Aluminum(al) Or Aluminum Base Alloy Patents (Class 148/531)
  • Patent number: 10704132
    Abstract: A high-strength hot-dip galvanized steel sheet excellent in impact resistance and worked portion corrosion resistance including a hot-dip galvanized plating layer on a steel sheet base material whose tensile strength is 590 MPa or more, wherein the plating layer includes projecting alloy layers being in contact with the steel sheet base material, a number density of the projecting alloy layers is 4 pieces/mm or more, wherein the steel sheet base material includes: a miniaturized layer being directly in contact with the interface between the steel sheet base material and the plating layer; a decarburized layer being in contact with the miniaturized layer; and an inner layer other than the miniaturized layer and the decarburized layer, and one or more kinds of oxides of Si and Mn are contained in layers of the miniaturized layer, the decarburized layer, and the projecting alloy layers.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 7, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Yasui, Hiroyuki Kawata, Yuji Yamaguchi, Ryosuke Komami, Satoshi Uchida, Akinobu Murasato
  • Patent number: 10655204
    Abstract: Provided is a hot press formed article having good anti-delamination and having a hot dip aluminized layer formed on the surface of a base steel sheet. The base steel sheet comprises 0.18-0.25 wt % of C, 0.1-0.5 wt % of Si, 0.9-1.5 wt % of Mn, 0.03 wt % or less of P, 0.01 wt % or less of S, 0.01-0.05 wt % of Al, 0.05-0.5 wt % of Cr, 0.01-0.05 wt % of Ti, 0.001-0.005 wt % of B, 0.009 wt % or less of N and the balance of Fe and other impurities. The aluminized layer comprises a single soft diffusion layer comprising ?-Fe with solid-solubilized Al, and the hardness of the diffusion layer is 300-600 (Hv).
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 19, 2020
    Assignee: POSCO
    Inventor: Heung-Yun Kim
  • Patent number: 10597747
    Abstract: A pre-coated steel strip is provided. The steel strip includes a strip of base steel having a length, a width, a first side, and a second side. The length of the strip is at least 100 m and the width is at least 600 mm. An aluminum or an aluminum alloy pre-coating is on at least part of at least one of the first or second sides of the strip of base steel. A thickness tp of the pre-coating is from 20 to 33 micrometers at every location on at least one of the first or second sides. Processes, coated stamped products and land motor vehicles are also provided.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: March 24, 2020
    Assignee: ArcelorMittal
    Inventors: Pascal Drillet, Dominique Spehner, Ronald Kefferstein
  • Patent number: 10577674
    Abstract: A pre-coated steel strip is provided. The steel strip includes a strip of base steel having a length, a width, a first side, and a second side. The length of the strip is at least 100 m and the width is at least 600 mm. An aluminum or an aluminum alloy pre-coating is on at least part of at least one of the first or second sides of the strip of base steel. A thickness tp of the pre-coating is from 20 to 33 micrometers at every location on at least one of the first or second sides. Processes, coated stamped products and land motor vehicles are also provided.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: March 3, 2020
    Assignee: ArcelorMittal
    Inventors: Pascal Drillet, Dominique Spehner, Ronald Kefferstein
  • Patent number: 10570472
    Abstract: A method of annealing of steel sheets is provided which includes a first step consisting in fully oxidizing the surface of such steel sheet thus creating a fully oxided surface layer, a second step consisting in selectively oxidizing elements other than iron of such steel, in an area extending under said fully oxided layer, thus creating a selectively oxided internal layer and a third step consisting in fully reducing said fully oxided surface layer.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: February 25, 2020
    Assignee: ArcelorMittal
    Inventors: John Rotole, Jonas Staudte, Jean-Michel Mataigne
  • Patent number: 10550447
    Abstract: A pre-coated steel strip is provided. The steel strip includes a strip of base steel having a length, a width, a first side, and a second side. The length of the strip is at least 100 m and the width is at least 600 mm. An aluminum or an aluminum alloy pre-coating is on at least part of at least one of the first or second sides of the strip of base steel. A thickness tp of the pre-coating is from 20 to 33 micrometers at every location on at least one of the first or second sides. Processes, coated stamped products and land motor vehicles are also provided.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 4, 2020
    Assignee: ArcelorMittal
    Inventors: Pascal Drillet, Dominique Spehner, Ronald Kefferstein
  • Patent number: 10167530
