With Post-nitriding Heat Or Quenching Patents (Class 148/232)
  • Patent number: 11644795
    Abstract: A watch component includes an austenized ferritic stainless steel including a base including a ferrite phase, a surface layer formed on a surface of the base, the surface layer including an austenized phase, and a mixed layer formed between the base and the surface layer, the mixed layer being a layer in which the ferrite phase and the austenized phase are mixed. In a cross section taken along a depth direction from the surface, a thickness of the mixed layer is 45% or less of a thickness of the surface layer.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 9, 2023
    Inventor: Koki Takasawa
  • Patent number: 10748687
    Abstract: A method of forming a component having a variation in saturation magnetization is presented. The method includes selectively diffusing nitrogen into a metallic component of a masked metallic component by exposing the masked metallic component to a nitrogen-rich atmosphere. The masked metallic component includes a patterned oxide layer formed on a surface of the metallic component, and the patterned oxide layer includes an oxide of a metal present in the metallic component. A related component is also presented.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Wanming Zhang, Min Zou, Francis Johnson
  • Patent number: 10071406
    Abstract: In a steel sheet pile according to the present invention, a carbon equivalent CEN is 0.260 to 0.500, a structure includes a ferrite, a pearlite, a Widmanstätten ferrite, and a precipitate, the precipitate is one or both of Nb carbonitride and V carbonitride, a total number density of the precipitate is 0.10 to 0.30 pieces/?m2, a total area ratio of the ferrite and the pearlite is 70% or more, an area ratio of the Widmanstätten ferrite is 1% or more, an average grain size of the ferrite and the pearlite is 10 to 80 ?m, and a yield strength is 460 MPa or more.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: September 11, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazutoshi Ichikawa, Hidetoshi Ito, Noriaki Onodera
  • Patent number: 9914987
    Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals. A case hardened, corrosion resistant variant has a reduced weight percent of Ni, enabling increased use of Cr, and decreased Co.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 13, 2018
    Assignee: QuesTek Innovations LLC
    Inventors: David R. Snyder, Jiadong Gong, Jason T. Sebastian, James A. Wright, Herng-Jeng Jou, Zechariah Feinberg
  • Publication number: 20150132079
    Abstract: A method for method for solution hardening of a cold deformed workpiece of a passive alloy containing at least 10% chromium, which method includes dissolving at least nitrogen in the workpiece at a temperature T1, which is higher than the solubility temperature for carbide and/or nitride and lower than the melting point of the passive alloy, wherein dissolution of nitrogen at temperature T1 is performed to obtain a diffusion depth in the range of 50 ?m to 5 mm, and cooling the workpiece after the dissolution step at temperature T1 to a temperature which is lower than the temperature at which carbides and/or nitrides form in the passive alloy, wherein the cooling step takes place in an inert gas not containing nitrogen. Further, a member, such as a lock washer for securing bolts or nuts prepared using the method.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 14, 2015
    Inventors: Thomas Lundin Christiansen, Thomas Strabo Hummelshoj, Marcel A.J. Somers
  • Patent number: 8961711
    Abstract: A method and apparatus for nitriding of highly-alloyed metal article is disclosed herein. In one embodiment, the method and apparatus uses at least one nitrogen source gas such as nitrogen and/or ammonia in an oxygen-free nitriding gas atmosphere, with small additions of one or more hydrocarbons. In this or other embodiments, the method and apparatus described herein is applicable to metal articles comprising iron, nickel and cobalt based alloys and which tend to form passive oxide films on at least a portion of their surface, heated to and nitrided at a certain temperature without prior surface preparation. The apparatus includes an external gas injector comprising 50-60 Hz AC, high voltage/low-current arc discharge electrodes, activating the nitriding atmosphere stream on its way from source to nitriding furnace.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: February 24, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Zbigniew Zurecki, Xiaolan Wang
