With Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/682)
  • Patent number: 11319615
    Abstract: A copper alloy for electronic and electrical equipment is provided, including: 0.15 mass % or greater and less than 0.35 mass % of Mg; 0.0005 mass % or greater and less than 0.01 mass % of P; and a remainder which is formed of Cu and unavoidable impurities, in which a conductivity is greater than 75% IACS, a content [Mg] (mass %) of Mg and a content [P] (mass %) of P satisfy a relational expression of [Mg]+20×[P]<0.5, and a content of H is 10 mass ppm or less, a content of O is 100 mass ppm or less, a content of S is 50 mass ppm or less, and a content of C is 10 mass ppm or less.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 3, 2022
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka Matsunaga, Kazunari Maki
  • Patent number: 11203806
    Abstract: Provided is a copper alloy for electronic and electrical equipment including: 0.15 mass % or greater and less than 0.35 mass % of Mg; 0.0005 mass % or greater and less than 0.01 mass % of P; and a remainder which is formed of Cu and unavoidable impurities, in which a conductivity is greater than 75% IACS, and an average number of compounds containing Mg and P with a particle diameter of 0.1 ?m or greater is 0.5 pieces/?m2 or less in observation using a scanning electron microscope.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 21, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka Matsunaga, Kazunari Maki
  • Patent number: 11104977
    Abstract: A copper alloy includes, by mass %: Mg: 0.15%-0.35%; and P: 0.0005%-0.01%, with a remainder being Cu and unavoidable impurities, wherein [Mg]+20×[P]<0.5 is satisfied. Among the unavoidable impurities, H is 10 mass ppm or less, O is 100 mass ppm or less, S is 50 mass ppm or less, and C is 10 mass ppm or less. In addition, 0.20<(NFJ2/(1?NFJ3))0.5?0.45 is satisfied where a proportion of J3, in which all three grain boundaries constituting a grain boundary triple junction are special grain boundaries, to a total grain boundary triple junctions is NFJ3, and a proportion of J2, in which two grain boundaries constituting a grain boundary triple junction are special grain boundaries and one grain boundary is a random grain boundary, to the total grain boundary triple junctions is NFJ2.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 31, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hirotaka Matsunaga, Kenichiro Kawasaki, Hiroyuki Mori, Kazunari Maki, Yoshiteru Akisaka
  • Patent number: 10266917
    Abstract: The present invention discloses a heat resistance copper alloy material characterized in that said copper alloy material comprises 0.15 to 0.33 mass percent of Co, 0.041 to 0.089 mass percent of P, 0.02 to 0.25 mass percent of Sn, 0.01 to 0.40 mass percent of Zn and the remaining mass percent of Cu and inevitable impurities, wherein each content of Co, P, Sn and Zn satisfies the relationships 2.4?([Co]?0.02)/[P]?5.2 and 0.20?[Co]+0.5 [P]+0.9 [Sn]+0.1 [Zn]?0.54, wherein [Co], [P], [Sn] and [Zn] are said mass percents of Co, P, Sn and Zn content, respectively; and said copper alloy material is a pipe, plate, bar, wire or worked material obtained by working said pipe, plate, bar or wire material into predetermined shapes.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: April 23, 2019
    Assignee: MITSUBISHI SHINDOH CO., LTD.