    Abstract: A method of manufacturing a hot press formed part by hot pressing a coated steel sheet that is obtained by forming a Zn-based coating layer on a surface of a steel sheet includes: heating the coated steel sheet to a temperature range of 750° C. or more and 1000° C. or less; cooling a surface of the coated steel sheet; and hot press forming the coated steel sheet under a condition that a surface temperature of the coated steel sheet is 400° C. or less and an average temperature of the coated steel sheet is 500° C. or more or a temperature of a center position of the coated steel sheet in a thickness direction is 530° C. or more.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: January 1, 2019
    Assignee: JFE Steel Corporation
    Inventors: Tatsuya Nakagaito, Yuichi Tokita, Toru Minote, Yoshikiyo Tamai
  • Patent number: 10058951
    Abstract: A bonding structure enabling fast and reliable methods to fabricate a substantially homogeneous bondline with reduced dependency of a thickness limitation is disclosed. Also, this system creates a bondline targeted for performance in power electronics. This system is highly adaptable as various structures and fabrication options may be implemented. This enables diverse fabrication selection and creates less dependency on outside conditions. The disclosed system is at least applicable to wafer-to-wafer, die-to-wafer, die-to-substrate, or die-to-die bonding.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: August 28, 2018
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Sang Won Yoon, Koji Shiozaki
  • Patent number: 9677145
    Abstract: A press-hardened steel component and a method of producing the same. In one form, a workpiece that will be formed into the component includes a coating that is pre-diffused with metal from the workpiece substrate. Examples of such protective coatings may include aluminum-based coatings, as well as from aluminum and silicon combinations. The pre-diffusion of the workpiece permits it to be subjected to the high heating rate of a subsequent press hardening operation without causing localized melting or vaporization of the protective coating.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 13, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Jason J. Coryell, Paul J. Belanger
  • Patent number: 9644247
    Abstract: A method for manufacturing a high strength press-formed member includes preparing a steel sheet having the composition including by mass %: C: 0.12% to 0.69%, Si: 3.0% or less, Mn: 0.5% to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 3.0% or less, N: 0.010% or less, Si+Al: at least 0.7%, and remainder as Fe and incidental impurities, heating the steel sheet to a temperature of 750° C. to 1000° C. and retaining the steel sheet in that state for 5 seconds to 1000 seconds; subjecting the steel sheet to hot press-forming at a temperature of 350° C. to 900° C.; cooling the steel sheet to a temperature of 50° C. to 350° C.; heating the steel sheet to a temperature in a temperature region of 350° C. to 490° C.; and retaining the steel sheet at temperature in the temperature region for 5 seconds to 1000 seconds.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: May 9, 2017
    Assignee: JFE Steel Corporation
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Yasushi Tanaka
  • Patent number: 9616411
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: April 11, 2017
    Assignee: NIPPON STEEL & SUMKIN MATERIALS CO., LTD.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Patent number: 9200355
    Abstract: An austenitic steel sheet excellent in resistance to delayed cracking, the composition of said steel comprising, in weight: 0,35%<C<1,05%, 15%<Mn<26%, Si<3%, Al<0,050%, S<0,030%, P<0,080%, N<0,1%, at least one metallic element X chosen among vanadium, titanium, niobium, molybdenum, chromium: 0,050%<V<0,50%, 0,040%?Ti<0,50%, 0,070%<Nb<0,50%, 0,14%<Mo<2%, 0,070%<Cr<2% and optionally, one or several elements chosen among 0,0005%<B<0,010%, Ni<2%, Cu<5%, the remainder being iron and unavoidable impurities inherent to fabrication, including hydrogen, the quantity Xp of said at least one metallic element under the form of carbides, nitrides or carbonitrides being, in weight: 0,030%<VP<0,40%, 0,030%<Tip<0,50%, 0,040%<Nbp<0,40%, 0,14%<Mop<0,44%, 0,070%<Crp<0,6%, the hydrogen content Hmax designating the maximal hydrogen content that can be measured from a series of at least five specimens, and the quantity Xp, in weight, be
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: December 1, 2015
    Assignees: ArcelorMittal France, Thyssenkrupp Steel AG
    Inventors: Colin Scott, Philippe Cugy, Christian Allely
  • Publication number: 20150147589
    Abstract: A rolled steel sheet or blank is provided, the composition of which comprises the elements listed below in per cent by weight: C?0.1%; 0.5%?Mn?7%; 0.5%?Si?3.5%; 0.5%<Ti?2%; 2%<Ni?7%; Al?0.10%; Cr?2%; Cu?2%; Co?2%; Mo?2%; S?0.005%; P?0.03%; Nb?0.1%; V?0.1%; B<0.005%; N?0.008%, and the silicon and titanium contents are such that: Si + Ti ? 2.5 ? % , Ti Si ? 0.3 the remainder of the composition consisting of iron and unavoidable impurities resulting from processing. A method for the fabrication of a part for a land motor vehicle from the sheet or blank by hot stamping is also provided. The microstructure of the part consisting essentially of martensite and intermetallic precipitates of type Fe2TiSi with an area percentage between 1 and 5% intermetallic precipitates.
