Coating During Or After Metal Oxide Formation Patents (Class 148/276)
  • Patent number: 8262809
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 11, 2012
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Publication number: 20120175023
    Abstract: An interconnect structure is provided that has improved electromigration resistance as well as methods of forming such an interconnect structure. The interconnect structure includes a composite M-MOx cap located at least on the upper surface of the Cu-containing material within the at least one opening. The composite M-MOx cap includes an upper region that is composed of the metal having a higher affinity for oxygen than copper and copper oxide and a lower region that is composed of a non-stoichiometric oxide of said metal.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: Son Van Nguyen, Alfred Grill, Thomas J. Haigh, JR., Hosadurga Shobha, Tuan A. Vo
  • Patent number: 8215881
    Abstract: A rotary cutting tool is provided which is less likely to cause chips to get stuck, and which can be manufactured at a low cost. The rotary cutting tool includes a body having a relief surface (6) and a rake face (7) which is connected to the relief surface (6). An oxide film (9) is formed on the rake face (7) by oxidizing the surface of the body, and a hard film (8) is formed on the relief surface (6) and the oxide film (9), The hard film (8) is made of a metal carbide, a metal nitride, a metal carbonitride, or a solid solution thereof.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: July 10, 2012
    Assignee: Sakai Threading Tool Co., Ltd.
    Inventor: Hitoshi Yamaguchi
  • Patent number: 8197613
    Abstract: The present invention relates to methods and compositions for reducing damaging oxidation of metals. In particular, the present invention relates to nanoparticle surface treatments and use of nanoparticle surface treatments to reduce the damaging oxidation and corrosion of stainless steel and other alloy components in oxidating and corrosive conditions.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: June 12, 2012
    Assignee: Material Interface, Inc.
    Inventor: Susan J. Kerber
  • Publication number: 20120125487
    Abstract: A surface treatment method of a magnesium alloy article includes, instead of forming a primer on a magnesium alloy based composite first, directly performing a hairline finish process on the magnesium alloy based composite, to form a hairline structure on a surface of the magnesium alloy based composite, and performing a chemical oxidation process on the magnesium alloy based composite, to form a glossy film covering the hairline structure on the magnesium alloy based composite, thereby forming a magnesium alloy article structure. Alternatively, another chemical oxidation process is performed before the hairline finish process, to form an oxide film on the surface of the magnesium alloy based composite.
    Type: Application
    Filed: September 25, 2011
    Publication date: May 24, 2012
    Applicant: GETAC TECHNOLOGY CORPORATION
    Inventor: Chun-Hsiang CHEN
  • Publication number: 20120118436
    Abstract: The present invention relates to a device comprising a substrate based essentially on nitinol and, arranged thereon at least partially, a covering or a coating based on at least one polyphosphazene derivative having the general formula (I), a process for its production, and the use of the device as an artificial implant, vascular or nonvascular stent, catheter, thrombolectomy or embolectomy catheter, fragmentation spindle or catheter, filter, vascular connector, hernia patch, oral, dental or throat implant or urether.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 17, 2012
    Inventors: Andreas Schüssler, Michael Grunze, Roman Denk
  • Publication number: 20120103475
    Abstract: A method of manufacturing a metal base package having a via structure that can provide via forming technology for a cheap 3D package and form a via having a high aspect ratio of various sizes is provided. The method of manufacturing a metal base package having a via structure includes: preparing a metal substrate; forming an oxidation prevention mask pattern in the prepared metal substrate; forming a metal oxide layer by oxidizing a metal substrate portion that is exposed between the oxidation prevention mask patterns in a predetermined depth; removing the oxidation prevention mask pattern; forming a via forming mask pattern on the metal substrate and the metal oxide layer; forming a via in the metal oxide layer by performing chemical etching; removing the via forming mask pattern; and forming a conducting layer with a conductive material at the inside of the formed via.
    Type: Application
    Filed: April 28, 2010
    Publication date: May 3, 2012
    Applicant: WAVENICS INC.