  • Patent number: 8920581
    Abstract: Nitriding process of a steel strip is performed. Next, annealing is performed to form a forsterite based glass coating film at a surface of the steel strip. Heating is performed up to 1000° C. or more in a mixed gas atmosphere containing H2 gas and N2 gas, and a rate of N2 gas is 20 volume % or more, next, the atmosphere is switched into H2 gas atmosphere at the temperature of 1000° C. or more and 1100° C. or less, when the annealing is performed. An oxygen potential P (H2O)/P (H2) is set to be 0.05 to 0.3 when the temperature is 850° C. or less during the heating in the mixed gas atmosphere.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 30, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshiaki Natori, Shuichi Yamazaki, Fumiaki Takahashi, Seiki Takebayashi
  • Patent number: 8845825
    Abstract: The present invention provides spring use heat treated steel which is cold coiled, can achieve both sufficient atmospheric strength and coilability, has a tensile strength of 2000 MPa or more, and can improve the performance as a spring by heat treatment after spring fabrication, that is, high strength spring-use heat treated steel characterized by containing, by mass %, C: 0.45 to 0.9%, Si: 1.7 to 3.0%, and Mn: 0.1 to 2.0%, restricting N: to 0.007% or less, having a balance of Fe and unavoidable impurities, and satisfying, in terms of the analyzed value of the extracted residue after heat treatment, [amount of Fe in residue on 0.2 ?m filter/[steel electrolysis amount]×100?1.1.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 30, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masayuki Hashimura, Tatsuro Ochi, Takayuki Kisu, Hiroshi Hagiwara
  • Publication number: 20140197003
    Abstract: A sliding member includes a base material portion formed of steel; a nitrogen diffusion layer with a thickness of 10 ?m to 50 ?m; and a nitrogen compound layer with a thickness of 10 ?m to 50 ?m. The nitrogen compound layer and the nitrogen diffusion layer are formed by performing a first heating process of performing heat treatment on a material formed of steel in an ammonia atmosphere at a temperature of 570° C. to 660° C., a second heating process of performing heat treatment on the material in a non-oxidizing and non-ammonia atmosphere at a temperature of 660° C. to 690° C., the temperature in the second heating process being higher than the temperature in the first heating process, and an oil cooling process of performing oil cooling treatment at an oil temperature of 60° C. to 80° C. subsequently to the second heating process.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Applicants: CNK Co., Ltd., JTEKT Corporation
    Inventors: Hiroyuki ANDO, Junji ANDO, Takuya TSUDA, Shuichi TAKAHASHI, Kiyoyuki HATTORI, Kazuhiro FUKUSHIMA, Tomoyuki NANBA, Hiroshi SHIRAYANAGI
  • Patent number: 8713786
    Abstract: To provide a metal ring excellent in durability by reducing decrease in margin of strength and concentration of tensile stress at its both widthwise end portions and to efficiently realize a production method of the same, a metal ring is formed in an endless band-like body having a nitride layer on its surface portion and constituting part of a metal belt of a belt type continuously variable transmission, the nitride layer being constituted by a first nitride layer portion positioned on an outer circumferential side, a second nitride layer portion positioned on an inner circumferential side, and third nitride layer portions positioned on both widthwise end sides, and the layer thicknesses of the third nitride layer portions being smaller than either one of the layer thicknesses of the first nitride layer portion and the second nitride layer portion.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 6, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Ryo Adomi
  • Publication number: 20140065003
    Abstract: The following specification describes a process for improving the hardness and other mechanical properties of iron and steel Powder Metallurgy (P/M) parts. The first stage of the novel process consists of heating to and holding at a temperature between 590° C. to 720° C. unalloyed or low alloyed P/M parts in an atmosphere containing a Nitrogen donor such as Ammonia in either batch or continuous furnaces. The concentration of ammonia during the first stage is maintained between 3% to 15%. The second stage of the inventive process is an ‘aging’ process which may be conducted either as an in-line process or as a stand-alone independent process that involves the heating of P/M parts that have fully or partially cooled after the first stage to a temperature between 180° C. and 660° C. in an atmosphere of plain air or Nitrogen.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Inventor: Gopinath Narasimhan
