With Working Patents (Class 148/557)
  • Publication number: 20130000794
    Abstract: A soft magnetic alloy is provided that consists essentially of 47 weight percent ?Co?50 weight percent, 1 weight percent V?3 weight percent, 0 weight percent ?Ni?0.2 weight percent, 0.08 weight percent ?Nb?0.12 weight percent, 0 weight percent ?C?0.005 weight percent, 0 weight percent ?Mn?0.1 weight percent, 0 weight percent ?Si?0.1 weight percent, remainder Fe.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 3, 2013
    Applicant: Vacuumschmelze GmbH & Co. KG
    Inventors: Witold PIEPER, Niklas VOLBERS, Joachim GERSTER
  • Patent number: 8329094
    Abstract: A magnesium alloy having excellent strength and elongation at high temperatures and further having excellent creep characteristics at high temperatures. Also provided is a process for producing the alloy. In producing the magnesium alloy, a magnesium alloy containing yttrium and samarium in respective specific amounts is cast and the resultant cast is subjected to a solution heat treatment, subsequently hot working, and then an aging treatment, thereby reducing the average crystal grain diameter of the structure. In addition, the amounts of the yttrium and samarium in solution in the magnesium matrix are balanced with the number of precipitate particles of a specific size in the crystal grains. The magnesium alloy thus obtained has excellent strength and elongation at high temperatures and further having excellent creep characteristics at high temperatures.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 11, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Toshiaki Takagi, Mamoru Nagao
  • Publication number: 20120305145
    Abstract: A method of forming a wrought material having a refined grain structure is provided. The method comprises providing a metal alloy material having a depressed solidus temperature and a low temperature eutectic phase transformation. The metal alloy material is molded and rapidly solidified to form a fine grain precursor that has fine grains surrounded by a eutectic phase with fine dendritic arm spacing. The fine grain precursor is plastic deformed at a high strain rate to cause recrystallization without substantial shear banding to form a fine grain structural wrought form. The wrought form is then thermally treated to precipitate the eutectic phase into nanometer sized dispersoids within the fine grains and grain boundaries and to define a thermally treated fine grain structure wrought form having grains finer than the fine grains and the fine dendritic arm spacing of the fine grain precursor.
    Type: Application
    Filed: February 4, 2011
    Publication date: December 6, 2012
    Inventors: Raymond F. Decker, Jack Huang, Sanjay G. Kulkarni, Stephen E. Lebeau, Ralph E. Vining
  • Publication number: 20120227868
    Abstract: The present invention provides a very lightweight magnesium-lithium alloy which has both corrosion resistance and cold workability balanced at high levels, a certain degree of tensile strength, low surface electrical resistivity, as well as a rolled material and a formed article made of the alloy, and a method of producing the alloy, by means of a magnesium-lithium alloy containing not less than 10.5 mass % and not more than 16.0 mass % Li, not less than 0.50 mass % and not more than 1.50 mass % Al, and the balance of Mg, and having an average crystal grain size of not smaller than 5 ?m and not larger than 40 ?m, a tensile strength of not lower than 150 MPa, and a surface electrical resistivity of not higher than 1? as measured with an ammeter by pressing a cylindrical two-point probe with a pin-to-pin spacing of 10 mm and a pin tip diameter of 2 mm (contact surface area of one pin is 3.14 mm2), against an alloy surface at a load of 240 g.
    Type: Application
    Filed: September 10, 2010
    Publication date: September 13, 2012
    Applicant: SANTOKU CORPORATION
    Inventors: Kenki Kin, Takeki Matsumura, Shinji Namba, Shinichi Umino, Takayuki Goto
  • Publication number: 20120222784
    Abstract: The present invention provides a magnesium-lithium alloy having both corrosion resistance and cold workability balanced at high levels, a certain degree of tensile strength, and very light weight, as well as a rolled material and a formed article made of this alloy. The alloy of the invention contains not less than 10.5 mass % and not more than 16.0 mass % Li, not less than 0.50 mass % and not more than 1.50 mass % Al, and the balance of Mg, and has an average crystal grain size of not smaller than 5 ?m and not larger than 40 ?m, and a tensile strength of not lower than 150 MPa or a Vickers hardness (HV) of not lower than 50.