    Type: Application
    Filed: September 6, 2011
    Publication date: May 28, 2015
    Applicant: Arcelormittal Investigacion Y Desarrollo, S.L.
    Inventors: Olivier Bouaziz, David Barbier, Coralie Jung
  • Patent number: 9028625
    Abstract: The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an ?-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: May 12, 2015
    Assignee: Nippon Steel Materials Co., Ltd.
    Inventors: Toru Inaguma, Takayuki Kobayashi, Hiroaki Sakamoto
  • Patent number: 8992704
    Abstract: The present invention solves the problem of melting of Al in heating before hot-stamping, which had been a problem in the past in applying hot-stamping to Al-plated steel sheet, and provides Al-plated steel sheet for hot-stamping and a method of hot-stamping using that Al-plated steel sheet to solve the problem of delayed fracture due to residual hydrogen, and, furthermore, a method of a rapid heating hot-stamping using that Al-plated steel sheet. The Al-plated steel sheet of the present invention is produced by annealing the Al-plated steel sheet as coiled in a box-anneal furnace for the time and at the temperature indicated in FIG. 5, and alloying of a plated Al and a steel sheet. Further, a method of rapid heating hot-stamping in the present invention is characterized by cutting out a stamping blank of an Al-plated steel sheet, and heating that blank in heating before hot-stamping by an average temperature with a rising rate of 40° C./sec or more and a time of exposure to an environment of 700° C.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: March 31, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Jun Maki, Masayuki Abe, Kazuhisa Kusumi, Yasushi Tsukano
  • Publication number: 20150079420
    Abstract: The steel for hot forming has the following composition in weight %: C: 0.10-0.25, Mn: 1.4-2.8, Si: ?1.0, Cr: ?1.0, Ti: ?0.05, Nb: ?0.05, V: ?0.1, Mo: ?0.1, Al: ?0.05, P: ?0.02, S: ?0.005, Ca: ?0.005, O: ?0.01, N: ?0.02, B: ?0.0004, the remainder being iron and unavoidable impurities. Also disclosed is a strip, sheet or blank produced with such a steel, a method for producing a hot formed product, such a product and the use thereof.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: David Neal HANLON, Stefanus Matheus Cornelis VAN BOHEMEN
  • Publication number: 20150047753
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mould hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitisation and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 19, 2015
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Publication number: 20150010779
    Abstract: The invention relates to a method for producing packaging steel consisting of a cold-rolled steel sheet made of unalloyed or low-alloy steel having a carbon content of less than 0.1%. In order to provide high-strength packaging steel that has good formability and high corrosion resistance and can be produced in as energy-saving a manner as possible, the steel sheet according to the invention is first coated with a metallic coating and then annealed in a recrystallising manner at a heating rate of more than 75 K/s and preferably more than 100 K/s to temperatures of more than 700° C., such that the metallic coating melts. The coated and annealed steel sheet is then quenched to normal temperature at a cooling rate of at least 100 K/s.
    Type: Application
    Filed: November 30, 2012
    Publication date: January 8, 2015
    Inventors: Anika Szesni, Helmut Oberhoffer, Martin Schlupp, Dirk Matusch, Reiner Sauer
  • Publication number: 20140363694
    Abstract: A low density high strength steel sheet including 0.15% to 0.25% C, 2.5% to 4% Mn, 0.02% or less P, 0.015% or less S, 6% to 9% Al and 0.01% or less N, the balance being iron and inevitable impurities, wherein 1.7·(Mn—Al)+52.7·C is at least 3 and at most 4.5. A method of producing the low density and high strength steel sheet.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 11, 2014
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY BV
    Inventors: Cheng Liu, Radhakanta Rana
  • Publication number: 20140216612
    Abstract: The invention relates to a steel part, the composition of the steel of which comprises, the contents being expressed by weight: 0.040%?C?0.100%; 0.80%?Mn?2.00%; Si?0.30%; S?0.005%; P?0.030%; 0.010%?Al?0.070%; 0.015%?Nb?0.100%; 0.030%?Ti?0.080%; N?0.009%; Cu?0.100%; Ni?0.100%; Cr?0.100%; Mo?0.100%; and Ca?0.006%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the microstructure of the steel consisting of at least 75% equiaxed ferrite, martensite in an amount not less than 5% but not exceeding 20%, and bainite in an amount not exceeding 10%.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Applicant: ArcelorMittal France
    Inventors: Jean-Pierre Laurent, Thierry Malot
  • Publication number: 20140158256
    Abstract: There is provided a heating device, in particular an austenitization device, for a plant for hot forming blanks, wherein the heating device is for locally heating, in particular austenitization, regions of the blanks and has at least one burner. Also included is means for moving the burner and/or the flame of the burner to the regions of the blank which are to be subjected to local heating.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Inventor: Matthias BORS
  • Publication number: 20140150930