  • Publication number: 20130302109
    Abstract: The invention relates to a screw having a head, an adjoining retaining section and a functional tip for use as a self-tapping screw. The functional tip is of greater hardness than the retaining section. The entire screw is made of hardened low-alloy carbon steel.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 14, 2013
    Applicant: EJOT GmbH & Co. KG
    Inventor: Wilfried Pinzl
  • Patent number: 8479396
    Abstract: A method for hardening running surfaces of roller bearing components, in particular outer bearing rings. In order to provide the edge area (functional layer) of the roller bearing components with a deep layer which is particularly hard and resistant to corrosion, the roller bearing component undergoes nitration for a long period of time at a temperature of between 450 and 650° C. for at least 25 hours. During treatment no carburizing and subsequently no quenching takes place.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: July 9, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Edgar Streit, Oskar Beer
  • Patent number: 8303168
    Abstract: A device has a magnetically shielded component that is magnetically shielded from an external magnetic field, and a housing. The housing is made from a ferritic stainless steel that has an austenitized surface layer rendered on the surface, and an internal layer portion having an internal ferrite phase that functions as a magnetic shield for the magnetically shielded component.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: November 6, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Koki Takasawa
  • Publication number: 20120118435
    Abstract: A method and apparatus for nitriding of highly-alloyed metal article is disclosed herein. In one embodiment, the method and apparatus uses at least one nitrogen source gas such as nitrogen and/or ammonia in an oxygen-free nitriding gas atmosphere, with small additions of one or more hydrocarbons. In this or other embodiments, the method and apparatus described herein is applicable to metal articles comprising iron, nickel and cobalt based alloys and which tend to form passive oxide films on at least a portion of their surface, heated to and nitrided at a certain temperature without prior surface preparation. The apparatus includes an external gas injector comprising 50-60 Hz AC, high voltage/low-current arc discharge electrodes, activating the nitriding atmosphere stream on its way from source to nitriding furnace.
    Type: Application
    Filed: May 18, 2011
    Publication date: May 17, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Zbigniew Zurecki, Xiaolan Wang
  • Publication number: 20120118434
    Abstract: A process for duplex heat treatment of combined nitriding treatment and induction quenching treatment on an iron and steel material includes a chemical conversion treatment step for forming a chemical conversion film on a nitrogen compound layer formed on the iron and steel material by the nitriding treatment, after the nitriding treatment and before the induction quenching treatment. A compound layer formed on a surface of an iron and steel material by nitriding treatment is prevented from being oxidized by induction quenching, so that unevenness in film thickness between different portions of an oxidization-inhibiting film does not easily occur, with the result that a nitrogen-containing compound layer obtained after high-frequency heating remain uniformly.
    Type: Application
    Filed: July 28, 2010
    Publication date: May 17, 2012
    Applicant: NIHON PARKERIZING CO., LTD.
    Inventors: Tomoyoshi Konishi, Yoshihiro Ikeda
  • Publication number: 20110209798
    Abstract: Nitriding process of a steel strip is performed. Next, annealing is performed to form a forsterite based glass coating film at a surface of the steel strip. Heating is performed up to 1000° C. or more in a mixed gas atmosphere containing H2 gas and N2 gas, and a rate of N2 gas is 20 volume % or more, next, the atmosphere is switched into H2 gas atmosphere at the temperature of 1000° C. or more and 1100° C. or less, when the annealing is performed. An oxygen potential P (H2O)/P (H2) is set to be 0.05 to 0.3 when the temperature is 850° C. or less during the heating in the mixed gas atmosphere.
