With Coating Step Patents (Class 148/537)
  • Patent number: 8728629
    Abstract: A connector terminal, fabricated from a metallic material for connector which material has a tin or tin alloy layer, formed on a copper or copper alloy base material, wherein the thickness of the tin or tin alloy layer at a contact site on the surface of the terminal is smaller than the thickness of the tin or tin alloy layer in the areas other than the contact site, and a copper-tin alloy layer is formed as an under layer of the tin or tin alloy layer at the contact site; and a connector terminal, fabricated from a metallic material for connector which material has a copper or copper alloy base material, wherein a copper-tin alloy layer is formed in a spot shape at a contact site on the surface of the terminal, and a tin or tin alloy layer is formed in the remaining areas on the surface.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 20, 2014
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Shuichi Kitagawa, Kengo Mitose, Yoshiaki Kobayashi
  • Patent number: 8708646
    Abstract: A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal are provided. The MCrAlY alloy includes chromium, aluminum, yttrium and iron and optionally titanium, hafnium or silicon. The honeycomb seal includes a substrate, honeycomb cells and a protective coating on side walls of the honeycomb cells or a diffusion area inside side walls of the honeycomb cells, the protective coating or the diffusion area including the MCrAlY alloy.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 29, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: David Fairbourn, Paul Mathew Walker
  • Patent number: 8709612
    Abstract: A laminated ceramic capacitor includes a rectangular solid-shaped electronic component element. External electrodes of terminal electrodes are disposed at one end surface and the other end surface of the electronic component element. First plated films including a Ni plating are disposed on the surfaces of external electrodes. On the surfaces of the first plated films, second plated films containing Sn are disposed as Sn-plated films defining outermost layers of the external electrodes. The second plated films have a polycrystalline structure, and flake-shaped Sn—Ni alloy grains are located at a Sn crystal grain boundary and within a Sn crystal grain, respectively.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: April 29, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Akihiro Motoki, Makoto Ogawa, Atsuko Saito, Toshinobu Fujiwara, Kenji Masuko
  • Publication number: 20140110023
    Abstract: Disclosed herein is a method of manufacturing a printed circuit board, including the steps of providing a substrate including a first metal layer formed thereon, and forming a patterned first insulation layer on the first metal layer. The method further includes patterning the first metal layer to allow the first metal layer to have a pattern corresponding to that of the first insulation layer, thus forming a first circuit layer, and forming a second insulation layer on the substrate such that the second insulation layer surrounds the first circuit layer and the first insulation layer formed on the first circuit layer. The printed circuit board is advantageous in that process time and process cost can be reduced because a first insulation layer is used as an etching resist and is included as a part of a printed circuit board even after etching.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 24, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kyoung Hwan LIM, Won Hyung PARK
  • Publication number: 20140102598
    Abstract: A method of coating a stent is provided that minimizes damage to the coating. The stent is self-expanding and made of a superelastic material. The stent is initially cooled so that at least part of the structure of the stent transforms to a martensitic phase. The stent is then compressed, coated and loaded while the structure of the stent remains at least partially martensitic. After the stent is loaded into a tubular restraint, the loaded stent is allowed to warm to room temperature.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 17, 2014
    Applicant: Cook Medical Technologies LLC
    Inventors: William F. Moore, Nathan S. Ridgley
  • Publication number: 20140102599
    Abstract: A method of coating all surfaces of a plurality of piston rings in a single run by a chemical vapor deposition (CVD) process is provided. The method can include providing a coil formed of an iron-based material; heating the coil; and depositing a coating on all surfaces of the coil during a single continuous period of time, without having to move the coil during the CVD process. The coil is maintained in a fixed position during the depositing step. The method next includes splitting the coil into a plurality of separate coated piston rings. Alternatively, the method can include providing a plurality of stacked keystone piston ring bodies; and disposing a cylinder around the stack to maintain the keystone piston ring bodies in position while depositing the CVD coating on all surfaces of the keystone piston ring bodies during the single coating run.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: Federal-Mogul Corporation
    Inventors: Robert Aharonov, Haron Gekonde
  • Publication number: 20140050932
    Abstract: Production of a hardened, coated metal component, including the following steps: a. performing a heat treatment of the metal component for accumulating carbon and/or nitrogen in the edge layer of the metal component, b. quenching the metal component to a temperature below the martensite start temperature, c. annealing the metal component to a temperature that is higher than the temperature of a deposition method to be subsequently performed for applying a coating, and applying a coating via gas phase deposition.