    Type: Application
    Filed: December 25, 2009
    Publication date: September 6, 2012
    Applicant: SANTOKU CORPORATION
    Inventors: Kenki Kin, Takeki Matsumura, Shinji Namba, Shinichi Umino, Takayuki Goto, Yuji Tanibuchi, Yukihiro Yokoyama
  • Publication number: 20120222783
    Abstract: The invention relates to a method for producing a strip made of an AlMgSi alloy in which a rolling ingot is cast of an AlMgSi alloy, the rolling ingot is subjected to homogenization, the rolling ingot which has been brought to rolling temperature is hot-rolled, and then is optionally cold-rolled to the final thickness thereof. The problem of providing a method for producing an aluminum strip made of an AlMgSi alloy and an aluminum strip, which has a higher breaking elongation with constant strength and therefore enables higher degrees of deformation in producing structured metal sheets, is solved in that the hot strip has a temperature of no more than 130° C. directly at the exit of the last rolling pass, preferably a temperature of no more than 100° C., and the hot strip is coiled at that or a lower temperature.
    Type: Application
    Filed: December 29, 2011
    Publication date: September 6, 2012
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Henk-Jan Brinkman, Thomas Wirtz, Dietmar Schröder, Eike Brünger, Kai-Friedrich Karhausen
  • Publication number: 20120202085
    Abstract: An alpha-beta Ti alloy having improved mechanical and ballistic properties formed using a low-cost composition is disclosed. In one embodiment, the Ti alloy composition, in weight percent, is 4.2 to 5.4% aluminum, 2.5 to 3.5% vanadium, 0.5 to 0.7% iron, 0.15 to 0.19% oxygen and balance titanium. The exemplary Ti alloy exhibits a tensile yield strength of at least about 120,000 psi and an ultimate tensile strength of at least about 128,000 psi in both longitudinal and transverse directions, a reduction in area of at least about 43%, an elongation of at least about 12% and about a 0.430-inch-thick plate has a V50 ballistic limit of about 1936 fps. The Ti alloy may be manufactured using a combination of recycled and/or virgin materials, thereby providing a low-cost route to the formation of high-quality armor plate for use in military systems.
    Type: Application
    Filed: August 5, 2010
    Publication date: August 9, 2012
    Applicant: TITANIUM METALS CORPORATION
    Inventor: John Fanning
  • Publication number: 20120168042
    Abstract: A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of ?? martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.
    Type: Application
    Filed: September 22, 2010
    Publication date: July 5, 2012
    Applicants: TOHOKU UNIVERSITY, NHK SPRING CO., LTD.
    Inventors: Sang-Hak Lee, Yoshiki Ono, Kazuya Ikai, Hiroaki Matsumoto, Akihiko Chiba
  • Publication number: 20120145287
    Abstract: Disclosed herein are a zirconium alloy composition, which exhibits excellent corrosion resistance by varying the kinds of metal oxides and controlling the size of precipitates of the composition, including: 1.05˜1.45 wt % of Nb; one or more selected from the group consisting of 0.1˜0.7 wt % of Fe and 0.05˜0.6 wt % of Cr; and residual Zr, and a method of preparing the same. The zirconium alloy composition exhibits excellent corrosion resistance by controlling the kinds and amounts of the elements included in the zirconium alloy composition and the heat-treatment temperature and thus varying the kinds of metal oxides formed during an oxidation process and controlling the size of precipitates of the zirconium alloy, so that it can be usefully used as a raw material for nuclear fuel cladding tubes, spacer grids, nuclear reactor internals and the like of a light-water reactor or a heavy-water reactor in a nuclear power plant.
    Type: Application
    Filed: February 25, 2009
    Publication date: June 14, 2012
    Applicant: Korea Atomic Energy Research Institute
    Inventors: Hyun Gil Kim, Yong Hwan Jeong, Byoung Kwon Choi, Sang Yoon Park, Myung Ho Lee, Jeong Yong Park, Jun Hwan Kim
  • Publication number: 20120148412
    Abstract: Articles that are cast from a particular titanium alloy can achieve a relatively high fatigue strength. The titanium alloy is an (?+?) titanium alloy that has a nominal composition of about 5.5 to about 6.63 mass percent aluminum, about 3.5 to about 4.5 mass percent vanadium, about 1.0 to about 2.5 mass percent chromium, maximum of 0.50 mass percent iron, about 0.15 to about 0.25 mass percent oxygen, about 0.06 to about 0.12 mass percent silicon, and at least 80 mass percent titanium or the balance titanium (Ti) with the exception of some allowable impurities. In one exemplary application, this titanium alloy may be used to cast a turbocharger compressor wheel.
    Type: Application
    Filed: June 24, 2010
    Publication date: June 14, 2012
    Applicant: BORGWARNER INC.