    Type: Application
    Filed: September 30, 2009
    Publication date: September 1, 2011
    Inventors: Yoshiaki Natori, Shuichi Yamazaki, Fumiaki Takahashi, Seiki Takebayashi
  • Patent number: 7875128
    Abstract: A Ni-free stainless steel product excellent in workability and corrosion resistance and a method for manufacturing such stainless steel product. A ferritic stainless steel product containing 18 to 24% by mass of Cr and 0 to 4% by mass of Mo is brought into contact with an inert gas containing a nitrogen gas at 800 degrees C. or above to subject it to nitrogen absorption treatment so that the product is austenitized partially or wholly to obtain such nickel-free product.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 25, 2011
    Assignees: National Institute for Materials Science, Myodo Metal Co., Ltd.
    Inventors: Daisuke Kuroda, Shinichi Yanadori, Mitsuo Watanabe, Kazuma Miura
  • Patent number: 7828910
    Abstract: High toughness, high strength alloys are thermochemically processed by performing concurrent bulk alloy heat treatment and surface engineering processing. The concurrent steps can include high temperature solutionizing together with carburizing and tempering together with nitriding.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 9, 2010
    Assignee: United Technologies Corporation
    Inventors: Raymond C. Benn, Clark V. Cooper
  • Patent number: 7641742
    Abstract: There is provided a rolling bearing which has long life against rolling fatigue and exhibits no decrease in fracture strength and no increase in rate of dimensional change over time, even if the part size thereof is large, and which can obtain higher strength by crystal grains being further refined, if it has a size equal to or smaller than a prescribed size. The rolling bearing according to the present invention includes a race and a rolling element. At least one member of the race and the rolling element has a nitrogen-enriched layer in its surface layer, and a surface layer portion contains austenite crystal grains having a grain size number of at least 11. The member has hardenability allowing a position exhibiting HRC50 in a hardenability test method for steel to be apart from a quenched end by a distance of at least 12.7 mm ( 8/16 inch).
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: January 5, 2010
    Assignee: NTN Corporation
    Inventors: Chikara Ohki, Kohei Fujita
  • Patent number: 7559995
    Abstract: A process for heat treating metal workpieces contains with respect to an efficient process control the following successive operations following directly one after the other: a heating phase; an enrichment phase; a first cooling phase; a bonding phase; a second cooling phase; and a concluding quenching phase. Workpieces processed by a method of this type are distinguished by a comparatively great fatigue limit and fatigue strength with simultaneous high resistance to wear and tear.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: July 14, 2009
    Assignee: Ipsen International GmbH
    Inventor: Bernd Edenhofer
  • Patent number: 7108756
    Abstract: A method of producing a workpiece of a heat-resistant steel, such as hot forming tool steel, where the workpiece may be hardened and depassivated after mechanical machining and electrochemical treatment. The hardening including a reduction step, so that no depassivation need be performed by pickling, for example, before nitriding. The result of the hardening treatment is a favorable surface condition for stepwise nitriding.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: September 19, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Nils Lippmann, Wolfgang Lerche
  • Patent number: 6982120
    Abstract: The invention relates to components made of steel, more particularly outer joint parts and inner joint parts of constant velocity joints, and to a process of heat treating such components made of steel. The heat treatment operation includes the process stages of nitriding, induction surface layer hardening and tempering, which processes follow one another. As a result of the nitriding operation, the joint parts are provided with a surface layer (15) including nitrides and a diffusion layer (18) positioned thereunderneath. The subsequent induction hardening process causes the diffusion layer (18) to be hardened, so that it comprises good supporting characteristics for supporting the surface layer (15) positioned above same.