    Type: Application
    Filed: February 29, 2012
    Publication date: February 20, 2014
    Applicant: Schaeffler Technologies AG & Co. KG
    Inventors: Juergen Gierl, Yashar Musayev, Tim Matthias Hosenfeldt
  • Patent number: 8652275
    Abstract: A process for melt dip coating a strip of high-tensile steel with alloy constituents including zinc and/or aluminum includes the following steps. The strip is heated in a continuous furnace initially in a reductive atmosphere to a temperature of approximately 650° C., at which the alloy constituents diffuse to the surface in small amounts. The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a short heat treatment at a temperature of up to 750° C. in a reaction chamber which is integrated in a continuous furnace and has an oxidizing atmosphere. In a subsequent annealing treatment at a higher temperature in a reductive atmosphere, this iron oxide layer prevents the alloy constituents from diffusing to the surface. In the reductive atmosphere, the iron oxide layer is converted into a pure iron layer to which the zinc and/or aluminum are applied in the molten bath with optimum adhesion.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 18, 2014
    Assignee: ThyssenKrupp Steel AG
    Inventors: Ronny Leuschner, Manfred Meurer, Wilhelm Warnecke, Sabine Zeizinger, Gernot Nothacker, Michael Ullmann, Norbert Schaffrath
  • Publication number: 20140034196
    Abstract: The invention relates to a high strength multi-phase steel for a cold- or hot-rolled steel strip having excellent forming properties, in particular for light vehicle construction, comprising the elements (contents in mass %): C 0.060 to=0.115; Al 0.020 to=0.060; Si 0.100 to=0.500; Mn 1.300 to=2.500; P=0.025; S=0.0100; Cr 0.280 to=0.480; Mo<0.150; Ti=0.005 to=0.050; Nb=0.005 to=0.050; B=0.0005 to=0.0060; N=0.0100; the remainder being iron including the usual elements present in steel and which are not mentioned above.
    Type: Application
    Filed: November 30, 2011
    Publication date: February 6, 2014
    Inventors: Andreas Wedemeier, Thomas Schulz, Michael Pohl, Phillip Wüllner, Jörg Heinecke, Christian Schlegel
  • Patent number: 8637164
    Abstract: A silver-coated composite material for movable contact parts, which has: an underlying layer composed of any one of nickel, cobalt, a nickel alloy, and a cobalt alloy at least provided on a part of the surface of a stainless steel substrate; an intermediate layer composed of copper or a copper alloy provided thereon; and a silver or silver alloy layer provided thereon as an outermost layer, wherein a thickness of the intermediate layer is 0.05 to 0.3 ?m, and wherein an average grain size of the silver or silver alloy provided as the outermost layer is 0.5 to 5.0 ?m.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: January 28, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshiaki Kobayashi, Satoru Zama, Satoshi Suzuki, Masato Ohno
  • Patent number: 8636854
    Abstract: A method for coating a flat steel product manufactured from a high strength steel with a metallic coating, wherein the flat steel product is initially subjected to a heat treatment, in order then, in the heated state, to be hot-dip galvanized with the metallic coating in a melting bath containing overall at least 85% zinc and/or aluminum. The heat treatment includes heating the steel product in a reducing atmosphere, followed by converting a surface of the flat product to an iron oxide layer by a heat treatment lasting 1 to 10 secs in an oxidizing atmosphere, followed by annealing in a reducing atmosphere over a period of time which is longer than the duration of the formation of the iron oxide layer such that the iron oxide layer is reduced at least on its surface to pure iron, followed by cooling the product to a melting bath temperature.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 28, 2014
    Assignee: ThyssenKrupp Steel AG
    Inventors: Ronny Leuschner, Manfred Meurer, Wilhelm Warnecke, Sabine Zeizinger, Gernot Nothacker, Michael Ullmann, Norbert Schaffrath
  • Patent number: 8632890
    Abstract: A method for forming a nickel aluminide based coating on a metallic substrate includes providing a first source for providing a significant portion of the aluminum content for a coating precursor and a separate nickel alloy source for providing substantially all the nickel and additional alloying elements for the coating precursor. Cathodic arc (ion plasma) deposition techniques may be utilized to provide the coating precursor on a metallic substrate. The coating precursor may be provided in discrete layers, or from a co-deposition process. Subsequent processing or heat treatment forms the nickel aluminide based coating from the coating precursor.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Don Mark Lipkin, Michael Howard Rucker, Rudolfo Viguie
  • Patent number: 8628861
    Abstract: Herein are disclosed steel forms having stainless steel exteriors that pass a 0T-bend Advanced T-bend Test. One steel form has a stainless steel exterior; the steel form includes a core region that comprises at least 55 wt. % iron which is metallurgically bonded to a stainless steel coating that consists of a stainless steel region and a bonding region. The stainless steel region can have a thickness of about 1 ?m to about 250 ?m, and a stainless steel composition that is approximately consistent across the thickness of the stainless steel region. The stainless steel composition can include an admixture of iron and about 10 wt. % to about 30 wt. % chromium. The bonding region is positioned between the stainless steel region and the core region, has a thickness that is greater than 1 ?m and less than the thickness of the stainless steel region, and has a bonding composition.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 14, 2014
    Assignee: Arcanum Alloy Design Inc.