    Inventor: Kyoung-Min Kim
  • Publication number: 20120073568
    Abstract: Methods for depositing a coating on a metal surface can include heating a metal surface to a temperature not greater than its melting point; while heating the metal surface, applying a vacuum thereto; and while heating the metal surface, releasing the vacuum and backfilling with a first purge gas, where the first purge gas is reactive with the heated metal surface so as to deposit at least one layer of a coating thereon. The present methods can be used to deposit a coating in situ during the fabrication of solar receivers, in which the solar receivers contain an annulus defined by a metal tube as the inner surface and a material that is at least partially transparent to solar radiation as the outer surface.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 29, 2012
    Applicant: APPLIED NANSTRUCTURED SOLUTIONS, LLC.
    Inventors: Matthew M. KAPELANCZYK, Tushar K. Shah
  • Publication number: 20120040132
    Abstract: According to one embodiment, a protective film formed on a component in a plasma treatment apparatus and having a plasma resistance includes a base film formed on the component and having a concave-convex structure, and an upper film formed on the base film to cover the concave-convex structure.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideo ETO, Makoto Saito
  • Publication number: 20110287318
    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, Constantin I. Stefan, Song Han
  • Publication number: 20110277888
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance for a heat transfer component is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin CHUN, Mark A. GREANEY, Thomas BRUNO, Ian A. CODY, Trikur A. RAMANARAYANAN
  • Publication number: 20110259477
    Abstract: A laminated structure by internal oxidation includes an alloy coating layer structured as columnar grains. The alloy coating layer includes a first metal element and a second metal element, wherein the first metal element is oxidized more easily than the second metal element. The surface layer portion of the alloy coating layer has a plurality of oxide layers and a plurality of metal layers stacked alternately with each other. The material of the oxide layers includes the oxide of the first metal element and the material of the metal layers includes the second metal element.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 27, 2011
    Applicant: NATIONAL TAIWAN OCEAN UNIVERSITY
    Inventors: Yung-I Chen, Rong-Tan Huang, Bing-Nan Tsai
  • Publication number: 20110076505
    Abstract: A metallic material is provided that is superior to an iron-based metallic material in all of adhesion, heat resistance, electrical conductivity, and corrosion resistance, and a method of manufacturing the metallic material is also provided. A metallic material is provided that includes an iron-based metallic material and an oxide layer formed on the surface of the iron-based metallic material. The oxide layer includes Fe and at least one kind of metal (A) selected from a group consisting of Zr, Ti, and Hf. There is also provided a method of manufacturing the metallic material.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 31, 2011
    Applicant: Henkel AG & Co., KGaA
    Inventors: Hitoshi Ishii, Yasuhiko Nagashima, Ryosuke Kawagoshi
  • Publication number: 20110076477
    Abstract: The invention relates to a method for the production of a hardened component made of a hardenable steel, wherein the steel strip is exposed to a temperature increase in an oven, and is thus exposed to an oxidizing treatment such that a surface oxide layer is created, and subsequently a coating using a metal or a metal alloy is carried out. The strip is heated and at least partially austenitized for producing an at least partially hardened component, and subsequently cooled and thereby hardened. The invention also relates to a steel strip produced according to said method.