    Type: Grant
    Filed: July 20, 2002
    Date of Patent: January 3, 2006
    Assignee: GKN Driveline Duetschland GmbH
    Inventor: Manfred Schuster
  • Patent number: 6946038
    Abstract: A weldable structural steel product having fine complex precipitates of TiN and MnS is provided which contains, in terms of percent by weight, 0.03 to 0.17% C, 0.01 to 0.05% Si, 1.0 to 2.5% Mn, 0.05 to 0.2% Ti, 0.0005 to 0.1% Al, 0.008 to 0.030% N, 0.0003 to 0.01% B, 0.001 to 0.2% W, at most 0.03% P, 0.003 to 0.05% S, at most 0.005% O, and balance Fe and incidental impurities while satisfying conditions of 1.2?Ti/N?2.5, 10?N/B?40, 2.5?Al/N?7, 6.5?(Ti+2Al+4B)/N?14, and 220?Mn/S?400. The steel has a microstructure consisting essentially of a complex structure of ferrite and pearlite having a grain size of 20 ?m or less.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: September 20, 2005
    Assignee: Posco
    Inventors: Hong-Chul Jeong, Hae-Chang Choi, Wung-Yong Choo
  • Patent number: 6884049
    Abstract: A screw compressor of which a female rotor is driven by a motor, and of which a male rotor is driven by the female rotor. The male or female rotor is composed of a member which is made of cast iron and is subjected to surface hardening treatment or heat treatment including quenching. The surface hardening treatment may include sulphonitriding or nitiriding treatment. In the case of subjecting the cast iron to the heat treatment, austemper treatment is applied.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: April 26, 2005
    Assignee: Hitachi, Ltd.,
    Inventors: Takeshi Hida, Masayuki Urashin, Shigekazu Nozawa, Hiroki Ohsumimoto, Hirotaka Kameya, Atsushi Watanabe
  • Publication number: 20040040631
    Abstract: A piston ring having improved scuffing resistance, cracking resistance and fatigue resistance, consists of a high-chromium martensitic stainless steel and a sliding nitriding layer formed on the surface of said steel. The stainless steel consists of C: 0.3 to 1.0%; Cr: 14.0 to 21.0%, N: 0.05 to 0.50%, at least one of Mo, V, W and Nb: 0.03 to 3.0% in total, Si: 0.1 to 1.0%, Mn 0.1 to 1.0%, P: 0.05% or less, S: 0.05% or less, the balance being Fe and unavoidable impurities. The sliding nitriding layer comprises on its surface hard particles mainly consisting of nitrides in a range of from 0.2 to 2.0 &mgr;m of average particle size, 7 &mgr;m or less of the longest diameter, and from 5 to 30% in area ratio.
    Type: Application
    Filed: June 17, 2003
    Publication date: March 4, 2004
    Inventors: Junya Takahashi, Toru Onuki, Shigeo Inoue, Mitsutaka Sasakura
  • Patent number: 6579384
    Abstract: A ball for use in a constant-velocity joint, which is adapted to be interposed between an inner race and an outer race for transmitting rotational power therebetween, is produced by nitriding a surface of a ball made of bearing steel or a material equivalent thereto, and processing the nitrided ball for increased resistance to a crushing load. The nitrided ball is processed for increased resistance to a crushing load by tempering the ball at a temperature ranging from 180 to 230° C. The surface hardness of the ball should preferably be adjusted in the range from HRC 60 to 64.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: June 17, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoshimi Usui, Kazuto Fukuda
  • Patent number: 6562151
    Abstract: In a rolling shaft relatively rolling with respect to rolling members provided in a radial needle roller bearing, the rolling shaft is composed of a steel containing 0.5 to 1.2 wt % carbon and is provided with a surface layer 3a containing 0.05 to 0.4 wt % nitrogen, having Vickers hardness being Hv650 or more through a high frequency quenching performed thereto and a residual austenite being 15 to 40 vol %, and a core portion of the rolling shaft contains 0 vol % of the residual austenite.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: May 13, 2003
    Assignee: NSK Ltd.