    Inventors: Daniel E. Bullard, Joseph E. McDermott
  • Publication number: 20140007989
    Abstract: Provided in one embodiment is a method of selective microstructural transformation, comprising: providing a part comprising a bulk amorphous alloy; heating selectively a portion of the part to a first temperature such that at least some of the portion is transformed into a crystalline phase; and processing the transformed portion.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Inventors: CHRISTOPHER D. PREST, Matthew S. Scott, Stephen P. Zadesky, Dermot J. Stratton, Joseph C. Poole
  • Patent number: 8613811
    Abstract: The present invention provides a graphene-coated member of a novel structure, and a process for producing such graphene-coated members. A graphene-coated member according to a first invention is a graphene-coated member that has a graphene film on a surface of a metallic base of a desired shape. The base includes carbon in a solid-solution state, and the graphene film is formed from solid-solution carbon precipitated at the base surface.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 24, 2013
    Assignee: National Institute for Materials Science
    Inventors: Daisuke Fujita, Keisuke Sagisaka, Keiko Onishi
  • Patent number: 8613374
    Abstract: A fuel tank for a vehicle is made of a cast aluminum alloy and has good ductility and toughness. The cast aluminum alloy is subjected to a heat treatment at a temperature of no less than about 350° C. and no more than about 390° C. to possess a Vickers hardness of about 70 HV or less.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 24, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Toru Kitsunai, Atsushi Hirose
  • Patent number: 8608875
    Abstract: A steel manufacturing process can include forming an iron oxide layer on a hot band during hot rolling; reducing the iron oxide layer on the hot band to form a sponge iron layer that includes pores; the sponge-iron layer having a thickness in a range of about 0.05 ?m to about 1000 ?m, about 0.1 ?m to about 100 ?m, or about 5 ?m to about 25 ?m; and depositing an alloying element into the pores of the sponge iron layer to form an impregnated sponge-iron layer. The process can further include annealing the impregnated sponge-iron layer to produce an iron alloy layer carried by the substrate.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 17, 2013
    Assignee: Arcanum Alloy Design Inc.
    Inventor: Daniel E. Bullard
  • Publication number: 20130304178
    Abstract: The present invention relates to a method for manufacturing an implant, in particular an intraluminal endoprosthesis, having a body containing metallic material, preferably iron. For controlling the degradation of the implant the method includes the following steps: (a) providing a first part of the implant body; and (b) performing heat treatment which alters the carbon content and/or the boron content and/or the nitrogen content in the structure of a near-surface boundary layer in the first part of the implant body in such a way that strain on the lattice or a lattice transformation, optionally following a subsequent mechanical load, is achieved in the near-surface boundary layer. Such an implant is also described.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 14, 2013
    Inventors: Ullrich Bayer, Bodo Gerold
  • Patent number: 8562759
    Abstract: Disclosed herein are iron-based alloys having a structure comprising fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the step determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: October 22, 2013
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Patent number: 8562760
    Abstract: Disclosed herein are iron-based alloys having a microstructure comprising a fine-grained ferritic matrix and having a 60+ Rockwell C surface, wherein the ferritic matrix comprises <10 ?m Nb and W carbide precipitates. Also disclosed are methods of welding comprising forming a crack free hardbanding weld overlay coating with such an iron-based alloy. Also disclosed are methods of designing an alloy capable of forming a crack free hardbanding weld overlay, the methods comprising the steps of determining an amorphous forming epicenter composition, determining a variant composition having a predetermined change in constituent elements from the amorphous forming epicenter composition, and forming and analyzing an alloy having the variant composition.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Scoperta, Inc.
    Inventors: Justin Lee Cheney, John Hamilton Madok
  • Publication number: 20130270221
    Abstract: A method for making a bit-patterned-media magnetic recording disk with discrete magnetic islands includes annealing the data islands after they have been formed by an etching process. A hard mask, such as a layer of silicon nitride or carbon, may be first formed on the recording layer and a patterned resist formed on the hard mask. The resist pattern is then transferred into the hard mask, which is used as the etch mask to etch the recording layer and form the discrete data islands. After the data islands are formed by the etching process, the patterned recording layer is annealed. The annealing may be done in a vacuum, or in an inert gas, like helium or argon, or in a forming gas such as a reducing atmosphere of argon plus hydrogen. The annealing improves the coercivity, the effective saturation magnetization and the thermal stability of the patterned media.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Inventors: Michael Konrad Grobis, Olav Hellwig, Ernesto E. Marinero, Andrew Thomas McCallum, Dieter K. Weller
  • Patent number: 8557397
    Abstract: A steel form having a stainless steel exterior; the steel form includes a core region that comprises at least 55 wt. % iron which is metallurgically bonded to a stainless steel coating that consists of a stainless steel region and a bonding region. The stainless steel region can have a thickness of about 1 ?m to about 250 ?m, and a stainless steel composition that is approximately consistent across the thickness of the stainless steel region. The stainless steel composition includes an admixture of iron and about 10 wt. % to about 30 wt. % chromium. The bonding region is positioned between the stainless steel region and the core region, has a thickness that is greater than 1 ?m and less than the thickness of the stainless steel region, and has a bonding composition.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 15, 2013
    Assignee: Arcanum Alloy Design Inc.
