Iron(fe) Or Iron Base Alloy Patents (Class 148/578)
-
Patent number: 11987856Abstract: An ultra-high strength maraging stainless steel with nominal composition (in mass) of C?0.03%, Cr: 13.0-14.0%, Ni: 5.5-7.0%, Co: 5.5-7.5%, Mo: 3.0-5.0%, Ti: 1.9-2.5%, Si: ?0.1%, Mn: ?0.1%, P: ?0.01%, S: ?0.01%, and Fe: balance. The developed ultra-high strength maraging stainless steel combines ultra-high strength (with ?b?2000 MPa, ?0.2?1700 MPa, ??8% and ??40%), high toughness (KIC?83 MPa·m1/2) and superior salt-water corrosion resistance (with pitting potential Epit?0.15 (vs SCE)). Therefore, this steel is suitable to make structural parts that are used in harsh corrosive environments like marine environment containing chloride ions, etc.Type: GrantFiled: May 5, 2023Date of Patent: May 21, 2024Assignees: The Boeing Company, Institute of Metal ResearchInventors: Jialong Tian, Ke Yang, Wei Wang, Yiyin Shan, Wei Yan
-
Patent number: 11858809Abstract: The invention belongs to the technical field of metal micro-forming, and in particular relates to a method for inflating micro-channels. The present invention is aimed at the problems of low process flexibility, single product type, and non-closed structure of the micro-channel when preparing metal micro-channels by micro-plastic forming of ultra-thin metal strips. The present invention uses a method combining numerical simulation and bond rolling experiment to analyze the effect of the hydrogen pressure and bond strength of the metal composite ultra-thin strip after bond rolling on the pore diameter of the micro-channel, and the corresponding relationship between the micro-channel pore diameter and the titanium hydride content, heating temperature, and bond strength of the metal composite ultra-thin strip is obtained.Type: GrantFiled: June 4, 2021Date of Patent: January 2, 2024Assignee: TAIYUAN UNIVERSITY OF TECHNOLOGYInventors: Jingwei Zhao, Tao Wang, Linan Ma, Qingxue Huang
-
Patent number: 11696754Abstract: A method of making a suture needle having a bendable region includes obtaining a suture needle made of a martensitic alloy having an austenitic transition temperature. The suture needle has a proximal section, a distal section with a sharpened tip, and a bendable region located between the proximal and distal sections. The method includes heating the suture needle to a first temperature that is greater than the austenitic transition temperature of the martensitic alloy and quenching the suture needle to room temperature to harden the martensitic alloy, After heating and quenching, the bendable region of the suture needle is heated locally to a second temperature that is above 800 degrees Celsius, but below the austenitic transition temperature of the martensitic alloy so that the bendable region is softened and made more flexible relative to the proximal and distal sections of the suture needle.Type: GrantFiled: February 22, 2019Date of Patent: July 11, 2023Assignee: Ethicon, Inc.Inventor: Frank Richard Cichocki, Jr.
-
Patent number: 11519050Abstract: The invention relates to a method for producing a component from a medium manganese flat steel product having 4 to less than 10 wt. % Mn, 0.0005 to 0.9 wt. % C, 0.02 to 10 wt. % Al, the remainder iron, including unavoidable steel-accompanying elements, and having a TRIP effect at room temperature. In order to produce a component, which is distinguished by very high strengths and an increased residual strain and re-shaping capacity, the flat steel product, according to the invention, is re-shaped by at least one re-shaping step to form a component and, before and/or during and/or after the at least one re-shaping step, the flat steel product is cooled down to a temperature of the flat steel product of less than room temperature to ?196° C. The invention further relates to a component produced by this method and to a use for said components.Type: GrantFiled: August 16, 2017Date of Patent: December 6, 2022Assignee: SALZGITTER FLACHSTAHL GMBHInventors: Peter Palzer, Thomas Evertz, Manuel Otto, Kai Köhler
-
Patent number: 10907230Abstract: Provided is an ultrahigh-strength steel sheet for a vehicle and, more specifically, to an ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and a manufacturing method therefor. Provided is an ultrahigh-strength and high-ductility steel sheet for cold press forming and a manufacturing method therefor, the steel sheet ensuring ultrahigh strength and high ductility since an alloy component of steel and manufacturing conditions are controlled and, simultaneously, having excellent impact characteristics due to a high yield strength ratio (yield ratio). Provided is the steel sheet capable of satisfying formability and impact stability, which are required for a vehicle steel sheet for cold forming, and replacing a conventional steel sheet for hot press forming, thereby reducing manufacturing costs.Type: GrantFiled: April 20, 2017Date of Patent: February 2, 2021Assignees: POSCO, POSTECH ACADEMY-INDUSTRY FOUNDATIONInventors: Joo-Hyun Ryu, Nack-Joon Kim, Sung-Hak Lee, Won-Hwi Lee, Kyoo-Young Lee, Sea-Woong Lee