    Inventors: Kiyoshi Hirakawa, Hiroshi Fukushima
  • Patent number: 6451137
    Abstract: A method for quenching steel parts having undergone a low-pressure thermal processing, which consists of submitting the parts to a high-pressure air flow.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: September 17, 2002
    Assignee: Etudes et Constructions Mecaniques
    Inventor: Laurent Pelissier
  • Patent number: 6447619
    Abstract: High surface pressure resistant steel parts and their producing methods are disclosed. These steel parts are useful as gears, cams, bearings and similar high-strength compact steel articles which are required to have wear resistance and strength to withstand fatigue in rolling or rolling-slipping applications. In a steel part formed according to the invention, a fine nitride and/or carbonitride having at least an average grain size of 0.3 &mgr;m or less is dispersed in the contact surface structure; a multi phase structure composed of martensite, which is divided into extremely fine pieces, forming a disordered shape, by the nitride and/or carbonitride, is formed; and a carbide having a grain size of 3 &mgr;m or less is dispersed to increase the hardness of the surface.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: September 10, 2002
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Naoji Hamasaka
  • Patent number: 6406557
    Abstract: During the treatment of electrical steel, a careful combination of heat treatment of the slab with a specific primary recrystallization and nitriding treatment allows for control of the distribution, quantity and dimensions of precipitates in order to obtain a homogeneous precipitation of nitrogen compounds by direct reaction of the absorbed nitrogen with aluminum during the nitriding step.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: June 18, 2002
    Assignee: Acciai Speciali Terni S.p.A.
    Inventors: Stefano Fortunati, Stefano Cicale′, Giuseppe Abbruzzese, Susanna Matera
  • Publication number: 20020062882
    Abstract: A ball for use in a constant-velocity joint, which is adapted to be interposed between an inner race and an outer race for transmitting rotational power therebetween, is produced by nitriding a surface of a ball made of bearing steel or a material equivalent thereto, and processing the nitrided ball for increased resistance to a crushing load. The nitrided ball is processed for increased resistance to a crushing load by tempering the ball at a temperature ranging from 180 to 230° C. The surface hardness of the ball should preferably be adjusted in the range from HRC 60 to 64.
    Type: Application
    Filed: October 12, 2001
    Publication date: May 30, 2002
    Inventors: Yoshimi Usui, Kazuto Fukuda
  • Patent number: 6328818
    Abstract: The present invention features nitriding-treating the ferrous material to form a nitrided layer composed of at least one of iron nitride and iron carbide nitride on the surface thereof, and heating to maintain the ferrous material at a temperature of 500 to 700° C. in a treating agent (A), whereby chromium is diffused into the nitrided layer to form a compound layer composed of at least one of chromium nitride and chromium carbide nitride, wherein the treating agent (A) contains the following (a) as a main component and containing the following (b) and (c): (a) at least one of alkali metal chloride and alkaline earth metal chloride; (b) glass having silicone oxide as a main component; and (c) chromium.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: December 11, 2001
    Assignee: Maizuru Corporation
    Inventors: Isao Miyagi, Wataru Taniguchi
  • Patent number: 6325867
    Abstract: A rolling bearing contains no more than 0.3 wt % of nitrogen in a grinding allowance portion after carbonitriding and hardening heat treatments, contains from 0.9 wt % (inclusive) up to 1.6 wt % (inclusive) of carbon and from 0.05 wt % (inclusive) up to 0.3 wt % (inclusive) of nitrogen in the surface layer of the finished part and has a nitrogen gradient of no more than 0.5 wt %/mm in the surface layer of the finished part. The rolling bearings are improved in grinding efficiency and which have their rolling life extended significantly.
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: December 4, 2001
    Assignee: NSK Ltd.