    Inventors: Daniel E. Bullard, Joseph E. McDermott
  • Publication number: 20130263976
    Abstract: According to the present invention, a grain oriented electrical steel sheet in which iron loss has been further reduced can be obtained by carrying out decarburization annealing as continuous annealing including: (1) heating the steel sheet to a temperature in the range of 700° C. to 750° C. at heating rate of 50° C./second or higher at least in a temperature range of 500° C. to 700° C. in an atmosphere having oxidation potential P(H2O)/P(H2) equal to or lower than 0.05; (2) then cooling the steel sheet to a temperature range below 700° C. in an atmosphere having oxidation potential P(H2O)/P(H2) equal to or lower than 0.05; and (3) reheating the steel sheet to a temperature in the range of 800° C. to 900° C. and retaining the steel sheet at the temperature for soaking in an atmosphere having oxidation potential P(H2O)/P(H2) equal to or higher than 0.3.
    Type: Application
    Filed: November 25, 2011
    Publication date: October 10, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Omura, Gou Kijima, Makoto Watanabe
  • Publication number: 20130260167
    Abstract: A steel base material 11 is subjected to a quenching step, a machining step, a plating step, and a tempering step to form a rod 4. In the quenching step, two axially spaced portions of the steel base material 11 are quenched to form quenched portions 12 and 13. In the machining step, plastic working or cutting is performed on a portion of the steel base material 11 between the two quenched portions 12 and 13 to form a full-circumferential groove 4C1 in a machined portion 4C. In the plating step, the quenched portion 12 is not plated, but a region of the steel base material 11 including the quenched portion 13 is plated to form a coating layer 16. In the tempering step, the quenched portions 12 and 13 are tempered.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 3, 2013
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yuichi KOBAYASHI, Takeshi MURAKAMI
  • Publication number: 20130248060
    Abstract: A strain aging hardening type steel sheet excellent in aging resistance, and manufacturing method thereof, said steel sheet comprises: in mass %, C: 0.0010 to 0.010%; Si: 0.005 to 1.0%; Mn: 0.08 to 1.0%; P: 0.003 to 0.10%; S: 0.0005 to 0.020%; Al: 0.010 to 0.10%; Cr: 0.005 to 0.20%; Mo: 0.005 to 0.20%; Ti: 0.002 to 0.10%; Nb: 0.002 to 0.10%; N: 0.001 to 0.005%; and a balance being composed of Fe and inevitable impurities, in which a ferrite fraction is 98% or more, an average grain diameter of ferrite is 5 to 30 ?m, a minimum value of dislocation density in a portion having a ½ thickness of a sheet thickness and a minimum value of dislocation density in a surface layer portion are each 5×1012/m2 or more, and an average dislocation density falls within a range of 5×1012 to 1×1015/m2.
    Type: Application
    Filed: June 22, 2011
    Publication date: September 26, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naoki Maruyama, Koji Hashimoto, Masaharu Kameda
  • Publication number: 20130228252
    Abstract: An aluminium alloy rolled sheet product for forming into automotive body panels, and having a yield strength of more than 160 MPa after being subjected to a paint-bake cycle, and having a gauge in a range of 0.5 to 4 mm, and preferably 0.7 to 3.5 mm, and having a composition of, in wt.%: Zn 1.5 to 4.0, Mg 0.3 to 1.5, Cu 0 to 1.0, Ti 0 to 0.15, Fe 0 to 0.35, Si 0 to 0.5, other elements and unavoidable impurities, and balance aluminium. An automotive body part formed from such an aluminium sheet. A method of manufacturing an automotive body part. Also, the use of the aluminium alloy sheet product in such a method of manufacturing.