-
Patent number: 9862108Abstract: An integrally formed rigid razor blade having a body with a cutting edge portion extending about a cutting edge portion plane, and having a cutting edge at one end, a base portion extending along a base portion plane, a bent portion intermediate the cutting edge portion and the base portion. The body is made of martensitic stainless steel that includes mainly iron and between 0.62% and 0.75% of carbon in weight.Type: GrantFiled: October 8, 2012Date of Patent: January 9, 2018Assignee: BIC VIOLEX S.A.Inventors: Vasileios Davos, Vassilis Papachristos, Dimitrios Efthimiadis, Panagiotis Zafiropoulos, Nikolaos Skounakis, Ioannis Komianos, Michalis Karoussis, Anastasios Papageorgiou
-
Patent number: 9731345Abstract: Provided is a martensitic stainless steel having excellent productivity and high corrosion resistance, which comprises, as percentages by weight, 0.45 to 0.60% carbon, 0.02 to 0.08% nitrogen, 0.2 to 0.4% silicon, 0.3 to 0.6% manganese, 12 to 15% chromium, one or more kinds of 0.1 to 1.5% molybdenum or 0.1 to 1.5% tungsten and Fe and other unavoidable impurities as remnants.Type: GrantFiled: December 26, 2011Date of Patent: August 15, 2017Assignee: POSCOInventors: Ki-Hoon Jo, Dong-Chul Chae, Won-Qeun Son, Bong-Wn Kim
-
Publication number: 20150027598Abstract: A hardenable chromium-nickel steel, comprising 0.005 to 0.12% carbon, 9 to 17% chromium, 5 to 12% nickel, at most 3% cobalt, 0.5 to 4% molybdenum, 0.25 to 1.0% silicon, 0.5% to 3.0% manganese, 1 to 3% titanium, 0.25 to 1% vanadium, 0.05 to 0.5% niobium, 0.001 to 0.30% nitrogen, at most 0.5% tantalum, 0.001 to 0.030% sulfur, 0.2 to 2.0% copper, at most 0.5% tungsten, at most 1.5% aluminum, 0.0001 to 0.01% boron, and at most 0.035% phosphorus, remainder iron including impurities resulting from smelting, is suitable in particular as a material for producing wire by drawing in the 3-phase region of ?-martensite, ?-martensite, and austenite, in conjunction with a heat treatment. The wire can be used for components for instrument construction, surgical needles, valve pins, and dental braces.Type: ApplicationFiled: June 28, 2011Publication date: January 29, 2015Inventors: Stefan Seng, Gisbert Klossulitzka, Osakar Pacher, Günter Schnabel
-
Patent number: 8906171Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.Type: GrantFiled: September 25, 2012Date of Patent: December 9, 2014Assignee: Sandvik Intellectual PropertyInventors: Ulrika Magnusson, Guocai Chai
-
Patent number: 8858741Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.Type: GrantFiled: May 6, 2009Date of Patent: October 14, 2014Assignee: Goodrich CorporationInventor: Edward B. Evans
-
Publication number: 20140158257Abstract: In a method for producing a motor vehicle component and a motor vehicle component produced according to the invention a steel sheet with a stacking fault energy between 10 and 40 mJ/m2 and a manganese content between 10 and 30% is provided, which is prone to twin formation at room temperature and has at least regions with a predominantly austenitic microstructure. Regions of this steel sheet are first temperature treated to a temperature between +30° C. and ?250° C. and subsequently cold formed.Type: ApplicationFiled: November 29, 2013Publication date: June 12, 2014Applicant: Benteler Automobiltechnik GmbHInventors: Andreas Frehn, Thomas Niendorf, Christian Rüsing, Hans Jürgen Maier
-
Patent number: 8394319Abstract: Nickel, Ni, of 5 to 10 mass %, silicon, Si, of 0.5 to 5 mass %, manganese, Mn, of 0.01 to 1 mass %, carbon, C, of 0.2 to 2 mass % and a remaining part consisting of iron, Fe, and incidental impurities are employed, and further chromium, Cr, of 1 to 10 mass % is added to obtain a martensitic cast steel material for which a martensitic transformation finish temperature (Mf point) is below freezing. Further, a cast steel material that contains vanadium V of 0.1 to 5 mass % in addition to the above elements of the material is also obtained. For these cast steel materials, since martensitic transformation occurs merely by performing a sub-zero treatment, the tempering process can be comparatively easily performed, and machining in a desired shape is easily performed.Type: GrantFiled: February 19, 2010Date of Patent: March 12, 2013Assignees: Yamagataken, Yugen Kaisha Watanabe Chuzo-ShoInventors: Toshitaka Watanabe, Toru Yamada, Noboru Sato, Satoshi Nakano, Toshiro Matsuki
-
Patent number: 8388774Abstract: A multi-wave thermal process for treating a metal to improve structural characteristics is herein disclosed. The metal can be placed in a chamber. Each wave of the process can include: selecting a target temperature; selecting a temperature rate; and controlling the temperature rate while chilling the metal by introducing a cryogenic material into the chamber, while preventing over-stressing of the metal, to the target temperature at the temperature rate. While chilling the metal, the process can include inserting a hold time on the metal at an intermediate temperature for equalization of the temperature uniformly throughout the metal, thereby creating uniformity in a microcrystalline structure of the metal. The process can further include: stopping the introduction of the cryogenic material once the target temperature is reached and holding the metal at the target temperature. The process can result in a treated metal without fractures and with an organized microcrystalline structure.Type: GrantFiled: July 26, 2010Date of Patent: March 5, 2013Inventor: Daniel Martin Watson