    Type: Application
    Filed: December 18, 2008
    Publication date: March 31, 2011
    Applicant: VOESTALPINE STAHL GMBH
    Inventors: Werner Brandstätter, Siegfried Kolnberger, Thomas Kurz, Martin Peruzzi, Johann Strutzenberger, Thomas Manzenreiter
  • Patent number: 7837806
    Abstract: Articles of manufacture and methods of making and using same concern a container having an internal space and a passivated internal metal surface. The container contains a composition of an acid gas and a balance gas contained within the internal space and in contact with the passivated internal metal surface. The stability of the acid gas concentration over time is enhanced.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: November 23, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Robert Benesch, Malik Haouchine, Tracey Jacksier
  • Patent number: 7832550
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of exposing the metal surface to a silicon-containing passivation material, evacuating the metal surface, exposing the treated surface to a gas composition, having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface, evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration, and exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: November 16, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Robert Benesch, Malik Haouchine
  • Patent number: 7828911
    Abstract: A method for producing coloured layers on zinc, aluminium, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80 ° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 9, 2010
    Assignee: Henkel AG & Co. KGaA
    Inventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
  • Patent number: 7811392
    Abstract: It is an object of the present invention to efficiently suppress radionuclide deposition on a reactor component of nuclear power plant. Radionuclide deposition on the surface of a metallic reactor component of nuclear power plant is suppressed by forming a ferrite film on the component, wherein the film is formed, after decontamination for removing radionuclides contaminants from the component surface is completed and before the plant is started up, by contacting a treatment solution which mixes a first agent containing the iron (II) ions, a second agent for oxidizing the iron (II) ions into the iron (III) ions and a third agent for adjusting pH level of a solution to 5.5 to 9.0 in this order with the reactor component surface.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: October 12, 2010
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Youichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Patent number: 7799150
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of i) exposing the metal surface to a silicon-containing passivation material; ii) evacuating the metal surface; iii) exposing the treated surface to a gas composition having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface; iv) evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration; and v) exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 21, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Robert Benesch
  • Publication number: 20100193081
    Abstract: The invention deals with a process for manufacturing a hot-dip galvannealed steel sheet having a TRIP microstructure, and comprising, by % by weight, 0.01?C?0.22%, 0.50?Mn?2.0%, 0.5<Si?2.0%, 0.005?Al?2.0%, Mo<0.01%, Cr?1.0%, P<0.02%, Ti?0.20%, V?0.40%, Ni?1.0%, Nb?0.20%, the balance of the composition being iron and unavoidable impurities resulting from the smelting, said process comprising the steps consisting in:—oxidizing said steel sheet in order to form a layer of iron oxide on the surface of the steel sheet, and to form an.
    Type: Application
    Filed: June 6, 2008
    Publication date: August 5, 2010
    Applicants: ArcelorMittal France, Nippon Steel Corporation
    Inventors: Jean-Michel Mataigne, Florence Bertrand
  • Publication number: 20100186854
    Abstract: The invention deals with a process for manufacturing a hot-dip galvanized or galvannealed steel sheet having a TRIP microstructure, said process comprising the steps consisting in:—providing a steel sheet whose composition comprises, by weight: 0.01?C?0.22%, 0.50?Mn?2.0%, 0.2?Si?2.0%, 0.005?Al?2.0%, Mo<1.0%, Cr?1.0%, P<0.02%, Ti?0.20%, V?0.40%, Ni?1.0%, Nb?0.20%, the balance of the composition being iron and unavoidable impurities resulting from the smelting,—oxidizing said steel sheet in a direct flame furnace where the atmosphere comprises air and fuel with an air-to-fuel ratio between 0.80 and 0.95, so that a layer of iron oxide having a thickness from 0.05 to 0.2 ?m is formed on the surface of the steel sheet, and an internal oxide of Si and/or Mn and/or Al is formed,—reducing said oxidized steel sheet, at a reduction rate from 0.001 to 0.
    Type: Application
    Filed: June 11, 2008
    Publication date: July 29, 2010
    Applicant: ArcelorMittal France
    Inventors: Florence Bertrand, Didier Huin, Hubert Saint-Raymond
  • Patent number: 7673541
    Abstract: Colored razor blades are provided. Methods for manufacturing such blades are also provided, including methods involving depositing an oxide coating prior to heat treatment of the blade material and heat treating under conditions selected to enhance the color of the coating.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: March 9, 2010
    Assignee: The Gillette Company
    Inventors: Kenneth J. Skrobis, Alfred Porcaro, Ronald J. Swanson, Eric Liu
  • Publication number: 20090309481
    Abstract: The present invention relates to methods for fabricating a cathode emitter and a zinc oxide anode for a field emission device to improve the adhesion between emitters and a substrate and enhance the luminous efficiency of a zinc oxide thin film so that the disclosed methods can be applied in displays and lamps. In comparison to a conventional method for fabricating a field emission device, the method according to the present invention can reduce the cost and time for manufacture and is suitable for fabricating big-sized products. In addition, the present invention further discloses a field emission device comprising a zinc oxide/nano carbon material cathode, a zinc oxide anode and a spacer.