    Type: Application
    Filed: October 28, 2011
    Publication date: September 5, 2013
    Applicant: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla, Bruno Schepers, Alastair Wise
  • Patent number: 8524376
    Abstract: In an Sn-plated strip in which a copper alloy containing 15 to 40 mass % of Zn in terms of an average concentration is used as an alloy strip and the layers of an Sn phase, an Sn—Cu alloy phase and an Ni phase constitute a plating film from the surface to the alloy strip, the Zn concentration of the surface of the Sn phase is adjusted to a range of 0.1 to 5.0 mass %. The alloy may further contain 0.005 to 3.0 mass % in total of an arbitrary constituent selected from Sn, Ag, Pb, Fe, Ni, Mn, Si, Al and Ti. Moreover, the alloy may be a copper base alloy containing 15 to 40 mass % of Zn, 8 to 20 mass % of Ni, 0 to 0.5 mass % of Mn and a balance of Cu and unavoidable impurities, and may further contain 0.005 to 10 mass % in total of the above arbitrary constituent. There is provided a Cu/Ni double layer base reflowed Sn-plated Cu—Zn alloy strip in which generation of whiskers is suppressed.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: September 3, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Takaaki Hatano
  • Patent number: 8524540
    Abstract: A process for increasing the adhesion of a polymeric material to a metal surface, the process comprising contacting the metal surface with an adhesion promoting composition comprising: 1) an oxidizer; 2) an inorganic acid; 3) a corrosion inhibitor; and 4) an organic phosphonate; and thereafter b) bonding the polymeric material to the metal surface. The organic phosphonate aids in stabilizing the oxidizer and organic components present in the bath and prevents decomposition of the components, thereby increasing the working life of the bath, especially when used with copper alloys having a high iron content.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 3, 2013
    Inventor: Nilesh Kapadia
  • Publication number: 20130220490
    Abstract: The present invention provides a steel sheet with chemical components including, by mass%, 0.18-0.35% of C, 1.0%-3.0% of Mn, 0.01%-1.0% of Si, 0.001%-0.02% of P, 0.0005%-0.01% of S, 0.001%-0.01% of N, 0.01%-1.0% of Al, 0.005%-0.2% of Ti, 0.0002%-0.005% of B, and 0.002%-2.0% of Cr, and the balance of Fe and inevitable impurities, wherein: by volume%, a fraction of the ferrite is 50% or more, and a fraction of a non-recrystallized ferrite is 30% or less; and Cr?/CrM is 2 or less, where Cr? is a concentration of Cr subjected to solid solution in iron carbide and CrM is a concentration of Cr subjected to solid solution in a base material, or Mn0/MnM is 10 or less, where Mn0 is a concentration of Mn subjected to solid solution in an iron carbide, and MnM is a concentration of Mn subjected to solid solution in a base material.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 29, 2013
    Inventors: Kunio Hayashi, Toshimitsu Aso, Toshimasa Tomokiyo
  • Publication number: 20130216790
    Abstract: A method of manufacturing a formed aluminium alloy structural part or a body-in-white (BIW) part of a motor vehicle. The method includes: providing a rolled aluminium sheet product wherein the aluminium alloy is an AA7000-series aluminium alloy and has a gauge in a range of 0.5-4 mm and is subjected to a solution heat treatment and has been cooled, forming the aluminium alloy sheet to obtain a three-dimensional formed part, heating the three-dimensional formed part to at least one pre-ageing temperature between 50-250° C., and subjecting the formed and pre-aged motor vehicle component to a paint bake cycle.
    Type: Application
    Filed: November 2, 2011
    Publication date: August 22, 2013
    Applicant: ALERIS ALUMINUM DUFFEL BVBA
    Inventors: Axel Alexander Maria Smeyers, Sunil Khosla
  • Publication number: 20130209832
    Abstract: Provided is a metal coated steel sheet having a coating layer including a metal having a level of Gibbs free energy equal to that of Fe or above and an oxide thereof. Accordingly, the quality of a plated steel sheet may be improved by preventing the generation of bare spots through inhibition of the formation of Mn oxide, Si oxide, or Al oxide on the surface thereof, and simultaneously, the complexity of a manufacturing facility or an increase in manufacturing costs may be minimized. Economic benefits are thus realized.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 15, 2013
    Applicant: POSCO
    Inventors: Myung-Soo Kim, Ju-Youn Lee, Young-Ha Kim, Jong-Sang Kim
  • Publication number: 20130209794
    Abstract: A light emission apparatus (10) and a manufacturing method thereof are provided. The light emission apparatus includes a light emission base body (13) and a metal layer (14) with metal microstructure. The metal layer is set on the surface of the light emission base body. The material of light emission base body is transparent ceramic Y3Al5O12:Tb. By setting a metal layer with metal microstructure on the light emission base body, the interface between the metal layer and the light emission base body could form a surface plasmon under the cathode ray (16). The spontaneous emission of the transparent ceramic and the emission efficiency of the light emission base body could be enhanced by the effect of surface plasmon.