-
Patent number: 8192560Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, —Rare earths=trace?500 ppm, —Ti=trace?500 ppm, —O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.Type: GrantFiled: August 26, 2010Date of Patent: June 5, 2012Assignees: Aubert & Duval, SNECMA MoteursInventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
-
Patent number: 8152938Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace—50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace—500 ppm, —Rare earths=trace—500 ppm, —Ti=trace—500 ppm, —O=Trace—200 ppm if the steel is obtained by means of powder metallurgy or trace—50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace—100 ppm, —S=trace—50 ppm, —Cu=trace—1%, and —P=trace—200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.Type: GrantFiled: August 26, 2010Date of Patent: April 10, 2012Assignees: Aubert & Duval, SNECMA MoteursInventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
-
Patent number: 8137483Abstract: A method of designing low cost, high strength, high toughness martensitic steel uses mathematical modeling to define optimum low cost chemical compositions, the content of retained austenite, and critical temperatures; melting an ingot, processing same, making steel articles, and heat treating the articles using the critical temperatures and the content of retained austenite. The new steel comprises, by weight, about 0.3-0.45% of C; at most 2.5% of Cr; at most 1.0% of Mo; at most 3.50% of Ni; about 0.3 to 1.5% of Mn; about 0.1-1.3% of Si; about 0.1-1.0% of Cu; Cu being less than Si; about 0.1 to 1.0% of V+Ti+Nb; at most 0.25% of Al; the sum of alloying elements being less than about 11.5%; the balance being essentially Fe and incidental impurities. Procedures of melting, processing and heat treatment using the mathematical model are disclosed.Type: GrantFiled: May 11, 2009Date of Patent: March 20, 2012Inventors: Vladimir A. Fedchun, Gregory Vartanov
-
Publication number: 20120055592Abstract: Described herein are a method, an apparatus, and a system for metal processing that improves one or more properties of a sintered metal part by controlling the process conditions of the cooling zone of a continuous furnace using one or more cryogenic fluids. In one aspect, there is provided a method comprising: providing a furnace wherein the metal part is passed therethough on a conveyor belt and comprises a hot zone and a cooling zone wherein the cooling zone has a first temperature; and introducing a cryogenic fluid into the cooling zone where the cryogenic fluid reduces the temperature of the cooling zone to a second temperature, wherein at least a portion of the cryogenic fluid provides a vapor within the cooling zone and cools the metal parts passing therethrough at an accelerated cooling rate.Type: ApplicationFiled: February 17, 2011Publication date: March 8, 2012Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Zbigniew Zurecki, Ranajit Ghosh, Lisa Ann Mercando, Xiaoyi He, John Lewis Green, David Scott Nelson
-
Patent number: 8097098Abstract: The invention concerns martensitic stainless steel, characterized in that its composition in weight percentages is as follows: 9%=Cr=13%; 1.5%=Mo=3%; 8%=Ni=14%; 1%=Al=2%; 0.5%=Ti=1.5% with AI+Ti=2.25%; traces=Co=2%; traces=W=1% with Mo+(W/2)=3%; traces=P=0.02%; traces=S=0.0050%; traces=N=0.0060%; traces=C=0.025%; traces=Cu=0.5%; traces=Mn=3%; traces=Si=0.25%; traces=O=0.0050%; and is such that: Ms (° C.)=1302 42 Cr 63 Ni 30 Mo+20AI-15W-33Mn-28Si-30Cu-13Co+10 Ti=50Cr eq/Ni eq=1.05 with Cr eq (%)=Cr+2Si+Mo+1.5 Ti+5.5 AI+0.6W Ni eq (%)=2Ni+0.5 Mn+3O C+25 N+Co+0.3 Cu. The invention also concerns a method for making a mechanical part using said steel, and the resulting part.Type: GrantFiled: June 26, 2006Date of Patent: January 17, 2012Assignee: Aubert & DuvalInventor: Jacques Montagnon
-
Publication number: 20120000579Abstract: An ultra-high strength stainless steel alloy with enhanced toughness includes in % by weight: 0 to 0.06% carbon (C); 12.0 to 18% chromium (Cr); 16.5 to 31.0% cobalt (Co); 0 to 8% molybdenum (Mo); 0.5 to 5.0% nickel (Ni); 0 to 0.5% titanium (Ti); 0 to 1.0% niobium (Nb); 0 to 0.5% vanadium (V); 0 to 16% tungsten (W); balance iron (Fe) and incidental deoxidizers and impurities. The heat treating method includes the steps of austenitizing at least once followed by quenching, tempering and sub-zero cooling to obtain no more than about 6-8% retained austenite in the finished alloy.Type: ApplicationFiled: September 7, 2011Publication date: January 5, 2012Applicant: CARNEGIE MELLON UNIVERSITYInventor: Warren M. Garrison, JR.