    Type: Application
    Filed: February 18, 2009
    Publication date: December 17, 2009
    Applicant: National Defense University
    Inventors: Yu-Hsien CHOU, Yuh SUNG, Ming-Der GER, Yih-Ming LIU, Chun-Wei KUO, Jun-Yu YEH, Yun-Chih FAN
  • Patent number: 7572345
    Abstract: Substrates comprising a surface comprising chromium, said surface being adapted to exhibit reduced coefficient of friction and/or increased hardness.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: August 11, 2009
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, Kevin C. Walter
  • Patent number: 7537663
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: May 26, 2009
    Assignee: University of Dayton
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Patent number: 7445679
    Abstract: Methods to form metal oxide material are described. In one process, an oxide film on a metal material is diffused throughout the metal material to form a preferred uniform metal oxide material. The present invention further relates to products formed by the process. Also, the present invention relates to the use of the products in capacitor anodes and other applications.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: November 4, 2008
    Assignee: Cabot Corporation
    Inventors: John W. Koenitzer, Yongjian Qiu
  • Patent number: 7132018
    Abstract: Disclosed herein is an insulating material between adjacent metal layers of a soft magnetic core, and a process for forming this insulating material. The insulating material is composed of the native metal oxides of the metallic core material.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: November 7, 2006
    Assignee: Magnetic Metals Corporation
    Inventors: Richard Wood, Richard Lathlaen
  • Patent number: 7077919
    Abstract: Disclosed herein is an insulating material between adjacent metal layers of a soft magnetic core, and a process for forming this insulating material. The insulating material is composed of the native metal oxides of the metallic core material.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: July 18, 2006
    Assignee: Magnetic Metals Corporation
    Inventors: Richard Wood, Richard Lathlaen, William C. Beckham
  • Patent number: 6887321
    Abstract: A metal substrate is anodized in a phosphoric acid anodizing solution. The anodized metal substrate is thereafter contacted with a hexavalent chromium free, trivalent chromium containing acid solution to coat the anodized metal substrate. The coated anodized metal substrate can be adhesively bonded to another such treated metal substrate to form a composite article. The resulting article exhibits excellent bonding and corrosion properties.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: May 3, 2005
    Assignee: United Technologies Corporation
    Inventors: Joseph J. Parkos, Jr., Gary M. Lomasney, John W. Putnam, Mark R. Jaworowski
  • Patent number: 6881452
    Abstract: A thermal barrier coating system having an improved life as a result of a preoxidation treatment applied to a single phase platinum aluminide bond coat. After coating the substrate to form a diffusion platinum aluminum bond coat, the surface finish of the bond coat was grit blasted with an inert grit of preselected size at a preselected pressure to achieve a predetermined surface finish. After the grit blasting, but before application of the ceramic top coat of yttria-stabilized zirconia (YSZ), the coating was preoxidized to form a thin alumina scale by heat treating the diffusion platinum aluminide bond coat at an elevated temperature at a preselected partial pressure of oxygen.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: April 19, 2005
    Assignee: General Electric Company
    Inventor: Irene Spitsberg
  • Patent number: 6833197
    Abstract: A method of case hardening an article formed of titanium, zirconium or an alloy of titanium and/or zirconium is disclosed. First, the article is heat-treated in an oxidizing atmosphere at a temperature in the range of 700 to 1000° C. so as to form an oxide layer on the article. Then, the article is further heat-treated in a vacuum or in a neutral or inert atmosphere at a temperature in the range of 700 to 1000° C. so as to cause oxygen from the oxide layer to diffuse into the article.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 21, 2004
    Assignee: The University of Birmingham
    Inventors: Hanshan Dong, Peter Harlow Morton, Andrew Bloyce, Thomas Bell
  • Patent number: 6752881
    Abstract: In a metalliferous storage material for hydrogen a metal oxide is provided in or on the surface of the metalliferous materialas a catalyst for the hydrogenation or dehydrogenation of the metalliferous storage material.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: June 22, 2004
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Thomas Klassen, Rüdiger Bormann, Wolfgang Oelerich, Volker Güther, Andreas Otto
  • Patent number: 6753095
    Abstract: The aim of the present invention is to provide a phosphate treated zinc coated steel sheet with excellent workability. A steel sheet coated with a zinc based alloy has a phosphate treated coating on the surface thereof. The phosphate treated coating comprises mainly granulated crystals, specifically, crystals in which the average ratio of the major axis to the minor axis is not less than 1.00 and not more than 2.90. Moreover, the method for producing the phosphate treated coating uses a phosphate treatment solution in which the amount of Mg ions is ≧6 g/l and the amount of Zn ions is ≧0.5 g/l, or a phosphate treatment solution in which the amount of Mg ions is ≧10 g/l, the amount of Zn ions is 0≦ and <0.5 g/l, and the amount of nitric acid ions is ≧40 g/l.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: June 22, 2004