    Inventor: David Decker
  • Publication number: 20120138196
    Abstract: Disclosed is a hydrogen separation alloy which is adoptable to a product having a large surface area of a side where hydrogen permeates and which has such a metallographic structure as to improve hydrogen permeability and to improve hydrogen-embrittlement resistance. The hydrogen separation alloy used herein is represented by the compositional formula: Nb100?(?+?)M1?M2? where M1 is at least one element selected from the group consisting of Ti, Zr and Hf; M2 is at least one element selected from the group consisting of Ni, Co, Cr, Fe, Cu and Zn; 10???60, 10???50, and ?+??80. The alloy contains inevitable impurities. And the alloy includes two phases, i.e., an Nb-M1 phase serving as a hydrogen-permeable phase, and a M2-M1 phase serving as a hydrogen-embrittlement-resistant phase. The hydrogen-permeable phase and the hydrogen-embrittlement-resistant phase have an elongated structure resulting from rolling.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 7, 2012
    Inventors: Kazuhiro Yamamura, Masahiro Tobise
  • Patent number: 8186995
    Abstract: A fire-starter device for survival or emergency use has a handle portion and case portion that twist together, to sheath a mischmetal flint rod inside the case, and a seal ring protects the flint rod from environmental moisture. The case has a steel strike plate and a guide channel. The mischmetal flint rod favorably has a composition of cerium—50%, lanthanum—26%, magnesium—10%, praseodymium—3%, neodymium—1%, and iron—10%.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 29, 2012
    Inventor: Andrew C. Putrello, Jr.
  • Publication number: 20120093679
    Abstract: The invention relates to a method for the production of tools for a chip-removing machining of metallic materials and to a tool with improved wear resistance and/or high toughness. The invention further provides an alloyed steel with a chemical composition comprising carbon, silicon, manganese, chromium, molybdenum, tungsten, vanadium, and cobalt as well as aluminum, nitrogen, and iron. The alloyed steel may be used to make tools to a hardness of greater than 66 HRC and increased chip-removing machining performance.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Applicant: BOEHLER EDELSTAHL GMBH & CO. KG
    Inventors: Gert KELLEZI, Devrim CALISKANOGLU, Andreas BAERNTHALER
  • Publication number: 20120048431
    Abstract: HfC particles having an average particle size of 5 to 100 nm are dispersed in an R—Fe—B type alloy in an amount of 0.2 to 3.0 atom %. Crystal grains are refined avoiding decreasing an amount of magnet components by containing carbide and coercive force can be improved, avoiding degradation of saturated magnetization by refining the crystal grains.
    Type: Application
    Filed: March 5, 2010
    Publication date: March 1, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Yoshiyuki Nakazawa, Ryutaro Kato, Haruhiko Shimizu
  • Publication number: 20120048430
    Abstract: A process for manufacturing a turbine engine component comprises the steps of: casting ingots made of a gamma TiAl material using a double vacuum arc remelting casting technique; subjecting the cast ingots to a hot isostatic pressing to close porosity; forming at least one pancake of the gamma TiAl material by isothermally forging the hot isostatic pressed ingots; sectioning each pancake into a plurality of blanks; heat treating the blanks to produce a desired microstructure and mechanical properties; and machining the blanks into finished turbine engine components. A system for performing the process is also disclosed.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Gopal Das
  • Publication number: 20110308940
    Abstract: Provided are a lanthanum target for sputtering which has a recrystallized structure with an average crystal grain size of 100 ?m or less and has no spotty macro patterns on the surface; and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to hot upset forging to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering which has no spotty macro patterns on the surface, and a method of producing the same.