-
Patent number: 8075991Abstract: A stainless steel material for a fuel cell, used for a fuel cell or a cartridge for the fuel cell, having a magnetic permeability of 1.000 to 2.500, and forming a layer having a value of chromium atomic %/iron atomic % of not less than 3.0 in the most surface thereof, and/or the layer of thickness of not less than 12 nm calculated as SiO2 having an oxygen atomic % of not less than 20%. Even when brought into contact with the content solution exhibiting acidity of the fuel cell, the stainless steel material reliably suppresses the elution of metal ions thereof.Type: GrantFiled: August 9, 2007Date of Patent: December 13, 2011Assignee: Toyo Seikan Kaisha, Ltd.Inventors: Kouki Kinouchi, Wataru Kurokawa, Shouzou Shintani, Kinuyo Shintani, legal representative, Daisuke Imoda, Kenji Yoshihiro, You Yamamori
-
Publication number: 20110232809Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.Type: ApplicationFiled: June 8, 2011Publication date: September 29, 2011Applicant: GENERAL ELECTRIC COMPANYInventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
-
Publication number: 20110226386Abstract: A steel characterized in that its composition is percentages by weight: C=0.18-0.30% Co=1.5-4% Cr=2-5% Al=1-2% Mo+W/2=1-4% V=traces-0.3% Nb=traces-0.1% B=traces-30 ppm Ni=11-16% where Ni?7+3.5 Al Si=traces-1.0% Mn=traces-4.0% Ca=traces-20 ppm Rare earths=traces-100 ppm if N?10 ppm, Ti+Zr/2=traces-100 ppm where Ti+Zr/2?10 N if 10 ppm<N?20 ppm, Ti+Zr/2=traces-150 ppm O=traces-50 ppm N=traces-20 ppm S=traces-20 ppm Cu=traces-1% P=traces-200 ppm the remainder being iron and inevitable impurities resulting from the smelting. A process for manufacturing a part from this steel, and part thus obtained.Type: ApplicationFiled: July 8, 2009Publication date: September 22, 2011Inventor: François Roch
-
Patent number: 7967927Abstract: A nanocarbide precipitation strengthened ultrahigh-strength, corrosion resistant, structural steel possesses a combination of strength and corrosion resistance comprising in combination, by weight, about: 0.1 to 0.3% carbon (C), 8 to 17% cobalt (Co), 0 to 10% nickel (Ni), 6 to 12% chromium (Cr), less than 1% silicon (Si), less than 0.5% manganese (Mn), and less than 0.15% copper (Cu), with additives selected from the group comprising about: less than 3% molybdenum (Mo), less than 0.3% niobium (Nb), less than 0.8% vanadium (V), less than 0.2% tantalum (Ta), less than 3% tungsten (W), and combinations thereof, with additional additives selected from the group comprising about: less than 0.2% titanium (Ti), less than 0.2% lanthanum (La) or other rare earth elements, less than 0.15% zirconium (Zr), less than 0.005% boron (B), and combinations thereof, impurities of less than about: 0.02% sulfur (S), 0.012% phosphorus (P), 0.015% oxygen (O) and 0.Type: GrantFiled: January 9, 2007Date of Patent: June 28, 2011Assignee: QuesTek Innovations, LLCInventors: Charles J. Kuehmann, Gregory B. Olson, Herng-Jeng Jou
-
Publication number: 20110048583Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, —Rare earths=trace?500 ppm, —Ti=trace?500 ppm, ?O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.Type: ApplicationFiled: August 26, 2010Publication date: March 3, 2011Applicants: AUBERT & DUVAL, SNECMA MOTEURSInventors: Jacques MONTAGNON, Philippe HERITIER, Isabelle PESLERBE, Claude MONS
-
Publication number: 20100282377Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.Type: ApplicationFiled: May 6, 2009Publication date: November 11, 2010Applicant: Goodrich CorporationInventor: Edward B. Evans
-
Patent number: 7763130Abstract: A thermal process for treating a metal to improve at least one structural characteristic of the metal comprising: placing a metal with a metal temperature within a thermal control apparatus, introducing a cryogenic material to decrease the metal temperature, while preventing over-stressing of the metal, to a first target temperature ranging from ?120 degrees Fahrenheit to ?380 degrees Fahrenheit at a first temperature rate, ranging from degrees Fahrenheit per minute to 20 degrees Fahrenheit per minute, stopping the introduction of cryogenic material once the first target temperature is reached, and increasing the chamber temperature to a second target temperature ranging from 0 degrees Fahrenheit to 1400, and increasing the metal temperature to the second target temperature at a second temperature rate ranging from 0.25 degrees Fahrenheit per minute to 20 degrees Fahrenheit per minute, resulting in a treated metal without fractures.Type: GrantFiled: October 9, 2007Date of Patent: July 27, 2010Inventors: Daniel Martin Watson, Billie Sunday Watson
-
Patent number: 7744707Abstract: A deep cryogenic tempering process for brake components such as rotors and drums is provided, wherein the unique processing profile is dependent on properties of the specific brake components. The process comprises the steps of placing a brake component at a temperature within a cryogenic processing chamber, cooling the brake component at a descent rate until the brake component temperature is approximately ?300° F., maintaining the brake component temperature at ?300° F. for a stay time, raising the temperature of the brake component to approximately ?300° F. at an ascent rate, maintaining the temperature of the brake component at 300° F. for a post temper time, and lowering the temperature of the brake component to room temperature at a cool down rate.Type: GrantFiled: April 27, 2001Date of Patent: June 29, 2010Inventor: Robert Woolley Brunson