    Abstract: The present invention relates to a hot press forming steel plate made of a composition comprising: 0.3-1.0 wt % of C; 0.0-4.0 wt % of Mn; 1.0-2.0 wt % of Si; 0.01-2.0 wt % of Al; 0.015 wt % or less of S; 0.01 wt % or less of N; and the remainder being Fe and unavoidable impurities. Further, the present. invention relates to a method for manufacturing the hot press forming steel plate, characterized by comprising the steps of: heating, to between 1100 and 1300° C., a steel slab having the composition; performing hot rolling finishing between. an Ar3 transformation point and 950° C.; and performing winding between MS and 720° C. Further, the present invention. relates to a hot press formed member characterized by having the composition, and having a dual phase microstructure made of bainite and residual austenite.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 5, 2014
    Inventors: Kyoo-Young Lee, Jin-Keun Oh, Jong-Sang Kim, Tae-Kyo Han
  • Patent number: 8733142
    Abstract: The invention relates to a process for making a hot stamped coated steel sheet product, comprising the steps of pre-coating a steel strip or sheet with aluminum—or aluminum alloy, cutting said pre-coated steel strip or sheet to obtain a pre-coated steel blank, heating the blank in a furnace preheated to a temperature and during a time defined by diagram according to thickness, at a heating rate Vc between 20 and 700° C. comprised between 4 and 12° C./s and at a heating rate Vc? between 500 and 700° C. comprised between 1.5 and 6° C./s, to obtain a heated blank; then transferring said heated blank to a die, hot stamping the heated blank in the die obtain a hot stamped steel sheet product, cooling at a mean rate Vr between the exit of the heated blank from the furnace, down to 400° C., of at least 30° C./s.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 27, 2014
    Assignee: ArcelorMittal France
    Inventors: Dominique Spehner, Ronald Kefferstein, Pascal Drillet
  • Publication number: 20140099514
    Abstract: A continuous hot bonding method for producing a bi-material strip with a strong bond therebetween is provided. The method comprises sanding a first strip formed of steel; and applying a layer of first particles, typically formed of copper, to the sanded first strip. The method next includes heating the first strip and the layer of the first particles, followed by pressing a second strip formed of an aluminum alloy onto the heated layer of the first particles. The aluminum alloy of the second strip includes tin particles, and the heat causes the second particles to liquefy and dissolve into the melted first particles. The first particles and the second particles bond together to form bond enhancing metal particles, which typically comprise bronze.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 10, 2014
    Applicant: Federal-Mogul Corporation
    Inventor: David Michael Saxton
  • Publication number: 20140057128
    Abstract: A plate is provided. The plate includes a steel substrate and a precoat having a layer of intermetallic alloy in contact with the substrate, topped by a layer of aluminum alloy. On at least one precoated face of the plate, an area situated at the periphery of the plate has the aluminum alloy layer removed. A part and a welded blank are also provided. Methods are also provided.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: ArcelorMittal France
    Inventors: Jean-Francois Canourgues, Aurelien Pic, Pascal Verrier, Rene Vierstraete, Wolfram Ehling, Bernd Thommes
  • Publication number: 20140044987
    Abstract: A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 ?m.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 13, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20140004378
    Abstract: A steel sheet for obtaining a member which is excellent in fatigue characteristics equal to ordinary high strength steel sheet of the same strength even if applying the hot stamping process and a method of production of the same are provided. Steel sheet for a hot stamped member which includes composition which contains, by mass %, C: 0.15 to 0.35%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.3%, Al: 0.01 to 0.5%, and a balance of Fe and unavoidable impurities, and limit the impurities to P: 0.03% or less, S: 0.02% or less, and N: 0.1% or less, wherein that a standard error of Vicker's hardness at a position of 20 ?m from the steel sheet surface in the sheet thickness direction is 20 or less. This steel sheet is produced by a recrystallization-annealing step of a first stage of heating a cold rolled steel sheet, which is obtained by hot rolling steel containing the above composition and then cold rolling it, by an average heating rate of 8 to 25° C./sec from room temperature to 600 to 700° C.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20130292009
    Abstract: The present invention provides a method for manufacturing a hot stamped body, the method including: a hot-rolling step; a coiling step; a cold-rolling step; a continuous annealing step; and a hot stamping step, in which the continuous annealing step includes a heating step of heating the cold-rolled steel sheet to a temperature range of equal to or higher than Ac1° C. and lower than Ac3° C.; a cooling step of cooling the heated cold-rolled steel sheet from the highest heating temperature to 660° C. at a cooling rate of equal to or less than 10° C./s; and a holding step of holding the cooled cold-rolled steel sheet in a temperature range of 550° C. to 660° C. for one minute to 10 minutes.