    Type: Application
    Filed: March 17, 2010
    Publication date: December 22, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Publication number: 20110284138
    Abstract: A mold for forming a plurality of rotors includes a plurality of lamination stacks, wherein each lamination stack defines at least one void therethrough; a tube having a central longitudinal axis, wherein each lamination stack is concentrically spaced apart from the tube to define a channel therebetween; a plurality of washers each having a shape defined by a first diameter and a second diameter that is greater than the first diameter, wherein each washer is configured to concentrically abut the tube and define a feed conduit interconnecting with the channel; and a shell disposed in contact with each lamination stack and concentrically spaced apart from each washer to define a plurality of ducts, wherein each duct is interconnected with the at least one void of at least one lamination stack. A mold system and a method of forming a plurality of rotors are also described.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael J. Walker, Anil K. Sachdev, Thomas A. Perry, Mark A. Osborne, Paul Boone
  • Patent number: 8012275
    Abstract: In a method for manufacturing a composite-metal-forming material, heating a metal material a Mg alloy or an Al alloy is heated to a temperature in a region where a solid and a liquid are both present to thereby yield a semi-molten metal material in a semi-molten state. An additive material is introduced to the semi-molten metal material and kneading is performed to obtain a composite metal material. The composite metal material is heated to a solution temperature of the metal material and a solution treatment is performed to thereby yield a composite-metal-forming material.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 6, 2011
    Assignee: Nissei Plastic Industrial Co., Ltd
    Inventors: Taku Kawano, Tomoyuki Sato, Atsushi Kato, Masashi Suganuma, Keita Arai, Daisuke Shiba
  • Publication number: 20110203706
    Abstract: A formed product of a magnesium alloy having excellent impact resistance and a magnesium alloy sheet suitable as a material for the formed product are provided. The formed product is produced by press-forming a magnesium alloy sheet having an Al content of 7% by mass to 12% by mass and has a flat portion that is not subjected to drawing deformation. In a metal texture in a cross section of the flat portion in the thickness direction, the number of coarse intermetallic compound (Mg17Al12) particles having a particle size of 5 ?m or more present in a surface area region extending from a surface of the flat portion to a position one-third of the thickness from the surface in the thickness direction is five or less. The formed product has a texture in which the number of coarse precipitations d1 is small and in which fine precipitations d0 are dispersed.
    Type: Application
    Filed: September 29, 2009
    Publication date: August 25, 2011
    Inventors: Yukihiro Oishi, Nozomu Kawabe, Nobuyuki Okuda, Nobuyuki Mori, Masatada Numano, Koji Mori, Takahiko Kitamura, Ryuichi Inoue
  • Publication number: 20110076508
    Abstract: The invention relates to a magnetic strip, wherein the strip has a magnetic easy axis which is axially parallel to a transverse axis of the strip. The strip is cut to length, from strip material made of a semi-hard magnetic crystalline alloy, along a transverse axis of the strip material substantially corresponding to a length (l) of the strip. The strip material has a magnetic easy axis which runs axially parallel to the transverse axis of the strip material.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 31, 2011
    Applicant: Vacuumschmelze GmbH & Co., KG
    Inventor: Ottmar Roth
  • Publication number: 20110074529
    Abstract: The invention relates to a magnetic strip, the strip having a magnetically easy direction axially parallel to a transverse axis of the strip. The strip is cut to length from a band of a magnetically semi-hard, crystalline alloy along a transverse axis of the band essentially corresponding to a width (b) of the strip. The band has a magnetically easy direction axially parallel to a longitudinal axis of the band.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 31, 2011
    Applicant: Vacuumschmelze GmbH & Co., KG
    Inventor: Ottmar Roth
  • Patent number: 7909949
    Abstract: Provided is a surface processing method of a sputtering target, wherein a target surface in which intermetallic compounds, oxides, carbides, carbonitrides and other substances without ductility exist in a highly ductile matrix phase at a volume ratio of 1 to 50% is preliminarily subject to the primary processing of cutting work, then subsequently subject to finish processing via polishing. The sputtering target subject to this surface processing method is able to improve the target surface having numerous substances without ductility, and prevent or suppress the generation of nodules and particles upon sputtering.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: March 22, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Nakamura, Akira Hisano
  • Publication number: 20110017367
    Abstract: A magnesium alloy having excellent strength and elongation at high temperatures and further having excellent creep characteristics at high temperatures. Also provided is a process for producing the alloy. In producing the magnesium alloy, a magnesium alloy containing yttrium and samarium in respective specific amounts is cast and the resultant cast is subjected to a solution heat treatment, subsequently hot working, and then an aging treatment, thereby reducing the average crystal grain diameter of the structure. In addition, the amounts of the yttrium and samarium in solution in the magnesium matrix are balanced with the number of precipitate particles of a specific size in the crystal grains. The magnesium alloy thus obtained has excellent strength and elongation at high temperatures and further having excellent creep characteristics at high temperatures.
    Type: Application
    Filed: March 30, 2009
    Publication date: January 27, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshiaki Takagi, Mamoru Nagao
  • Publication number: 20100282375
    Abstract: Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Jackie G. Gooch, Amy L. DeMint
  • Publication number: 20100239453
    Abstract: The present invention provides an iridium alloy suitable for a wire rod for probe pins, with zirconium as an additive element contained as an essential element and with aluminum and/or copper further added. In this iridium alloy, the additive concentration of zirconium is 100 to 500 ppm and the total additive concentration of aluminum and copper is 10 to 500 ppm. The present invention will be able to meet such requirements placed on a material for probe pins as that further miniaturization thereof would be demanded in the future and that use environment thereof becomes severe.