    Assignee: Nippon Steel Corporation
    Inventors: Hidetoshi Shindou, Kiyokazu Isizuka, Keiichi Sanada, Kazuo Takahashi, Teruaki Yamada, Daisuke Ito, Shigekazu Ooba
  • Patent number: 6743303
    Abstract: A method for treating a micro-roughened metal surface to improve bonding between the metal surface and a polymer material. The method involves post-treating the micro-roughened conversion coated metal surface with an aqueous organo-silicon wetting composition after having formed the micro-roughened conversion coated metal surface with an adhesion promotion composition. Suitable organo-silicons include organosilanes, organosiloxanes, organosilizanes and the like. The method can be employed in the circuit board industry to improve bonding between layers in multilayer circuit boards.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 1, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Joseph R. Montano, John P. Cahalen
  • Patent number: 6740420
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu and then directing a high energy beam onto the substrate to cause an intermixing of the deposited material with the native oxide of the substrate metal or metal alloy. The native oxide layer is changed from electrically insulating to electrically conductive. The step of depositing can be carried out, for example, by ion beam assisted deposition, electron beam deposition, chemical vapor deposition, physical vapor deposition, plasma assisted, low pressure plasma and plasma spray deposition and the like.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: May 25, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Barry Muffoletto, Ashish Shah, Donald H. Stephenson
  • Publication number: 20040074568
    Abstract: A mediator molecule is immobilized on the surface of a metallic or ceramic implant material. An anchor molecule (e.g., dialdehyde or cyanogen bromide) having a functional group that covalently binds the mediator molecule is covalently bound to the surface, and the mediator molecule is coupled to the functional group of the anchor molecule. The implant material may comprise titanium, titanium alloy, aluminium or stainless steel or hydroxylapatite. Oxide units on the implant material surface can be increased preferably by treating with hot chromic-sulphuric acid for 0.5 to 3 hours at a temperature between 100 to 250° C. prior to binding the anchor molecule. Also, prior to binding the anchor molecule, the surface of the implant material can be activated by reacting with a silane derivative. Mediator molecules include BMP protein, ubiquitin and antibiotics, and the implant material may be an artificial joint or coronary vessel support such as a stent.
    Type: Application
    Filed: August 21, 2003
    Publication date: April 22, 2004
    Inventor: Herbert Peter Jennissen
  • Patent number: 6723177
    Abstract: A process for treating a chromium coating and/or the surface of a chromium alloy to increase hardness, and/or to decrease coefficient of friction; chromium alloys and/or chromium coatings with surfaces having increased hardness and/or decreased coefficient of friction; and, components comprising chromium alloys and/or chromium coatings with surfaces having increased hardness and/or decreased coefficient of friction.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: April 20, 2004
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, Kevin C. Walter
  • Patent number: 6719853
    Abstract: During a solution heat treatment grain recrystallization may occur of a textured article, especially at the surface rim. The present invention provides a method for restoring the microstructure of a textured article, such as a gas turbine engine blade, which comprises coating the surface of the article with a high temperature stable surface coating or by a controlled development of an oxide scale and subsequently performing a solution heat treatment, thereby maintaining said thermally stable surface coating.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 13, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralf Buergel, Winfried Esser, Michael Ott, Der-Yan Frank Roan
  • Patent number: 6695931
    Abstract: This invention is a method for forming a chemical conversion coating on ferrous metal substrates, the chemical solutions used in the coating and the articles coated thereby. By modifying and combining the features of two existing, but heretofore unrelated, coating technologies, a hybrid conversion coating is formed. Specifically, a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, is applied to a ferrous substrate by a first oxidation. The intermediate coating pre-conditions the substrate to form a surface rich in molecular iron and oxygen in a form easily accessible for further reaction. This oxidation procedure is followed by a coloring procedure using a heated (about 120-220° F.) oxidizing solution containing alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite or mixtures thereof, which reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4).