    Type: Application
    Filed: October 21, 2011
    Publication date: November 7, 2013
    Inventors: Kunio Hayashi, Toshimitsu Aso, Toshimasa Tomokiyo, Hitoshi Tanino, Ryozo Wada
  • Patent number: 8506731
    Abstract: A method for coating a hot-rolled or cold-rolled steel flat product, containing 6-30% wt. Mn, with a metallic protective layer by hot-clip coating in a melt bath. The coating, achieved with increased production reliability, is optimised by the steel flat product being subjected to a pickling treatment in which the manganese oxide adhering to the steel flat product is essentially fully removed in the pickling bath before the steel flat product enters the melt bath.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: August 13, 2013
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Manfred Meurer, Ronny Leuschner, Michael Steinhorst
  • Publication number: 20130186524
    Abstract: Provided is an aluminum (Al) plating layer/aluminum (Al)-magnesium (Mg) plating layer multi-layered structure alloy plated steel sheet having excellent plating adhesiveness and corrosion resistance, which is characterized in that the Al—Mg plating layer is formed on the Al plating layer. According to the present invention, corrosion resistance of an Al plated steel sheet is further improved by forming an Al—Mg alloy plating layer, and plating adhesiveness between plating layer and underlying steel sheet may be improved as well as excellent stability and practicality being realized.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 25, 2013
    Applicant: POSCO
    Inventors: Young-Jin Kwak, Dong-Yoeul Lee, Yong-Hwa Jung, Woo-Sung Jung, Mun-Jong Eom, Kyoung-Bo Kim, Kyung-Hoon Nam, Tae-Yeob Kim, Sang-Cheol Lee, Sang-Hoon Park
  • Publication number: 20130048154
    Abstract: A method for manufacturing a metal assembly including an aluminum sheet and at least one metal sheet. An aluminum sheet is treated by heating to a temperature of between 80% and 100% of the melting temperature of the material of which it is comprised for a sufficiently long duration to create and stabilize an alpha alumina layer at the surface of the aluminum sheet. The sheet is then cooled. A metal sheet having a ductility less than or equal to the ductility of the alumimum sheet after cooling is provided, which has surface irregularities having a depth greater than or equal to the thickness of the alpha alumina layer. The aluminum sheet and the metal sheet are roll bonded in a rolling mill to produce the metal assembly, wherein the rolling mill includes at least one cylinder, the outer rolling surface of which is provided with raised portions.
    Type: Application
    Filed: March 11, 2011
    Publication date: February 28, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), ECOLE NORMALE SUPERIEURE DE CACHAN, CNAM - CONSERVATOIRE NATIONAL DES ARTS ET METIERS
    Inventors: Laurent Prevond, Nicolas Collard, Renaud Caplain, Pierre Francois
  • Patent number: 8349098
    Abstract: A process for producing a component from a steel product coated with a protective Al—Si coating, and an intermediate product that arises during the course of such a process and that can be used to produce components of the type concerned here. The steel product coated with the Al—Si coating, undergoes a first heating stage in which the temperature and the duration of the heat treatment are set such that the Al—Si coating is only partially pre-alloyed with Fe from the steel product. Then, the steel product, in a second heating stage, is heated to a heating temperature, above the Ac1 temperature, at which the steel product has an at least partially austenitic structure, wherein the temperature and the duration of the second heating stage are set such that the Al—Si coating is fully alloyed with Fe from the steel product.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: January 8, 2013
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Friedhelm Macherey, Franz-Josef Lenze, Michael Peters, Manuela Ruthenberg, Sascha Sikora
  • Publication number: 20120211128
    Abstract: A steel part having a homogeneous multiphase microstructure in each region of the part, the microstructure containing ferrite, wherein the steel part is obtained by a process involving: cutting a blank from a strip of steel, having a specified composition; optionally, the blank undergoes prior cold deformation; the blank is heated to reach a soak temperature Ts above Ac1 but below Ac3 and held at this soak temperature Ts for a soak time ts adjusted so that the steel, after the blank has been heated, has an austenite content equal to or greater than 25% by area; the heated blank is transferred into a forming tool to hot-form the part; and the part is cooled within the tool at a cooling rate V such that the microstructure of the steel, after cooling the part, is a multiphase microstructure containing ferrite and being homogeneous in each region of the part.