-
Publication number: 20100139817Abstract: The invention concerns martensitic stainless steel, characterized in that its composition in weight percentages is as follows: 9%=Cr=13%; 1.5%=Mo=3%; 8%=Ni=14%; 1%=Al=2%; 0.5%=Ti=1.5% with AI+Ti=2.25%; traces=Co=2%; traces=W=1% with Mo+(W/2)=3%; traces=P=0.02%; traces=S=0.0050%; traces=N=0.0060%; traces=C=0.025%; traces=Cu=0.5%; traces=Mn=3%; traces=Si=0.25%; traces=O=0.0050%; and is such that: Ms (° C.)=1302 42 Cr 63 Ni 30 Mo+20AI-15W-33Mn-28Si-30Cu-13Co+10 Ti=50Cr eq/Ni eq=1.05 with Cr eq (%)=Cr+2Si+Mo+1.5 Ti+5.5 AI+0.6W Ni eq (%)=2Ni+0.5 Mn+3O C+25 N+Co+0.3 Cu. The invention also concerns a method for making a mechanical part using said steel, and the resulting part.Type: ApplicationFiled: June 26, 2006Publication date: June 10, 2010Inventor: Jacques Montagnon
-
Publication number: 20080286603Abstract: Disclosed is a steel sheet that exhibits an ultra-high strength after hot press forming followed by rapid cooling, and an enhanced yield strength after painting. The steel sheet has a composition comprising 0.1% to 0.5% by weight of C, 0.01% to 1.0% by weight of Si, 0.5% to 4.0% by weight of Mn, 0.1% by weight or less of P, 0.03% by weight or less of S, 0.1% by weight of soluble Al, 0.01% to 0.1% by weight of N, 0.3% by weight or less of W, and the balance Fe and other inevitable impurities. Further disclosed are a hot-pressed part made of the steel sheet and a method for manufacturing the hot-pressed part. The hot-pressed part achieves a high increment in yield strength after heat treatment for painting while ensuring an ultra-high tensile strength. Furthermore, the hot-pressed part exhibits superior adhesion to a coating layer, good surface appearance and improved corrosion resistance after painting.Type: ApplicationFiled: December 1, 2006Publication date: November 20, 2008Applicant: POSCOInventors: Jin-Keun Oh, Dae-Chul Bae, Seong-Ju Kim, Kwang-Geun Chin, Jae-Ryung Lee, Young-Jun Park
-
Publication number: 20080193321Abstract: The invention relates to steel which is characterised by the following composition as expressed in percentages by weight:—C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, -Rare earths=trace?500 ppm, —Ti=trace?500 ppm, —O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder comprising iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.Type: ApplicationFiled: April 20, 2006Publication date: August 14, 2008Applicant: AUBERT & DUVALInventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
-
Patent number: 7163595Abstract: The thermal process for treating a metal to improve structural characteristics of the metal entails placing a metal within a thermal control apparatus; introducing a cryogenic material into the thermal control apparatus to decrease the metal temperature, while preventing over-stressing of the metal, to a first target temperature ranging from ?40 degrees F. and ?380 degrees F. at a first temperature rate ranging from 0.25 degrees per minute and 20 degrees per minute; stopping the introduction of the cryogenic material once the first target temperature is reached; increasing the chamber temperature to a second target, temperature ranging from 0 degrees F. and 1400 degrees F.; and increasing the metal temperature to the second target temperature at a second temperature rate ranging from 0.25 degrees per minute and 20 degrees per minute, resulting in a treated metal without fractures.Type: GrantFiled: February 20, 2004Date of Patent: January 16, 2007Inventor: Daniel Watson
-
Patent number: 7074285Abstract: The invention provides a high-speed tool steel gear cutting tool in which fracture or chipping does not occur at the cutting edge, and which realizes excellent cutting performance over long periods. Moreover, a method of manufacturing a gear cutting tool including: a step for quenching a tool material comprising high-speed tool steel and which has been rough processed to a shape corresponding to a final shape of a gear cutting tool, to transform a structure of the tool material into martensite, a step for temperling the tool material after quenching to transform any residual austenite dispersingly distributed throughout a matrix of the martensite structure formed by the quenching, into martensite, and a step for finishing the tool material after tempering to a final shape, is characterized in that the tool material after quenching is subjected to sub-zero treatment involving cooling and holding at a temperature of less than ?150 ° C.Type: GrantFiled: June 11, 2003Date of Patent: July 11, 2006Assignee: Mitsubishi Materials Kobe Tools CorporationInventors: Yasuyuki Yamada, Natsuki Ichimiya, Koichi Maeda, Yusuke Tanaka, Kazuaki Tanaka
-