    Type: Application
    Filed: November 17, 2008
    Publication date: September 23, 2010
    Inventor: Tomokazu Obata
  • Patent number: 7767043
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 3, 2010
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20100119919
    Abstract: The invention is a metal air fuel cell consisting of a cathode contained in a housing, the housing having an air passage through which air (O2 gas) can pass to the cathode. The air passage is sealed by a gas (i.e. O2) permeable membrane. The fuel cell further includes an anode made of a metal selected from the group of metals including aluminum, zinc, magnesium, and alloys thereof. The cathode and anode are electrochemically coupled by an electrolyte such that the cathode and anode are capable of electrochemically reacting to consume O2 gas at a volume rate of V when producing a desired electrical current of I. The gas permeable membrane has a gas permeability rate and a surface area through which O2 gas can pass through the gas permeable membrane to the cathode, the surface area and the gas permeability rate of the gas permeable membrane selected to permit O2 gas to pass through the membrane at a rate Vm substantially equal to V at the desired current I.
    Type: Application
    Filed: September 8, 2009
    Publication date: May 13, 2010
    Inventors: Alex Iarochenko, Abram Shteiman
  • Publication number: 20100108204
    Abstract: Disclosed herein is a zirconium alloy composition for nuclear fuel cladding tubes, comprising: 1.6˜2.0 wt % of Nb; 0.05˜0.14 wt % of Sn; 0.02˜0.2 wt % of one or more elements selected from the group consisting of Fe, Cr and Cu; 0.09˜0.15 wt % of O; 0.008˜0.012 wt % of Si; and a balance of Zr, a nuclear fuel cladding tube comprising the zirconium alloy composition, and a method of manufacturing the nuclear fuel cladding tube. Since the nuclear fuel cladding tube made of the zirconium alloy composition can maintain excellent corrosion resistance by forming a protective oxide film thereon under the conditions of high-temperature and high-pressure cooling water and water vapor, it can be usefully used as a nuclear fuel cladding tube for light water reactors or heavy water reactors, thus improving the economical efficiency and safety of the use of nuclear fuel.
    Type: Application
    Filed: May 5, 2009
    Publication date: May 6, 2010
    Applicants: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd
    Inventors: Jeong-Yong Park, Yong Hwan Jeong, Sang Yoon Park, Myung Ho Lee, Byoung Kwon Choi, Hyun Gil Kim, Yang Il Jung
  • Patent number: 7708844
    Abstract: A method for forming a metallic glass, which comprises a step of subjecting a metallic glass to a rough forming by die casting, to prepare a roughly formed article, and a step of heating the roughly formed article to a temperature region corresponding to an undercooled liquid thereof, followed by subjecting the heated article to warm press forming.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: May 4, 2010
    Assignees: NGK Insulators, Ltd., Tohoku University
    Inventors: Naokuni Muramatsu, Ken Suzuki, Akihisa Inoue, Hisamichi Kimura
  • Publication number: 20090285714
    Abstract: Implantable medical devices made from a single beta phase Tantalum alloy utilizing Titanium as an alloying agent that are biocompatible, radiopaque and visible under x-ray and fluoroscopy, the alloy having mechanical properties that allow it to be machined by conventional, machining methods for forming the devices, and a method for making the alloy. The alloy is between approximately 10 percent and 25 percent Ti by weight and preferably has a density of 12 g/cm3 or greater.
    Type: Application
    Filed: January 7, 2009
    Publication date: November 19, 2009
    Applicant: Pulse Technologies, Inc.
    Inventors: Andrew Fisk, Robert S. Walsh, SR., Francis E. Hanofer, JR., Joseph C. Rosato, JR., Anatolii Demchyshyn, Leonid Kulak, Sergei Firstov, Mykola Kumenko
  • Publication number: 20090159161
    Abstract: A Ti-6Al-4V-0.2O (Ti64) forged article is fabricated by forging a workpiece to make a forged gas turbine engine component having a thick portion thereof with a section thickness greater than 2¼ inches. The forged article is heat treated by solution heat treating at a temperature of from about 50° F. to about 85° F. below the beta-transus temperature of the alloy, thereafter water quenching the gas turbine engine component to room temperature, and thereafter aging the gas turbine engine component at a temperature of from about 900° F. to about 1350° F.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 25, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter WAYTE, Ming Cheng LI
  • Publication number: 20090090436
    Abstract: A method of assembly and manufacture of a brake rotor, comprising providing a brake rotor mold. The method also includes pouring brake rotor material into the brake rotor mold. Then the method includes rotating the brake rotor mold during hardening of the brake rotor material thereby forming a brake rotor. The method further includes removing an interior portion of the hardened brake rotor material of the brake rotor with a water jet cutting device. The water jet device shapes the brake rotor to a desired shape. The brake rotor is then heat and cryogenically treated.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 9, 2009
    Inventor: Michael Chenoweth
  • Publication number: 20090056840
    Abstract: A method for manufacturing a sputtering target includes the steps of: providing a highly pure matrix material containing a magnetic metal, and a highly pure precious metal ingot material; cleaning the surfaces of the matrix material and the precious metal ingot; vacuum melting the matrix material and the precious metal ingot to obtain a molten alloy; pouring the molten alloy in a mold having a cooling system while maintaining a surface of the molten alloy at a molten state by arc heating until the pouring is finished, thereby forming the molten alloy into a cast blank; hot working the cast blank; and annealing the cast blank after the hot working.