    Type: Application
    Filed: January 5, 2012
    Publication date: August 23, 2012
    Applicant: ArcelorMittal France
    Inventors: Jacques CORQUILLET, Jacques DEVROC, Jean-Louis HOCHARD, Jean-Pierre LAURENT, Antoine MOULIN, Nathalie ROMANOWSKI
  • Publication number: 20120180910
    Abstract: A process for hot stamping a steel component is described. The hot stamping process enables the formation of one or more regions of the component to exhibit specific physical properties different than other regions of the component. The various processes are particularly well suited for forming a variety of automobile structural members.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Dylan Thomas, Duane Trent Detwiler
  • Publication number: 20120085467
    Abstract: A manufacturing process of a hot stamped coated part comprising the following successive steps, in this order: providing a hot rolled or cold rolled steel sheet comprising a steel substrate and an aluminium-silicon alloy precoating, the precoating containing more than 50% of free aluminium and having a thickness comprised between 15 and 50 micrometers, then cutting the steel sheet to obtain a precoated steel blank, then heating the blank under non protective atmosphere up to a temperature Ti comprised between Te?10° C. and Te, Te being the eutectic or solidus temperature of the precoating, then heating the blank from the temperature Ti up to a temperature Tm comprised between 840 and 950° C. under non protective atmosphere with a heating rate V comprised between 30° C./s and 90° C.
    Type: Application
    Filed: February 1, 2010
    Publication date: April 12, 2012
    Applicant: ArcelorMittal Invenstigacion Y Desarrollo S. L.
    Inventors: Isabelle Thirion, Thomas Vietoris, Raisa Grigorieva, Pascal Drillet, Ludwig Schaller, Karl Michael Bader, Uwe Paar, Michael Alsmann
  • Publication number: 20120037466
    Abstract: A method of manufacturing a brake drum for a vehicle is provided, which comprises: bonding at a temperature of 500° C. or higher a braking surface of a brake drum which is made of a gray cast iron material with a housing which is to accommodate the braking surface and is made of an aluminum alloy material; and removing residual stress that remains in the gray cast iron material by heating the braking surface at a temperature of about 600° C. The brake drum can improve fuel efficiency of a vehicle and drive comfort while having excellent braking performances.
    Type: Application
    Filed: November 16, 2010
    Publication date: February 16, 2012
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Jae Young Lee, Seong Jin Kim, Jai Min Han, Yoon Cheol Kim, Shin Gyu Kim
  • Patent number: 8070894
    Abstract: An alloy suitable for coating metal surfaces is provided in which the alloy provides a liquid melt which contains a fraction of dissolved oxide forming additives as deoxidizers. The alloyed combination of elements in the liquid melt resists compound formation thus preserving the chemical activity of the individual elements. In a coating application, the alloy may form a coating that can interact with and remove the oxide or residual oxide coating of the base metal to be coated, i.e., scrub the surface of the metal clean. This results in increased coating bond strength and the ability to bond effectively to normally difficult alloys such as stainless steel, refractory metals (W, Ti, Ta etc.), or aluminum alloys which form protective oxide layers.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: December 6, 2011
    Assignee: The NanoSteel Company, Inc.
    Inventor: Daniel James Branagan
  • Patent number: 8066829
    Abstract: The invention relates to a process for making a hot stamped coated steel sheet product, comprising the steps of pre-coating a steel strip or sheet with aluminium- or aluminium alloy, cutting said pre-coated steel strip or sheet to obtain a pre-coated steel blank, heating the blank in a furnace preheated to a temperature and during a time defined by diagram according to thickness, at a heating rate Vc between 20 and 700° C. comprised between 4 and 12° C./s and at a heating rate Vc? between 500 and 700° C. comprised between 1.5 and 6° C./s, to obtain a heated blank; then transferring said heated blank to a die, hot stamping the heated blank in the die obtain a hot stamped steel sheet product, cooling at a mean rate Vr between the exit of the heated blank from the furnace, down to 400° C., of at least 30° C./s.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 29, 2011
    Assignee: Arcelormittal France
    Inventors: Dominique Spehner, Ronald Kefferstein, Pascal Drillet
  • Patent number: 8021497
    Abstract: The invention relates to a method for producing a hardened steel part having a cathodic corrosion protection, whereby a) a coating is applied to a sheet made of a hardenable steel alloy in a continuous coating process; b) the coating is essentially comprised of zinc; c) the coating additionally contains one or more oxygen-affine elements in a total amount of 0.1% by weight to 15% by weight with regard to the entire coating; d) the coated steel sheet is then, at least in partial areas and with the admission of atmospheric oxygen, brought to a temperature necessary for hardening and is heated until it undergoes a microstructural change necessary for hardening, whereby; e) a superficial skin is formed on the coating from an oxide of the oxygen-affine element(s), and; f) the sheet is shaped before or after heating, and; g) the sheet is cooled after sufficient heating, whereby the cooling rate is calculated in order to achieve a hardening of the sheet alloy.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: September 20, 2011
    Assignee: voestalpine Stahl GmbH
    Inventors: Martin Fleischanderl, Siegfried Kolnberger, Josef Faderl, Gerald Landl, Anna Elisabeth Raab, Werner Brandstätter
  • Publication number: 20110174418
    Abstract: The present invention solves the problem of melting of Al in heating before hot-stamping, which had been a problem in the past in applying hot-stamping to Al-plated steel sheet, and provides Al-plated steel sheet for hot-stamping and a method of hot-stamping using that Al-plated steel sheet to solve the problem of delayed fracture due to residual hydrogen, and, furthermore, a method of a rapid heating hot-stamping using that Al-plated steel sheet. The Al-plated steel sheet of the present invention is produced by annealing the Al-plated steel sheet as coiled in a box-anneal furnace for the time and at the temperature indicated in FIG. 5, and alloying of a plated Al and a steel sheet. Further, a method of rapid heating hot-stamping in the present invention is characterized by cutting out a stamping blank of an Al-plated steel sheet, and heating that blank in heating before hot-stamping by an average temperature with a rising rate of 40° C./sec or more and a time of exposure to an environment of 700° C.