Patent number: 6695937Abstract: A golf club head is comprised of cryogenically treated steel resulting in the striking face having a reduced face thickness of between 0.115 inches and 0.130 inches, and therefore, a reduced striking face mass. Extra material which is eliminated from the striking face, is distributed in other areas of the club head to enhance performance. In an iron club head embodiment, the club head includes a heel portion, toe portion, bottom sole portion, top ridge portion, hosel portion, striking face, rear surface, and peripheral mass on the rear surface which forms a rear cavity. A cantilevered mass extends from the bottom sole portion toward the top ridge portion within the rear cavity, spaced apart from the rear surface. In a wood club head embodiment, the club head includes a hollow body having an inner cavity delimited by a sole portion, a striking face, a heel portion, a toe portion, and a crown portion which links the striking face, toe portion, and heel portion.Type: GrantFiled: July 14, 2000Date of Patent: February 24, 2004Assignee: Nicklaus Golf Equipment Co., L.C.Inventor: John Thomas Stites, III
-
Publication number: 20030205304Abstract: The invention provides a high-speed tool steel gear cutting tool in which fracture or chipping does not occur at the cutting edge, and which realizes excellent cutting performance over long periods. Moreover, a method of manufacturing a gear cutting tool including: a step for quenching a tool material comprising high-speed tool steel and which has been rough processed to a shape corresponding to a final shape of a gear cutting tool, to transform a structure of the tool material into martensite, a step for temperling the tool material after quenching to transform any residual austenite dispersingly distributed throughout a matrix of the martensite structure formed by the quenching, into martensite, and a step for finishing the tool material after tempering to a final shape, is characterized in that the tool material after quenching is subjected to sub-zero treatment involving cooling and holding at a temperature of less than −150 ° C.Type: ApplicationFiled: June 11, 2003Publication date: November 6, 2003Applicant: MMC KOBELCO TOOL CO., LTD.Inventors: Yasuyuki Yamada, Natsuki Ichimiya, Koichi Maeda, Yusuke Tanaka, Kazuaki Tanaka
-
Publication number: 20030111143Abstract: A method for cold forming a flattened, end-threaded rod into a U-bolt answers the need for high-strength steel rods that can be bent into flattened U-bolts by spring and suspension repair facilities or the like. By controlling the amount of work put into the end-threaded flattened rod during bending, it is possible to manufacture a flattened, end-threaded rod from a high-strength steel that can be successfully cold bent into a U-bolt. The amount or degree of flattening and the radius of the U-bolt are variables which applicant controls to successfully cold bend a high-strength steel flattened rod into a U-bolt. Therefore, the spring and suspension repair facility avoids the need to heat the flattened rods for warm forming and, instead, can maintain an inventory of end-threaded and flattened rods for cold forming into flattened U-bolt comply with OEM designs when modifying or repairing vehicles.Type: ApplicationFiled: October 22, 2002Publication date: June 19, 2003Applicant: Consolidated Metal Products, Inc.Inventor: Robert P. Wheeler
-
Patent number: 6544669Abstract: A method of making cookware and bakeware having a stick resistant and mar resistant cook surface comprising the steps of providing a cooking utensil having a cook surface, and cryogenically treating the cooking utensil at one or more selected temperatures comprising −100° F. to −300° F. or lower to harden said cook surface. The cooking utensil may have a bare metal cook surface, or it may be coated with a stick resistant coating such as one of a PTFE, metal nitride or sulfide coating or combinations thereof prior to the cryogenic hardening treatment.Type: GrantFiled: August 24, 2001Date of Patent: April 8, 2003Assignee: Clad Metals LLCInventor: William A. Groll
-
Patent number: 6537396Abstract: A clutch disc spring for a land vehicle, such as an over-the-road truck or an automobile, which has an increased life. The spring, formed of ferrous material, is cooled by vaporizing low temperature nitrogen to slowly, cryogenically cool the spring to a temperature of about −300 degrees Fahrenheit and maintain the spring at that temperature for several hours. The cryogenic treatment converts retained austenite within the spring to martensite, thereby improving the mechanical properties of the spring. The spring is then tempered to temper the newly formed martensite, further improving the mechanical properties of the spring. These improved mechanical properties include better wear resistance, strength and resistance to fatigue.Type: GrantFiled: February 20, 2001Date of Patent: March 25, 2003Assignee: Ace Manufacturing & Parts CompanyInventor: Kevin Ijames
-