    Type: Application
    Filed: August 27, 2007
    Publication date: March 5, 2009
    Inventors: Rong-Zhi Chen, Jye-Long Lee, In-Ting Hong, Jui-Tung Chang, Pa-Tsui Sze
  • Publication number: 20090053090
    Abstract: It is an object to provide an inexpensive alloy for heat dissipation having a small thermal expansion coefficient as known composite materials, a large thermal conductivity as pure copper, and excellent machinability and a method for manufacturing the alloy. In particular, since various shapes are required of the alloy for heat dissipation, a manufacturing method by using a powder metallurgy method capable of supplying alloys for heat dissipation, the manufacturing costs of which are low and which take on various shapes, is provided besides the known melting method. The alloy according to the present invention is a Cu—Cr alloy, which is composed of 0.3 percent by mass or more, and 80 percent by mass or less of Cr and the remainder of Cu and incidental impurities and which has a structure in which particulate Cr phases having a major axis of 100 nm or less and an aspect ratio of less than 10 are precipitated at a density of 20 particles/?m2 in a Cu matrix except Cr phases of 100 nm or more.
    Type: Application
    Filed: October 5, 2005
    Publication date: February 26, 2009
    Inventor: Hoshiaki Terao
  • Publication number: 20080245448
    Abstract: A method for producing metal sheets from a magnesium melt, comprises the following steps: producing the magnesium melt, casting the magnesium melt to a cast strip, immediately after casting, strip-rolling the cast strip to a rolled strip, cross-cutting the rolled strip to metal sheets, rolling the metal sheets to a final thickness, the rolling of metal sheets being carried out, in relation to the metal sheets, in a direction a at right angle to the rolling direction of the strip-rolling, said direction being maintained during the entire rolling of the metal sheets. The method according to the invention enables very wide sheets to be produced in a simple way which meet the end user's requirements.
    Type: Application
    Filed: October 7, 2005
    Publication date: October 9, 2008
    Applicant: THYSSENKRUPP STEEL AG
    Inventors: Nguyen Duc Cuong, Bernhard Engl
  • Publication number: 20080138236
    Abstract: There are provided a magnesium alloy with a misch metal, a method of producing a wrought magnesium alloy with a misch metal, and a wrought magnesium alloy produced thereby, in which a great deal of misch metal is added to magnesium, and thus refractory eutectic phases or multi-phases are formed into a stable network structure or a stable dispersed phase, thereby inhibiting deformation of a magnesium matrix at a high temperature to maintain a high strength. The magnesium alloy with the misch metal has the formula of Mg100-x-y-gAxByCz, where A is zinc (Zn) or aluminum (Al); B is the misch metal; C is at least one element selected from the group consisting of manganese (Mn), nickel (Ni), copper (Cu), tin (Sn), yttrium (Y), phosphor (P), silver (Ag), and strontium (Sr); and x, y and z are the compositions of 0 at %?x?6 at %, 0.8 at %?y?7 at %, and 0 at %?z?2 at %, respectively.
    Type: Application
    Filed: March 7, 2006
    Publication date: June 12, 2008
    Applicant: G. ALLOY TECHNOLOGY CO, LTD.
    Inventors: Dong-Hyun Bae, Jin-Wook Kwon, Yule Kim
  • Publication number: 20080131306
    Abstract: The present invention relates to a zirconium alloy composition having excellent corrosion resistance for nuclear applications and a method of preparing the same. The zirconium alloy composition having excellent corrosion resistance for nuclear applications includes 1.3˜2.0 wt % of niobium, 0.05˜0.18 wt % of iron, 0.008˜0.012 wt % of silicon, 0.008˜0.012 wt % of carbon, and 0.1˜0.16 wt % of oxygen, with the balance being zirconium, or includes 2.8˜3.5 wt % of niobium, 0.2˜0.7 wt % of at least one of iron and copper, 0.008˜0.012 wt % of silicon, 0.008˜-0.012 wt % of carbon, and 0.1˜0.16 wt % of oxygen, with the balance being zirconium.