    Type: Application
    Filed: December 20, 2010
    Publication date: August 15, 2013
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Publication number: 20130192725
    Abstract: A high strength steel sheet excellent in warm stamp formability and a method for manufacturing the same. The steel has a composition containing, in terms of % by mass, C: 0.01 to 0.2%, Si: 0.5% or lower, Mn: 2% or lower, P: 0.03% or lower, S: 0.01% or lower, Al: 0.07% or lower, and N: 0.01% or lower and further containing one or two or more elements selected from Ti, Nb, V, Mo, W, and B.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 1, 2013
    Applicant: JFE STEEL CORPORATION
    Inventor: Yoshimasa Funakawa
  • Publication number: 20130171470
    Abstract: An alloy wire made of a material selected from one of a group consisting of a silver-gold alloy, a silver-palladium alloy and a silver-gold-palladium alloy is provided. The alloy wire is with a polycrystalline structure of a face-centered cubic lattice and includes a plurality of grains. A central part of the alloy wire includes slender grains or equi-axial grains, and the other parts of the alloy wire consist of equi-axial grains. A quantity of the grains having annealing twins was 20 percent or more of the total quantity of the grains of the alloy wire.
    Type: Application
    Filed: June 13, 2012
    Publication date: July 4, 2013
    Inventors: Jun-Der LEE, Hsing-Hua TSAI, Tung-Han CHUANG
  • Patent number: 8475609
    Abstract: A method of treating an Al/Zn-based alloy coated product that includes an Al/Zn-based alloy coating on a substrate is disclosed. The method includes the steps of rapid intense heating of the alloy coating for a very short duration, and rapid cooling of the alloy coating, and forming a modified crystalline microstructure of the alloy coating.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 2, 2013
    Assignee: Bluescope Steel Limited
    Inventors: Qiyang Liu, Ross McDowall Smith, Bryan Andrew Shedden
  • Publication number: 20130160897
    Abstract: The present invention has as objective a procedure for the oriented-grain magnetic sheet that provides particular operative hot rolling mill conditions of silicon steel slabs, by means which it is possible to highly contain the heterogeneities of hot rolled sheet re-crystallization. The use of these operative conditions permits to reduce the growing tendency of the crystallized grain during the annealing of the sheets at a final thickness that precedes the secondary oriented re-crystallization. Contemporarily, the particular operational conditions of hot rolling mill according to the invention permit a fine precipitation of secondary phases useful to the control of the grain growing, starting from a quantity of sulphur (S) and nitrogen (N) in matrix lower than corresponding provided by the conventional technologies and consequently disposable in metallic solid solution before the rolling after the heating of the slabs at temperature values lower than 1300° C.
    Type: Application
    Filed: June 25, 2012
    Publication date: June 27, 2013
    Applicant: CENTRO SVILUPPO MATERIALI S.P.A.
    Inventors: Giuseppe ABBRUZZZESE, Stefano Cicale, Stefano Fortunati
  • Publication number: 20130160901
    Abstract: A grain oriented electrical steel sheet has linear grooves for magnetic domain refinement formed on a surface thereof and may reduce iron loss by using these linear grooves, where the proportion of those linear grooves having crystal grains directly beneath themselves, each crystal grain having an orientation deviating from the Goss orientation by 10° or more and a grain size of 5 ?m or more, is controlled to 20% or less, and secondary recrystallized grains are controlled to have an average ? angle of 2.0° or less, and each secondary recrystallized grain having a grain size of 10 mm or more is controlled to have an average ?-angle variation of 1° to 4°.
    Type: Application
    Filed: September 9, 2011
    Publication date: June 27, 2013
    Applicant: JFE Steel Corporation
    Inventors: Takeshi Omura, Hirotaka Inoue, Hiroi Yamaguchi, Seiji Okabe, Yasuyuki Hayakawa
  • Publication number: 20130118649
    Abstract: A method for simultaneously annealing and applying a coating to a spring includes heating the spring up to a predetermined temperature that exceeds an upper limit of a permissible baking temperature range of the coating. The surface temperature of the spring then allowed to decrease to within the permissible baking temperature range of the coating, and then the coating is applied to a surface of the spring. The coating is then baked onto the surface of the spring while cooling the spring for at least a portion of the baking step. The heating and baking steps together achieve a predetermined low temperature annealing effect in the spring.
    Type: Application
    Filed: March 15, 2011
    Publication date: May 16, 2013
    Applicant: CHUO HATSUJO KABUSHIKI KAISHA
    Inventors: Yuichi Hirata, Yoshitaka Ukei, Hidekazu Suzuki
  • Publication number: 20130096666
    Abstract: The present disclosure is directed to a drug-eluting implantable medical devices that includes a tantalum-alloy body having a drug-eluting coating thereon for delivering a drug to treat, for example, restenosis. In an embodiment, an implantable medical device includes a body sized and configured to be implanted in a living subject. At least a portion of the body may comprise a tantalum alloy. The tantalum alloy includes a tantalum content of about 77 weight % (“wt %”) to about 92 wt %, a niobium content of about 7 wt % to about 13 wt %, and a tungsten content of about 1 wt % to about 10 wt %. The tantalum alloy exhibits at least one mechanical property modified by heat treatment thereof. The body has a drug-eluting coating thereon.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS, INC.