Patent number: 6531007Abstract: A method for the manufacture of steel products and products thus produced, wherein steel is subjected to precipitation hardening in a martensitic structure subsequent to soft annealing and thereafter shaping. The method steps include shaping followed by solution annealing between 1200° C. and 1050° C., quenching from the solution annealing temperature with a quenching speed of at least 5° C. per second to a temperature below 500° C., subjecting said steel to an isothermal martensitic transformation and subsequently hardening the steel at a temperature between 450° C. and 550° C. to precipitate particles out from solution into said martensitic structure.Type: GrantFiled: August 23, 2000Date of Patent: March 11, 2003Assignees: Sandvik AB, Koninklijke Philips Electronics, N.V.Inventors: Jan-Olof Nilsson, Sören Olsson, Hubert Sjoerd Blaauw, Adriaan Van der Grijn
-
Patent number: 6506270Abstract: A heat treatment method of steel is capable of enhancing wear resistance, mechanical properties and dimensional stability of the steel due to the reduction of the retained austenite amount to substantially zero. In the method, an article of the steel is subjected to a quenching and then subzero treatment including cooling it at a cooling rate of 1 to 10° C./min. to a cooling temperature and holding the cooling temperature for a predetermined period of time.Type: GrantFiled: June 19, 2001Date of Patent: January 14, 2003Assignees: Iwatani International Corporation, MMC Kobelco Tool Co., Ltd.Inventors: Kenzo Takashina, Yuji Komori, Kazuaki Tanaka, Masahiro Machida
-
Publication number: 20020179204Abstract: A deep cryogenic tempering process for brake components such as rotors and drums is provided, wherein the unique processing profile is dependent on properties of the specific brake components. The dependent properties include material, mass, and geometrical cross-section, among others, and as a result, application of the deep cryogenic tempering process to brake components results in significant improvements in performance and service life. In another preferred form, the present invention provides a brake component having an improved molecular structure as a result of undergoing deep cryogenic tempering, which results in improved structural properties such as improved warpage resistance and heat resistance, and reduced heat checking, fading, and cracking.Type: ApplicationFiled: April 27, 2001Publication date: December 5, 2002Inventor: Robert Woolley Brunson
-
Publication number: 20020139454Abstract: There are provided a rolling bearing comprising an outer race, an inner race, and a plurality of rolling elements each interposed between the outer race and the inner race, at least one of the outer race, the inner race and the rolling elements being made of a steel consisting essentially, by mass, of 0.40 to 0.60% C, not more than 0.5% Si, not more than 0.5% Mn, not less than 8.0% but less than 10.0% Cr, and the balance Fe and incidental impurities, said steel having a hardness not less than 740 HV, carbides contained in said steel having a long size not more than 1.2 &mgr;m, and an amount of said carbides being not more than 3.5% in area %, and a method of producing the rolling bearing.Type: ApplicationFiled: January 17, 2002Publication date: October 3, 2002Applicant: HITACHI METALS, LTD.Inventors: Makoto Komori, Yasushi Tamura
-
Patent number: 6402863Abstract: A method of heat treating 9Ni-4Co-0.30C class steel alloy uses shortened treatment time for normalizing, austenitizing, and tempering, as well as a lower tempering temperature, when compared to conventional heat treatment for this class of alloy material. The improved process is especially beneficial for large section parts, resulting in increases in yield and ultimate strength, combined with substantial increases in impact toughness.Type: GrantFiled: April 26, 2000Date of Patent: June 11, 2002Assignee: Lockheed Martin CorporationInventor: William R. Spencer
-
Publication number: 20020017345Abstract: A heat treatment method of steel is capable of enhancing wear resistance, mechanical properties and dimensional stability of the steel due to the reduction of the retained austenite amount to substantially zero. In the method, an article of the steel is subjected to a quenching and then subzero treatment including cooling it at a cooling rate of 1 to 10° C./min. to a cooling temperature and holding the cooling temperature for a predetermined period of time.Type: ApplicationFiled: June 19, 2001Publication date: February 14, 2002Applicant: IWATANI INTERNATIONAL CORPORATIONInventors: Kenzo Takashina, Yuji Komori, Kazuaki Tanaka, Masahiro Machida
-
Patent number: 6080247Abstract: Comminuting media comprising a martensitic/austenitic steel which contains at least about 40 percent by volume retained austenite, a portion of which is work transformable to martensite. The steel contains sufficient alloy content such that the steel has a martensite start and finish temperature sufficiently low to allow partial transformation of austenite to martensite during quenching of the steel from the austenitic range, but leaving some retained transformable austenite. This steel is used as a comminuting media, the retained austenite transforming to martensite through working or abrasion of the comminuting media during use in a comminution process. The outermost volume of the comminuting media which forms the wear surface and which contains the retained austenite in an amount of at least 40 percent by volume comprises at least 25 percent of the total volume of the comminuting media.Type: GrantFiled: October 9, 1998Date of Patent: June 27, 2000Assignee: GS Technologies Operating CompanyInventors: Charles R. Arnett, Peter J. Moroz, Jr., James J. Lorenzetti