    Type: Application
    Filed: July 13, 2009
    Publication date: July 21, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Jun Maki, Masayuki Abe, Kazuhisa Kusumi, Yasushi Tsukano
  • Publication number: 20110146851
    Abstract: Method for use when galvannealing a steel material (1), in which the material (1), in a first step, is preheated to a first process temperature and is coated with a layer of a liquid alloying metal (3), in a second step is further heated to a second, higher process temperature, and in a third step is kept at the second process temperature during a predetermined time period so that the alloying metal coating at least partially is caused to alloy with the steel material (1). The heating in the second step is caused to be carried out by one or several DFI burners (5).
    Type: Application
    Filed: May 19, 2009
    Publication date: June 23, 2011
    Applicant: AGA AB
    Inventors: Mats Gartz, Ola Ritzén
  • Patent number: 7955444
    Abstract: A high tensile steel sheet having 980 MPa or higher tensile strength with excellent elongation and stretch-flange formability, suitable for the press-forming of complex cross sectional shape such as automobile parts, is manufactured by adjusting the steel to consist essential of a ferrite single phase structure, to precipitate carbide containing Ti, Mo, and V, of smaller than 10 nm of average particle size, in dispersed state, and to have an average composition of the carbide containing Ti, Mo, and V satisfying [V/(Ti+Mo+V)?0.3 (atomic ratio].
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 7, 2011
    Assignee: JFE Steel Corporation
    Inventors: Tamako Ariga, Takeshi Yokota, Akio Kobayashi, Kazuhiro Seto
  • Patent number: 7892654
    Abstract: Coating steel strips comprising, in % by weight, C: ?1.6%, Mn: 6-30%, Al: ?10%, Ni: ?10%, Cr: ?10%, Si: ?8%, Cu: ?3%, Nb: ?0.6%, Ti: ?0.3%, V: ?0.3%, P: ?0.1%, B: ?0.01%, the rest being iron and unavoidable impurities, and a method of forming steel strips are described. Up to now, such steel strips were not adequately coatable, with a metal coating ensuring outstanding corrosion-resistance and good welding properties. This is ensured by applying an aluminium layer to the steel strip before final annealing and applying the metal coating to said aluminium layer after final annealing.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: February 22, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Harald Hofmann, Manfred Meurer, Bernd Schuhmacher, Slavcho Topalski
  • Publication number: 20110017361
    Abstract: A method for coating a hot-rolled or cold-rolled steel flat product, containing 6-30% wt. Mn, with a metallic protective layer by hot-clip coating in a melt bath. The coating, achieved with increased production reliability, is optimised by the steel flat product being subjected to a pickling treatment in which the manganese oxide adhering to the steel flat product is essentially fully removed in the pickling bath before the steel flat product enters the melt bath.