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: February 24, 2004
    Assignee: Birchwood Laboratories, Inc.
    Inventors: Keith N. Ravenscroft, William V. Block
  • Patent number: 6679951
    Abstract: The invention relates generally to the prevention of copper oxidation during copper anneal processes. In one aspect of the invention, copper oxidation is prevented by carrying out the anneal in the presence of one or more organic reducing agents.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: January 20, 2004
    Assignee: ASM Intenational N.V.
    Inventors: Pekka J. Soininen, Kai-Erik Elers, Ernst H. A. Granneman
  • Patent number: 6669787
    Abstract: The invention relates to a method of manufacturing a spin valve structure (1) of the GMR-type. Such a structure includes a stack of a magnetic layer (11a 11b), a nonmagnetic layer (15) and a sense layer (17) of a ferromagnetic material. In order to obtain a spin valve structure having a very good GMR effect the method comprises the following specific steps: oxidation of the ferromagnetic material of the sense layer; deposition of aluminium on the oxidized ferromagnetic material; oxidation of the deposited aluminium using oxygen from the oxidized ferromagnetic material.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 30, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Murray Fulton Gillies, Antonius Emilius Theodorus Kuiper
  • Patent number: 6669786
    Abstract: Disclosed are processes and compositions of solutions for chromate-replacement coatings for aluminum and aluminum alloys. A preferred method includes forming a boehmite coating layer that includes Al (III) ions on an aluminum surface, and applying an ionic conversion coating solution to the coating layer. The ionic conversion coating solution comprises hexavalent and trivalent ions. The trivalent ions are selected from the group consisting of Ce, Ga, Mn, Sc, Ti, Te and V. The hexavalent ions are selected from the group consisting of Mn, Mo, Se and W. It is contended that the resulting coatings provide corrosion resistance and self-healing effect in any defects present in the coatings.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: December 30, 2003
    Assignee: Concurrent Technologies Corporation
    Inventor: Krishnaswamy Sampath
  • Patent number: 6652982
    Abstract: An article having a protective coating is fabricated by providing an article substrate having a substrate surface; and thereafter producing a flattened protective coating on the substrate surface. The step of producing the flattened protective coating includes the steps of depositing a protective coating on the substrate surface, the protective coating having a protective-coating surface, and processing the protective coating to achieve the flattened protective-coating surface. The protective coating is thereafter optionally controllably oxidized. The article substrate and protective coating have an average sulfur content of less than about 10 parts per million by weight at depths measured from the protective-coating surface to a depth of about 50 micrometers below the protective-coating surface.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: November 25, 2003
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Ramgopal Darolia
  • Patent number: 6652669
    Abstract: The invention relates to a method for producing an ultraphobic surface on aluminium as the supporting material and to the resulting surface and its use. According to said method, the surface of an aluminium support is anodized, especially by anodic oxidation, and/or electrochemically pickled in an acid solution with an alternating voltage, treated in hot water or water vapor at a temperature of 50 to 100° C., optionally coated with an adhesion promoter layer and then provided with a hydrophobic or especially oleophobic coating.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: November 25, 2003
    Assignee: Sunyx Surface Nanotechnologies GmbH
    Inventors: Karsten Reihs, Daniel-Gordon Duff, Georg Wiessmeier, Burkhard Koehler, Matthias Voetz, Juan Gonzalez-Blanco, Eckard Wenz
  • Publication number: 20030201034