    Inventors: Rainer Bregulla, Randolf Von Oepen, Pamela A. Kramer-Brown, Austin M. Leach
  • Publication number: 20130087254
    Abstract: A high strength hot-rolled steel sheet has a composition containing more than 0.035% to 0.055% C, 0.2% or less Si, 0.35% or less Mn, 0.03% or less P, 0.03% or less S, 0.1% or less Al, 0.01% or less N, 0.08% to 0.25% Ti, and 0.0005% to 0.0035% B on a mass basis, solute B being 0.0005% or more, the remainder being Fe and unavoidable impurities; a matrix containing a ferrite phase having an area fraction of more than 95%; a microstructure in which Ti carbides having an average grain size of less than 10 nm are finely precipitated in grains of the ferrite phase and the volume fraction of the Ti carbides is 0.0015 to 0.007; and a tensile strength of 780 MPa or more.
    Type: Application
    Filed: June 23, 2011
    Publication date: April 11, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshimasa Funakawa, Tamako Ariga, Noriaki Moriyasu, Takayuki Murata
  • Publication number: 20130074993
    Abstract: A nickel based alloy coating and a method for applying the nickel based alloy as a coating to a substrate. The nickel based alloy comprises about 0.1-15% rhenium, about 5-55% of an element selected from the group consisting of cobalt, iron and combinations thereof, sulfur included as a microalloying addition in amounts from about 100 parts per million (ppm) to about 300 ppm, the balance nickel and incidental impurities. The nickel-based alloy of the present invention is applied to a substrate, usually an electro-mechanical device such as a MEMS, by well-known plating techniques. However, the plating bath must include sufficient sulfur to result in deposition of 100-300 ppm sulfur as a microalloyed element. The coated substrate is heat treated to develop a two phase microstructure in the coating.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 28, 2013
    Applicant: TYCO ELECTRONICS CORPORATION
    Inventor: TYCO ELECTRONICS CORPORATION
  • Patent number: 8404358
    Abstract: A galvannealed steel sheet includes: a steel sheet; a galvannealed layer; and a Mn—P based oxide film. A Zn—Fe alloy phase in the galvannealed layer is measured by X-ray diffractometry. The value of a diffraction intensity ?(2.59 ?) of ? phase divided by a diffraction intensity ?1(2.13 ?) of ?1 phase is less than or equal to 0.1. The value of a diffraction intensity ?(1.26 ?) of ? phase divided by a diffraction intensity ?1(2.13 ?) of ?1 phase is greater than or equal to 0.1 and less than or equal to 0.4. The Mn—P based oxide film is formed using 5 to 100 mg/m2 of Mn and 3 to 500 mg/m2 of P on a surface of the galvannealed layer.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: March 26, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masao Kurosaki, Jun Maki, Hiroyuki Tanaka, Shintaroh Yamanaka
  • Publication number: 20130066001
    Abstract: The invention relates to a reinforced composite having an unplasticized polyvinyl chloride (PVC) matrix reinforced by means of elongated steel element provided with a coating of acrylate based polymer. The yield strength of elongated steel element of the present invention at 0.01% permanent elongation is at least 1500 MPa. The invention also relates to In one aspect, the present invention relates to a reinforced composite having an unplasticized PVC matrix reinforced by means of elongated steel element, wherein said elongated steel element is coated with a layer of acrylate based polymer followed by a coating of tie layer, wherein said tie layer comprises a mixture of PVC and a plasticizer.
    Type: Application
    Filed: May 9, 2011
    Publication date: March 14, 2013
    Inventors: Alain Leplae, Danny Gonnissen, Filip Acx, David Verstraete
  • Patent number: 8394213
    Abstract: A method for coating hot-rolled or cold-rolled steel strip containing 6-30 wt %. Mn with a metallic protective layer, includes annealing the steel strip at a temperature of 800-1100° C. under an annealing atmosphere containing nitrogen, water and hydrogen and then subjecting the steel strip to hot dip coating. The method provide an economical way of hot dip coating a high manganiferous sheet steel in that, in order to produce a metallic protective layer substantially free from oxidic sub-layers on the steel strip, the % H2O/% H2 ratio of the water content % H2O to the hydrogen content % H2 in the annealing atmosphere is adjusted as a function of the respective annealing temperature TG as follows: % H2O/% H2?8·10?15·TG3.529.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 12, 2013
    Assignee: ThyssenKrupp Steel AG
    Inventors: Manfred Meurer, Ronny Leuschner, Harald Hofmann
  • Publication number: 20130059084
    Abstract: A method of forming a metallic wetting layer on the surface of a metal component is provided, including the steps of placing the component into a chemical vapor deposition furnace, placing a metal-containing salt in the furnace, and heating the component and the metal-containing salt in the furnace to cause the metal from the metal-containing salt to deposit in a coating on the surface of the component forming a metallic wetting layer that improves the metallic bond of a subsequently applied brazing material. The process can be practiced with the addition of a cleaning reagent to both clean and coat in one operation.