    Type: Application
    Filed: January 21, 2009
    Publication date: January 27, 2011
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Manfred Meurer, Ronny Leuschner, Michael Steinhorst
  • Patent number: 7867344
    Abstract: A method is proved for hot pressing hot rolled steel sheet, cold rolled steel sheet, Al-based plated steel sheet or Zn-based plated steel sheet, where the hot pressed sheet can exhibit a strength of at least about 1200 Mpa, and my be prevented from exhibiting hydrogen embrittlement. The steel sheet may include between about 0.05 to 0.5 wt % C, and/or it may be plated with an Al-based or Zn-based plating material. The steel sheet may be heating to a temperature greater than an Ac3 temperature and not more than about 1100° C. before pressing. An atmosphere can be provided during heating which contains not more than about 6 vol % of hydrogen and a dew point of not more than about 10° C. The exemplary methods may be used to form high strength parts which may be used, e.g., in automobiles.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 11, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhisa Kusumi, Jun Maki, Masayuki Abe, Masahiro Ohgami, Norihiro Fujita, Shinya Nakajima
  • Patent number: 7842142
    Abstract: High-strength parts and a method for producing them can be provided, where such parts exhibit hydrogen embrittlement resistance and strength after high-temperature forming. For example, the atmosphere in a heating furnace can contain less than about 10% hydrogen and/or have a dew point of about 30° C. or less. The amount of hydrogen penetrating a steel sheet during heating can thereby be reduced. After forming, quench hardening in a die assembly and post-working can be performed. Post-working can include shearing followed by re-shearing or compression forming; punching with a cutting blade having a continuously reduced base width; punching with a tool having a curved blade and a protrusion at the tip of the cutting blade, where the curved blade may include a shoulder portion of given radius and/or angle; fusion cutting; etc. Tensile residual stresses after punching can be reduced and resistance to hydrogen embrittlement can be improved.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 30, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhisa Kusumi, Hironori Sato, Masayuki Abe, Nobuhiro Fujita, Noriyuki Suzuki, Kunio Hayashi, Shinya Nakajima, Jun Maki, Masahiro Oogami, Toshiyuki Kanda, Manabu Takahashi, Yuzo Takahashi
  • Publication number: 20100294400
    Abstract: A method for producing a steel component provided with a metallic coating which protects against corrosion, comprising the following steps: coating a steel flat product, produced from a low-alloy heat-treated steel, with an Al coating which contains at least 85% wt. Al and optionally up to 15% wt. Si; coating the steel flat product provided with the Al coating with a Zn coating which contains at least 90% wt. Zn; heating the steel flat product to a hot-forming temperature which is at least 750° C.; hot forming the heated steel component made from the steel flat product; and cooling the hot-formed steel component sufficiently quickly to form a tempered or martensitic structure.
    Type: Application
    Filed: October 1, 2008
    Publication date: November 25, 2010
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Barbara Lupp, Sabine Hasenfuss, Ansgar Albers, Manfred Meurer, Wilhelm Warnecke
  • Publication number: 20100297463
    Abstract: A strip-shaped or plate-shaped composite metal object and a method for the production thereof. The composite metal object has at least two layers of the same metal. The layers have been brought by a heat pretreatment to a temperature such that a mutual diffusion bond has resulted through subsequent pressing of the layers against one another, while reducing the thickness by 5 to 25% and preferably 8 to 15%. A layer, which on the side thereof facing an adjacent layer has strip-shaped recesses, which are closed by the adjacent layer to form channels when the layers are pressed together, is used as one of the layers. The channels in the composite metal object allow the inclusion of additional elements before processed further to form an implement. The channels remain extensively preserved during the production and further processing of the composite model object.
    Type: Application
    Filed: November 12, 2008
    Publication date: November 25, 2010
    Applicant: EISFINK MAX MAIER GMBH & CO. KG
    Inventors: Norbert Hoffstaedter, Markus Spring
  • Patent number: RE44153
    Abstract: Hot-rolled steel sheet which then can be cold-rolled, coated, the steel in the sheet having the following composition by weight: 0.15%<carbon<0.5% 0.5%<manganese<3% 0.1%<silicon<0.5% 0.01%<chromium<1% titanium<0.2% aluminum<0.1% phosphorus<0.1% sulfur<0.05% 0.0005%<boron<0.08%, the remainder being iron and impurities inherent in processing, the sheet ensuring a very high mechanical resistance after thermal treatment and the aluminum-based coating ensuring a high resistance to corrosion.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: April 16, 2013
    Assignee: ArcelorMittal Atlantique et Lorraine
    Inventors: Jean-Pierre Laurent, Jean-Paul Hennechart, Dominique Spehner, Jacques Devroc
  • Patent number: RE44940
    Abstract: Hot-rolled steel sheet which then can be cold-rolled, coated, the steel in the sheet having the following composition by weight: 0.15%<carbon<0.5% 0.5%<manganese<3% 0.1%<silicon<0.5% 0.01%<chromium<1% titanium<0.2% aluminum<0.1% phosphorus<0.1% sulfur<0.05% 0.0005%<boron<0.08%, the remainder being iron and impurities inherent in processing, the shoot ensuring a very high mechanical resistance after thermal treatment and the aluminum-based coating ensuring a high resistance to corrosion.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: June 10, 2014
    Assignees: ArcelorMittal France, ArcelorMittal Atlantique et Lorraine
    Inventors: Jean-Pierre Laurent, Jean-Paul Hennechart, Dominique Spehner, Jacques Devroc