    Inventors: Shigeru Okita, Yasuo Utsumi, Akihiro Kiuchi
  • Patent number: 6309475
    Abstract: For easily producing a toothed material for high-strength gears etc. with a plastic working technique, deformation resistance occurring in plastic working is reduced and stable high precision plastic working is enabled at lower temperatures. One or more types of heat treatment selected from carburization, carbonitriding and nitriding and a hardening process are applied to an alloy steel material containing: iron as a main component; at least 1.0 to 4.5 wt % Si; 0.35 wt % or less C; and balance Fe and unavoidable impurities, whereby a rolling element is obtained which has a surface layer mainly composed of martensite containing no &agr;-Fe phase and of residual austenite and an inner structure cooled from an (&agr;+&ggr;)-Fe two phase region.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: October 30, 2001
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Chikara Nakao
  • Patent number: 6284062
    Abstract: A member used in contact with a hot dip galvanizing bath, such as a sinker roll, a support roll or a bearing, is produced by nitriding stainless steel to form a nitride layer and a nitrogen-diffused layer on the surface thereof. The member used in contact with a hot dip galvanizing bath is formed on its surface with the nitride layer by nitriding it in a salt bath containing a cyanide, a cyanate, a carbonate and the like or by heat-treating it in an atmosphere containing ammonium or nitrogen.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: September 4, 2001
    Assignee: Taiyo Steel Co., Ltd.
    Inventors: Takeo Nagashima, Eizo Sakuma, Katsuaki Takano
  • Patent number: 6235128
    Abstract: The present invention is a unique sequential process for treating carbon and alloy steels to improve resistance to tribological stresses while reducing conventional processing time required to obtain articles having a similar hardness. This process comprises carburizing or carbonitriding the article, tempering the carburized or carbonitrided article, net-shaping (machining) the tempered article, and plasma (ion) nitriding the tempered article for a significantly reduced period of time versus conventional plasma (ion) nitriding.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: May 22, 2001
    Inventors: John C. Chang, John Joseph Krieg, Richard Blanco Roe, Steve Stormzand, Tony Wu, Lynn Lu, Jeffrey W. Kunitzer
  • Patent number: 6197125
    Abstract: A method for improving the corrosion resistance, increasing the hardness, providing superior ductility, and reducing surface-cracking of a diffusion coating by nitriding and heating-treating the diffusion coating is disclosed. The nitriding and heat-treating may occur subsequently or simultaneously. Further, the disclosed method may be practiced subsequent to or incorporated as an intergral part of any known diffusion coating process which utilizes a heating step in a furnace having a cover gas.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: March 6, 2001
    Assignee: McDermott Technology, Inc.
    Inventor: Steven C. Kung
  • Patent number: 5669988
    Abstract: Object: Prevention of generation of press marks as well as increase of wear resistance at a corrugation tip portion and thereby providing a corrugating roll having a much improved life.Construction: A manufacturing method of a corrugating roll useful for forming a wave-shaped core paper of corrugated board, characterized in that the corrugating roll is worked to form tooth-shaped corrugation portions on the outer circumference and applying a nitriding treatment or a carbo-nitriding treatment, and then applying to the corrugation portion of the corrugating roll a quenching and tempering treatment, and further forming a wear resistant coating on the surface of the corrugation portion.
    Type: Grant
    Filed: August 9, 1995
    Date of Patent: September 23, 1997
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Hiroyuki Takenaka, Yorishige Tosaka, Yasunobu Sahara, Yoshiaki Maruyama, Hidenori Yamane, Akio Izuwa
  • Patent number: 5667605
    Abstract: The invention relates to a method for fabricating a piece of structural steel that includes thermal or thermomechanical treatment steps that could ordinarily lower the fatigue strength and shock and impact resistance of the steel piece. In the method of the invention a workpiece of microalloy steel is fabricated containing the following elements in the mounts indicated and having a bainitic structure:______________________________________ C 0.05-0.5 wt. % Mo 0-0.5 wt. % Mn 1-2 wt. % V 0-0.30 wt. % Si 0.05-1.5 wt. % B 0-0.010 wt. % Cr 0.1-1 wt. % Ti 0-0.030 wt. % Nb 0-0.1 wt. % ______________________________________The workpiece is then subjected to a treatment that includes a heating stage wherein at least a part of said piece is subjected to a temperature in the range 500.degree.-900.degree. C., followed by a cooling stage in which at least the part of the piece is subjected to cooling at a rate greater than 500.degree. C./hr.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: September 16, 1997
    Assignee: Ascometal
    Inventors: Jacques Bellus, Claude Pichard, Pierre Jolly, Daniel Forest, Daniel Robat
  • Patent number: 5650022
    Abstract: A method of nitriding steel which comprises reacting the steel surface with nitrogen so as to form a hard nitrided layer, and, prior to nitriding, holding steel under a gas atmosphere containing fluorine compound gas or fluorine gas and also containing air of 0.5 to 20 volume % of the total or oxygen gas of 0.1 to 4 volume % of the total with heating, whereby occurrence of uneven nitriding is prevented and at the same time savings in consumption of expensive fluorine- or fluoride-containing gas can be realized.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: July 22, 1997
    Assignee: Daido Hoxan Inc.