    Abstract: A capacitor electrode forming method includes chemisorbing a layer of at least one metal precursor at least one monolayer thick on a substrate, the layer including non-metal components from the precursor. The chemisorbed layer can be treated with an oxidant and the non-metal components removed to form a treated layer of metal. A capacitor electrode can be formed including the treated layer and, optionally, additional treated layers. Preferably, treating the layer does not substantially oxidize the metal and the treated layers exhibit the property of inhibiting oxygen diffusion. The chemisorbing and the treating can be performed at a temperature below about 450° C. or preferably below about 350° C.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 30, 2003
    Inventor: Eugene P. Marsh
  • Patent number: 6623541
    Abstract: A sintered rare earth magnet consisting essentially of 20-30% by weight of R (wherein R is Sm or a mixture of Sm and another rare earth element), 10-45% by weight of Fe, 1-10% by weight of Cu, 0.5-5% by weight of Zr, and the balance of Co has on its surface a composite layer containing Sm2O3 and/or CoFe2O4 in Co or Co and Fe. The magnet is resistant to hydrogen embrittlement.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: September 23, 2003
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kazuaki Sakaki, Masanobu Shimao, Hajime Nakamura, Takehisa Minowa
  • Publication number: 20030168128
    Abstract: The invention features and methods and compositions for oxide production on a Copper substrate, e.g., a Copper or Copper alloy substrate, to provide for improved adhesion of Copper substrate to polymeric material, e.g., such as used in manufacture of printed circuit boards. The oxide-producing compositions of the invention, which may be either acidic or ammoniacal, comprise 1) a source of Cu++ (Cupric) ions; 2) a source of a primary electrolyte that is non-interactive with Copper ions; 3) a Cuprous ligand, e.g., a halide ion, preferably chloride, which also serves as a secondary electrolyte; and 4) an optional organic. Acidic oxide-producing compositions comprise a strong acid as the primary electrolyte. The primary electrolyte of ammoniacal oxide-producing compositions is a non-interactive, ammonium salt of acid, which provides a highly soluble Cupric ammonium salt. The secondary electrolyte of the oxide-producing compositions is selected so as to be compatible with the primary electrolyte.
    Type: Application
    Filed: March 5, 2002
    Publication date: September 11, 2003
    Inventors: Joseph Cole, Rudolf P. Sedlak
  • Patent number: 6613161
    Abstract: A method of laser marking which comprises applying a laser beam to a metal surface under the influence of an assist gas to produce durable, repeatable and striking colors on the metal surface. The method provides an easy and flexible alternative to conventional metal decorating techniques.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: September 2, 2003
    Assignee: Singapore Institute of Manufacturing Technology
    Inventors: Hong Yu Zheng, Gnian Cher Lim
  • Patent number: 6592683
    Abstract: Ti alloy is embedded in a powder such as graphite and heated with the powder in an oxygen atmosphere. Oxygen atoms are diffused into the Ti alloy to form an oxygen diffusion layer of Ti—O solid solution, thereby increasing wear resistance of the valve. A poppet valve in an internal combustion engine may be made of such Ti alloy.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: July 15, 2003
    Assignee: Fuji Oozx Inc.
    Inventors: Masahito Hirose, Hiroaki Asanuma
  • Patent number: 6589608
    Abstract: A process for producing a homogeneous oxide layer on metal components includes uniformly heating the components, in all their regions, in a vacuum chamber and, after a predetermined temperature has been reached, exposing the components to an oxygen-containing gas for a predetermined period and at a predetermined pressure. The metal components are coated with MCrAlY or PtAl. The preheating temperature is between 750 and 850° C., preferably, approximately 800° C. Preferably, the thickness of the homogeneous oxide layer is between 0.01 and 5 &mgr;m. The heating is preferably by electron radiation. The predetermined period is approximately 10 minutes, and the predetermined pressure is between 1×10−3 and 8×10−2 mbar.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: July 8, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Carsten Deus, Joachim Senf, Lutz Wolkers