-
Patent number: 6048416Abstract: Steel, steel wire, and a process for forming a drawn wire, especially tire-reinforcing wire of diameter smaller than 0.4 mm, by drawing a steel of the following composition by weight: 0.005%.ltoreq.carbon.ltoreq.0.050%; 0.005%.ltoreq.nitrogen.ltoreq.0.050%; 0.1%.ltoreq.silicon.ltoreq.2.0%; 0.1%.ltoreq.manganese.ltoreq.5%; 5%.ltoreq.nickel.ltoreq.12%; 10%.ltoreq.chromium.ltoreq.20%; 0.01%.ltoreq.copper.ltoreq.4%; 0.01%.ltoreq.molybdenum.ltoreq.3%,the base wire being subjected to:drawing to a cumulative deformation ratio .epsilon. of larger than 2 and smaller than 4,an intermediate annealing treatment at above 700.degree. C.final drawing to a cumulative deformation ratio .epsilon. of smaller than 4.5 and larger than 3.Type: GrantFiled: April 29, 1999Date of Patent: April 11, 2000Assignees: Ugine-Savoie Imphy, Sprint Metal - Societe de Production Internationale de TrefilesInventors: Jean-Michel Hauser, Joel Marandel
-
Patent number: 5865913Abstract: A method for treating firearm barrels and components to achieve an end result of increased accuracy and extended barrel life. The method involves placing the firearm barrels and components into cryogenic processing and heat treating equipment. The processing temperature is then significantly lowered to about -300 F. and maintained for a predetermined time. The processing temperature is then raised back to ambient temperature. After achieving ambient temperature the processing temperature is then raised to about +300 F. and maintained for a predetermined time. Finally the processing temperature is lowered back to ambient temperature.Type: GrantFiled: October 30, 1997Date of Patent: February 2, 1999Assignee: 300 Below, Inc.Inventors: Peter J. Paulin, John R. Koucky, Robert W. Brunson
-
Patent number: 5830290Abstract: The subject invention provides a method for manufacturing a spring band clip, wherein an alloyed steel is shaped, annealed, levelled into a narrow band, then shaped by stamping and bending into a non-machined clip, and the surface of the non-machined clip is smoothed and treated to produce resistance to corrosion; wherein the steel comprises iron as the main component and one or more of the following components by weight: 0.32 to 0.55% C; up to 2.0% Si; up to 2.0% Mn; up to 0.04% P; up to 0.04% S; 17.5 to 20% Cr; up to 1% Ni; 0.5 to 2.5% Mo; up to 0.5% V; up to 0.1% Al; up to 0.1% Co; up to 0.4% Cu; up to 0.4% Pb; up to 0.1% Se; up to 0.1% Te; up to 0.005% Ti; up to 0.1% W; up to 0.05% Zr; up to 0.01% O.sub.2 ; up to 0.01% N; up to 0.1% Bi; up to 0.001% B; up to 0.05% Nb; wherein the non-machined clip is austenitized prior to being smoothed and is converted into martensite by heat treatment in a salt-, oil-, or water bath, or by quenching at about the austenitizing temperature.Type: GrantFiled: October 9, 1996Date of Patent: November 3, 1998Assignee: Rasmussen GmbHInventor: Hans-Jurgen Kreipe
-
Patent number: 5800641Abstract: A method of thermal or thermochemical treatment of precision steel components having different wall thicknesses comprising the steps of a) hardening (8), b) low temperature cooling (9) and c) annealing (10), wherein the precision steel components are subjected to a low temperature cooling of only selected parts of the precision steel component to effect a reduction in the occurrence of primary residual austenite in the selected parts thereof.Type: GrantFiled: March 18, 1996Date of Patent: September 1, 1998Assignee: Ina Walzlager Schaeffler KGInventor: E.H. Georg Schaeffler
-
Patent number: 5622573Abstract: A welding material for hard-facing which is to be hardened by a supercooling treatment after overlaying onto a cast iron base metal has a basic component composition which meets, in an overlaid condition, both a first condition and a second condition. The first condition is that a nickel (Ni) equivalent and a chromium (Cr) equivalent fall within that region to be defined in Schaeffler's structure diagram in which a difference in hardness before and after the supercooling treatment is a predetermined value or above. The second condition is that a starting temperature of martensitic transformation is a predetermined temperature or below.Type: GrantFiled: March 28, 1995Date of Patent: April 22, 1997Assignee: Honda Giken Kogyo Kabushiki KaishaInventors: Hideaki Ikeda, Tuyoshi Kokusho
-
Patent number: 5591277Abstract: A method for thermally conditioning a disc drive swage mount to enhance torque retention capability and plate stiffness wherein the swage mount is baked in an oxygen depleted environment to an elevated temperature within a predetermined range of temperatures which activates inherent frictional properties therein and controllably cooled non-linearly through a series of thermal cycles then instantaneously quenched to alter the material grain structure forming the swage mount. After the component is quenched, it is returned to ambient conditions for assembly into such disc drives.Type: GrantFiled: June 28, 1995Date of Patent: January 7, 1997Assignee: Intri-Plex Technologies, Inc.Inventor: Stephen T. Braunheim