    Type: Application
    Filed: May 17, 2011
    Publication date: March 7, 2013
    Inventors: David C. Fairbourn, Richard Patrick Chesnes
  • Publication number: 20130046286
    Abstract: Guide wire devices and methods for their manufacture. The guide wire devices described herein include an elongate guide wire member that includes at least one section fabricated from a nickel-titanium (Ni—Ti) alloy that exhibits an elevated plateau stress and a narrowed stress hysteresis profile (e.g., a plateau stress of about 500 MPa to about 820 MPa and a stress hysteresis width in a range from about 250 MPa to about 80 MPa). Raising the plateau stress and narrowing the stress hysteresis width of Ni—Ti used in a guide wire device can significantly improve the steerability of the guide wire device while maintaining the flexibility, durability, and kink resistance that is typical of superelastic Ni—Ti alloys.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS
    Inventor: John A. Simpson
  • Publication number: 20130037178
    Abstract: A press-hardened steel component and a method of producing the same. In one form, a workpiece that will be formed into the component includes a coating that is pre-diffused with metal from the workpiece substrate. Examples of such protective coatings may include aluminum-based coatings, as well as from aluminum and silicon combinations. The pre-diffusion of the workpiece permits it to be subjected to the high heating rate of a subsequent press hardening operation without causing localized melting or vaporization of the protective coating.
    Type: Application
    Filed: July 26, 2012
    Publication date: February 14, 2013
    Applicant: GENERAL MOTORS COMPANY
    Inventors: Jason J. Coryell, Paul J. Belanger
  • Publication number: 20130034748
    Abstract: The present invention provides: a method of producing, at low temperature, a magnetic recording medium comprising an L10FePt thin film which is highly (001)-oriented and highly L10-ordered; and a magnetic recording medium comprising an L10FePt thin film that can be obtained by this method. In the production method of a magnetic recording medium (10), a thin film formation step S1 of forming a thin film 2 containing an FePt alloy and an oxide of metal having a melting point of 100° C. or more and 500° C. or less is carried out; an annealing step S2 of annealing the thin film 2 to a predetermined temperature is carried out; thereby a magnetic recording layer 2? containing the FePt alloy having a L10-ordered structure and the oxide of metal is formed. The magnetic recording medium can be obtained by this production method.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 7, 2013
    Applicant: AKITA UNIVERSITY
    Inventors: Shunji Ishio, Shun Shibata
  • Publication number: 20130019998
    Abstract: A method of cold forming titanium alloy sheet metal, the titanium alloy consisting of 5.5 to 6.75 wt % aluminium, 3.5 to 4.5 wt % vanadium and the balance titanium plus incidental impurities, the method comprising the steps of (a) heat treating at 700° C. for at least 30 minutes and (b) cold forming at room temperature. Step (b) may comprise bending the titanium alloy sheet metal using a press brake. Step (b) may comprise placing a neoprene rubber film or a rubber film between the titanium alloy sheet metal and a lower V of the press brake. Step (b) may comprise placing the titanium alloy sheet metal into the press brake such that the grain of the titanium alloy sheet metal is arranged at an angle to the bend axis of the press brake. The method reduces and preferably overcomes cracking of the titanium alloy sheet metal during cold forming.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 24, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: Antony J. MORTON
  • Patent number: RE44153
    Abstract: Hot-rolled steel sheet which then can be cold-rolled, coated, the steel in the sheet having the following composition by weight: 0.15%<carbon<0.5% 0.5%<manganese<3% 0.1%<silicon<0.5% 0.01%<chromium<1% titanium<0.2% aluminum<0.1% phosphorus<0.1% sulfur<0.05% 0.0005%<boron<0.08%, the remainder being iron and impurities inherent in processing, the sheet ensuring a very high mechanical resistance after thermal treatment and the aluminum-based coating ensuring a high resistance to corrosion.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: April 16, 2013
    Assignee: ArcelorMittal Atlantique et Lorraine
    Inventors: Jean-Pierre Laurent, Jean-Paul Hennechart, Dominique Spehner, Jacques Devroc