    Type: Application
    Filed: April 12, 2007
    Publication date: June 5, 2008
    Applicants: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Myung Ho Lee, Sang Yoon Park, Jeong Yong Park, Jun Hwan Kim, Hyun Gil Kim
  • Publication number: 20080071347
    Abstract: A medical device includes an alloy having a microstructure that provides desirable properties. The alloy can be a eutectoid composition of e.g. titanium as a major constituent and any combination of iridium, platinum, chromium, gold, silver, bismuth, manganese, palladium, cobalt, copper, iron, and/or nickel as a minor constituent, wherein the alloy forms at least a portion of the medical device.
    Type: Application
    Filed: July 19, 2007
    Publication date: March 20, 2008
    Applicant: Boston Scientific Scimed, Inc.
    Inventor: Matthew Cambronne
  • Publication number: 20080035250
    Abstract: A process for casting titanium alloy based parts includes the steps of melting a quantity of titanium alloy to form a molten titanium alloy; adding to the molten titanium alloy a quantity of boron in an amount of about 0.2 weight percent to about 1.3 weight percent of the molten titanium alloy to form a molten boron modified titanium alloy; and casting a boron modified titanium alloy based part.
    Type: Application
    Filed: August 9, 2006
    Publication date: February 14, 2008
    Inventors: Tai-Tsui Aindow, Prabir R. Bhowal
  • Patent number: 6902634
    Abstract: The present invention relates to a method for manufacturing zirconium-based alloys containing niobium with superior corrosion resistance for use in nuclear fuel rod claddings. The method of this invention comprises melting of the alloy, ?-forging, ?-quenching, hot-working, vacuum annealing, cold-working, intermediate annealing and final annealing, whereby the niobium concentration in the ?-Zr matrix decreases from the supersaturation state to the equilibrium state to improve the corrosion resistance of the alloy. Such zirconium-based alloys containing niobium are usefully applied to nuclear fuel rod cladding of the cores in light water reactors and heavy water reactors.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: June 7, 2005
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Yong Hwan Jeong, Jong Hyuk Baek, Byoung Kwon Choi, Sang Yoon Park, Myung Ho Lee, Cheol Nam, Jeong Yong Park, Youn Ho Jung
  • Patent number: 6893515
    Abstract: The present invention is related to a manufacturing process for highly ductile magnesium alloy, which is processable under plasticization at ambient temperature. The process includes melting in vacuum melt furnace or inert gas protected furnace, teeming into ingot, extrusion or rolling into finished material. Such highly ductile magnesium alloy has extremely excellent plastic deformability at ambient temperature and improves completely the deficiency associated with traditional commercial magnesium alloy that lacks plastic deformability at ambient temperature. The material is suitable for the structural components in automobiles, 3C products, appliances and office automation products.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: May 17, 2005
    Assignee: Hsu-Yang Technologies Co., Ltd.
    Inventors: Jin-Chin Guan, Ming-Tarng Yeh, Jian-Yih Wang
  • Patent number: 6890480
    Abstract: Medium- and high-density articles are formed from melting and casting alloys containing tungsten, iron, nickel and optionally manganese and/or steel. In some embodiments, the articles have densities in the range of 8-10.5 g/cm3, and in other embodiments, the articles have densities in the range of 10.5-15 g/cm3. In some embodiments, the articles are ferromagnetic, and in others the articles are not ferromagnetic. In some embodiments, tungsten forms the largest weight percent of the alloy, and in other embodiments the alloy contains no more than 50 wt % tungsten. In some embodiments, the articles are shell shot.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: May 10, 2005
    Inventor: Darryl D. Amick
  • Patent number: 6854172
    Abstract: A process for producing implants made of a bioresorbable metal, particularly magnesium alloys or zinc alloys, in which the material properties of the magnesium or the zinc are changed and the processing and utilization properties are improved by combining process steps for adjusting the properties of the material and subsequent machining. In this way it is possible to produce thin-walled tubular implants, particularly blood vessel support stents, from bioresorbable magnesium or zinc alloys, which are readily deformable without the risk of fracture during implantation.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 15, 2005
    Assignee: Universitaet Hannover
    Inventors: Volker Kaese, Arne Pinkvos, Heinz Haferkamp, Matthias Niemeyer, Friedrich-Wilhelm Bach
  • Publication number: 20040202569
