5 to 80 atomic %, u is from 0 to 50 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: March 24, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Patrick Timothy Hurley, Robert Gordon Ridgeway, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Andrew David Johnson
  • Patent number: 8981207
    Abstract: A photovoltaic (PV) device having a quantum dot sensitized interface includes a first conductor layer and a second conductor layer. At least one of the conductor layers is transparent to solar radiation. A quantum dot (nanoparticle) sensitized photo-harvesting interface comprises a photo-absorber layer, a quantum dot layer and a buffer layer, placed between the two conductors. The absorber layer is a p-type material and the buffer layer is an n-type material. The quantum dot layer has a tunable bandgap to cover infrared (IR), visible light and ultraviolet (UV) bands of solar spectrum.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: March 17, 2015
    Assignee: Magnolia Solar, Inc.
    Inventors: Gopal G. Pethuraja, Roger E. Welser, Ashok K. Sood
  • Patent number: 8975801
    Abstract: Thermionic solar converter with a linear arrangement of the components, suitable for the direct conversion of solar energy into electrical energy and the combined generation of heat and energy, in the form of an elongated transparent vacuum tube comprising: a cathode (5) and at least one anode (6), said cathode and anode being arranged longitudinally alongside each other along the tube: grid electrodes (10, 11, 13, 14, 15, 16) for generating electric fields; means (18) for directly cooling the at least one anode; means (7) for electrically connecting the electrodes from the inside to the outside; an optical access window (4) along the surface area of the tube; wherein: the cathode is made of conductive refractory material, is suspended centrally inside the tube with an elongated form and forms the element for capturing the solar energy, on which the sunlight is directly focused in order to perform the thermionic conversion, without any intermediate heat transfer means; the electrical connection means form a l
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 10, 2015
    Assignee: Consiglio Nazionale Delle Richerche
    Inventor: Massimo Adriani
  • Publication number: 20140366927
    Abstract: Provided is an energy harvesting device, including a solar cell including at least one active layer for receiving a first range of electromagnetic frequencies, at least one layer including antenna structures for receiving RF energy and formed on a first side of the solar cell, and at least one semiconductor for absorbing IR energy, and formed on a second side of the solar cell opposite the first side.
    Type: Application
    Filed: January 23, 2013
    Publication date: December 18, 2014
    Inventors: Olga A. Lavrova, Christos G. Christodoulou, Sang M. Han, Ganesh Balakrishnan
  • Patent number: 8859883
    Abstract: A photovoltaic power generation system includes a plurality of power generation panels and a power conditioner. The power generation panels and a radiation source are placed in a solar cell storage room buried typically in the ground. The radiation source includes radioactive waste generated in reprocessing of spent nuclear fuel. Each power generation panel has a phosphor member and a moderator member, which are disposed in that order on solar cells placed on a board. Radiation (for example, a gamma ray) emitted from the radiation source is injected on the power generation panel and is moderated by the moderator member. When the gamma ray with the reduced energy (below 100 keV) is injected on the phosphor member, it emits visible light. When the visible light is injected on the solar cells, electric power is generated.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 14, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Shinkai, Makio Uchida, Ayako Kumasaka, Jun'ichi Hirota
  • Patent number: 8853528
    Abstract: A radio frequency transparent photovoltaic cell includes a back contact layer formed of an electrically conductive material, at least one aperture formed in the back contact layer, and at least one photovoltaic cell section disposed on the back contact layer. An airship includes one or more radio frequency antennas disposed in an interior of the airship. One or more radio frequency transparent photovoltaic cells are disposed on an outer surface of the airship.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: October 7, 2014
    Assignee: Raytheon Company
    Inventors: Daniel F. Sievenpiper, Michael Wechsberg, Fangchou Yang
  • Patent number: 8845932
    Abstract: The present invention is directed to an electroconductive thick film paste composition comprising electrically conductive Ag, a second electrically conductive metal selected from the group consisting of Ni, Al and mixtures thereof and a Pb-free bismuth-tellurium-oxide all dispersed in an organic medium. The present invention is further directed to an electrode formed from the thick film paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: September 30, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kenneth Warren Hang, Yueli Wang
  • Patent number: 8841161
    Abstract: The invention provides for a semiconductor wafer with a metal support element suitable for the formation of a flexible or sag tolerant photovoltaic cell. A method for forming a photovoltaic cell may comprise providing a semiconductor wafer have a thickness greater than 150 ?m, the wafer having a first surface and a second surface opposite the first and etching the semiconductor wafer a first time so that the first etching reduces the thickness of the semiconductor wafer to less than 150 ?m. After the wafer has been etched a first time, a metal support element may be constructed on or over the first surface; and a photovoltaic cell may be fabricated, wherein the semiconductor wafer comprises the base of the photovoltaic cell.
    Type: Grant
    Filed: February 5, 2012
    Date of Patent: September 23, 2014
    Assignee: GTAT.Corporation
    Inventors: Venkatesan Murali, Gopal Prabhu, Thomas Edward Dinan, Jr., Orion Leland
  • Publication number: 20140261644
    Abstract: A method and device for maintaining a low temperature of a cold-side emitter for improving the efficiency of a sub-micron gap thermophotovoltaic cell structure. A thermophotovoltaic cell structure may comprise multiple layers compressed together by a force mechanism so that the sub-micron gap dimension is relatively constant although the layer boundaries may not be substantially flat compared to the relatively constant sub-micron dimension. The layered structure includes a hot side thermal emitter having a surface separated from a photovoltaic cell surface by a sub-micron gap having a dimension maintained by spacers. The surface of the photovoltaic cell opposite the sub-micron gap is compressibly positioned against a surface of microchannel heat sink and the surface of the microchannel heat sink opposite the photovoltaic cell is compressibly positioned against a flat metal plate layer and a compressible layer.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: MTPV POWER CORPORATION
    Inventor: Eric Brown