    Inventors: Kenzo Kitano, Akio Hashigami, Takashi Muraoka
  • Patent number: 5503687
    Abstract: Enrichment of surface and near surface regions of stainless steel components that nearly have their final shape with dissolved nitrogen at temperatures between 1000.degree. and 1200.degree. C. is provided. In this way, ferritic and martensitic structure portions in the surface zone are changed to austenite. By means of mixed crystal hardening, nitrogen increases the strength of the surface layer that is formed and that at the same time is characterized by the degree of toughness of the austenitic structure. The combination of strength and toughness leads to a significantly increased resistance to wear, especially wear due to impact, cavitation, and impingement of drops. In contrast to carbon, the resistance to corrosion of the surface layer is not adversely affected when nitrogen diffuses in, but rather is even further increased. The thermal treatment process is suitable for increasing the service life of rust proof components in flow-producing mechanisms.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: April 2, 1996
    Inventor: Hans Berns
  • Patent number: 5298091
    Abstract: A method is taught for protecting fuel contacting surfaces of a gas turbine engine from carbon deposition by heating the element in a nitrogen containing atmosphere for sufficient time to cause penetration and absorption of nitrogen into the grain boundaries of the alloy surface, which acts as a barrier between the hydrocarbon fuel and the catalytic elements in the surfaces. The method includes heating at a temperature of 1800-1850 F. for about one hour, cooling to 1525-1575 F. and holding for about four hours, and cooling to a temperature of 1375-1425 F. and holding for about 16 hours.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: March 29, 1994
    Assignee: United Technologies Corporation
    Inventors: William H. Edwards, III, John A. Harris, III, Edward S. Smith
  • Patent number: 5254181
    Abstract: This invention relates to a method for forming a uniform, deep nitride layer on and in steel works at low cost, wherein a steel work is fluorided in heated condition in an atmosphere of a mixed gas composed of fluorine gas and inert gas and, then, nitrided in heated condition in an atmosphere of nitriding gas.
    Type: Grant
    Filed: July 10, 1991
    Date of Patent: October 19, 1993
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Masaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5228929
    Abstract: Disclosed is a process for manufacturing a corrosion resistant iron-alloy, powered metal or sintered carbide component. In a first step, the component is subjected to an initial thermochemical treatment preferably consisting of nitriding, in a closed furnace in order to form onto the surface of the component a nitrogen diffusion zone followed by the superficial layer consisting of .gamma.' and .epsilon. nitride layers. In a second step, an aqueous solution comprising oxygen, carbon, nitrogen and sulfur is introduced into the furnace for a period of time sufficient to allow transformation of the .epsilon. nitride layer into a porous layer of ferrous oxide(s). This process is particularly efficient and permits to produce a superficial porous ferrous oxide layer thicker than 2 .mu.m onto a nitride steel component.
    Type: Grant
    Filed: May 8, 1991
    Date of Patent: July 20, 1993
    Inventors: Wladyslaw Panasiuk, Michel Korwin