    Abstract: An Fe—Ni—Cr alloy formulated to contain a strengthening phase that is able to maintain a fine grain structure during forging and high temperature processing of the alloy. The alloy contains a sufficient amount of titanium, zirconium, carbon and nitrogen so that fine titanium and zirconium carbonitride precipitates formed thereby are near their solubility limit in the alloy when molten. In the production of an article from such an alloy by thermomechanical processing, a dispersion of the fine titanium and zirconium carbonitride precipitates form during solidification of the melt and remain present during subsequent elevated processing steps to prohibit austenitic grain growth.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 14, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jianqiang Chen, Jon Conrad Schaeffer, Anjilivelil Kuruvilla
  • Publication number: 20040173292
    Abstract: A damage tolerant microstructure for a lamellar alloy, such as a lamellar &ggr;TiAl alloy, is provided in accordance with the present invention. The alloy comprises a matrix and a plurality of grains or lamellar colonies, a portion of which exhibit a nonplanar morphology within said matrix. Each of the lamellar colonies contains a multitude of lamella with irregularly repeating order. The &ggr;TiAl platelets have a triangular (octahedral) unit cell and stack with &ggr; twins. The &agr;2Ti3Al platelets are irregularly interspersed. The unit cell for &agr;2Ti3Al is hexagonal. Each of the layers has a curved, nonplanar structure for resisting crack formation and growth.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 9, 2004
    Inventor: Daniel P. DeLuca
  • Publication number: 20040173294
    Abstract: Zinc alloys containing from 5 to 35% by weight of aluminum and optionally further alloy components are used as constructional zinc for strips and plates.
    Type: Application
    Filed: March 22, 2004
    Publication date: September 9, 2004
    Applicant: Grillo-Werke AG
    Inventors: Michael Knepper, Jochen Spriestersbach, Andrea Jahny, Jurgen Wisniewski
  • Patent number: 6764561
    Abstract: A palladium-boron composition and methods of making and using same are provided. In one aspect, the invention comprises an alloy comprising palladium and boron, the boron being in solid solution in the palladium and the alloy having a two-phase structure, wherein each phase of the two-phase structure has the same crystal structure as the other phase and has a different set of lattice parameters from the other phase such that the palladium is greatly hardened by the presence of the smaller phase crystals within the spaces between the larger phase crystals. The composition is carefully prepared by a process wherein palladium and an amount of boron sufficient to place the boron in solid solution, but insufficient to combine with the palladium, are placed together and repeatedly arc melted, cooled and turned over until sufficiently mixed.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: July 20, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Melvin H. Miles, M. Ashraf Imam
  • Patent number: 6723187
    Abstract: Described is a high quality sputtering target and method of manufacture which involves application of equal channel angular extrusion.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: April 20, 2004
    Assignee: Honeywell International Inc.
    Inventors: Vladimir Segal, William B. Willett, Stephane Ferrasse
  • Publication number: 20040040635
    Abstract: The present invention is related to a manufacturing process for highly ductile magnesium alloy, which is processable under plasticization at ambient temperature. The process includes melting in vacuum melt furnace or inert gas protected furnace, teeming into ingot, extrusion or rolling into finished material. Such highly ductile magnesium alloy has extremely excellent plastic deformability at ambient temperature and improves completely the deficiency associated with traditional commercial magnesium alloy that lacks plastic deformability at ambient temperature. The material is suitable for the structural components in automobiles, 3C products, appliances and office automation products.
    Type: Application
    Filed: September 12, 2002
    Publication date: March 4, 2004
    Applicant: Hsu-Yang Technologies Co., Ltd.
    Inventors: Jin-Chin Guan, Ming-Tarng Yeh, Jian-Yih Wang
  • Publication number: 20030173005
    Abstract: A method of manufacturing products, which have complex and accurate shape and exhibit high reliability of properties and enough corrosion resistance, at sufficiently high yield by employing a combination of casting and forging for forming magnesium alloy of which composition allows casting and which is excellent in forgeability. A magnesium alloy containing 2-10 mass % aluminum is cast to have crystal grain size not greater than 30 &mgr;m. After the cast semifinished product is subjected to solution treatment, the semifinished product is forged to have crystal grain size not greater than 10 &mgr;m and is then further forged to have a desired shape. A magnesium alloy containing 2-10 mass % aluminum is cast to have crystal grain size not greater than 10 &mgr;m and the cast semifinished product is forged after solution treatment.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 18, 2003
    Applicant: TAKATA CORPORATION
    Inventors: Kenji Higashi, Kinji Hirai