    Inventor: Keiichiro Oishi
  • Patent number: 10199132
    Abstract: A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: February 5, 2019
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Takashi Kimura, Toshiya Kamada, Weilin Gao, Fumiaki Sasaki, Akira Sugawara
  • Patent number: 10056166
    Abstract: Disclosed is a copper-cobalt-silicon (Cu—Co—Si) alloy for electronic material with an improved balance among electro-conductivity, strength and bend formability, which includes 0.5 to 3.0% by mass of Co, 0.1 to 1.0% by mass of Si, and the balance of Cu and inevitable impurities, having a ratio of mass percentages of Co and Si (Co/Si) given as 3.5?Co/Si?5.0, having an average particle size of second phase particles, within the range of the particle size of 1 to 50 m seen in a cross-section taken in parallel with the direction of rolling, of 2 to 10 nm, and having an average distance between the adjacent second phase particles of 10 to 50 nm.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: August 21, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yasuhiro Okafuji
  • Patent number: 9435016
    Abstract: The Cu—Ni—Si-based copper alloy plate contains 1.0 mass % to 3.0 mass % of Ni, and Si at a concentration of ? to ¼ of the mass % concentration of Ni with a remainder of Cu and inevitable impurities, in which, when the average value of the aspect ratio (the minor axis of crystal grains/the major axis of crystal grains) of each crystal grains in an alloy structure is 0.4 to 0.6, the average value of GOS in the all crystal grains is 1.2° to 1.5°, and the ratio (L?/L) of the total special grain boundary length L? of special grain boundaries to the total grain boundary length L of crystal grain boundaries is 60% to 70%, the spring bending elastic limit becomes 450 N/mm2 to 600 N/mm2, the solder resistance to heat separation is favorable and deep drawing workability is excellent at 150° C. for 1000 hours.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: September 6, 2016
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshio Abe, Akira Saito, Yoshihiro Kameyama
  • Patent number: 9034123
    Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0??(1), where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 19, 2015
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20150000803
    Abstract: A Cu—Ni—Si-based copper alloy sheet of the invention has excellent mold abrasion resistance and shear workability while maintaining strength and conductivity, in which 1.0 mass % to 4.0 mass % of Ni is contained, 0.2 mass % to 0.9 mass % of Si is contained, the remainder is made up of Cu and inevitable impurities. The number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a surface layer that is as thick as 20% of the entire sheet thickness from the surface is represented by a particles/mm2, and the number of the Ni—Si precipitate particles having a grain diameter in a range of 20 nm to 80 nm in a portion below the surface layer is represented by b particles/mm2, a/b is in a range of 0.5 to 1.5.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 1, 2015
    Applicant: Mitsubishi Shindoh Co., Ltd
    Inventors: Jun-Ichi Kumagai, Yoshio Abe, Akira Saito, Shuzo Umezu, Ryo Iino
  • Patent number: 8795446
    Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 5, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
  • Patent number: 8784580
    Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation ? of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 22, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Akira Fugono, Hiroshi Sakamoto
  • Publication number: 20140116583
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Toshiya KAMADA, Takashi KIMURA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Patent number: 8652274
    Abstract: A copper alloy includes Si to facilitate deoxidation, and can be easily manufactured even when including elements such as Cr or Sn. The copper alloy has high conductivity and high workability without negatively affecting the tensile strength. The copper alloy contains 0.2 to 0.4 wt % of Cr, 0.05 to 0.15 wt % of Sn, 0.05 to 0.15 wt % of Zn, 0.01 to 0.30 wt % of Mg, 0.03 to 0.07 wt % of Si, with the remainder being Cu and inevitable impurities. A method for manufacturing the copper alloy includes obtaining a molten metal having the described composition; obtaining an ingot; heating the ingot at a temperature of 900-1000° C. to perform a hot rolling process; cold rolling; performing a first aging process at a temperature of 400-500° C. for 2 to 8 hours; cold rolling; and performing a second aging process at a temperature of 370-450° C. for 2 to 8 hours.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 18, 2014
    Assignee: Poonsgan Corporation
    Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
  • Patent number: 8641838
    Abstract: A copper alloy sheet material, having a composition containing any one or both of Ni and Co in an amount of 0.5 to 5.0 mass % in total, and Si in an amount of 0.3 to 1.5 mass %, with the balance of copper and unavoidable impurities, wherein an area ratio of cube orientation {0 0 1} <1 0 0> is 5 to 50%, according to a crystal orientation analysis in EBSD measurement.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: February 4, 2014
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Koji Sato
  • Publication number: 20130167988
    Abstract: The Cu—Ni—Si-based copper alloy plate contains 1.0 mass % to 3.0 mass % of Ni, and Si at a concentration of ? to ¼ of the mass % concentration of Ni with a remainder of Cu and inevitable impurities, in which, when the average value of the aspect ratio (the minor axis of crystal grains/the major axis of crystal grains) of each crystal grains in an alloy structure is 0.4 to 0.6, the average value of GOS in the all crystal grains is 1.2° to 1.5°, and the ratio (L?/L) of the total special grain boundary length L? of special grain boundaries to the total grain boundary length L of crystal grain boundaries is 60% to 70%, the spring bending elastic limit becomes 450 N/mm2 to 600 N/mm2, the solder resistance to heat separation is favorable and deep drawing workability is excellent at 150° C. for 1000 hours.
    Type: Application
    Filed: July 7, 2010
    Publication date: July 4, 2013
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Takeshi Sakurai, Yoshio Abe, Akira Saito, Yoshihiro Kameyama
  • Patent number: 8444779
    Abstract: The invention provides Cu—Ni—Si—Co alloys having excellent strength, electrical conductivity, and press-punching properties. In one aspect, the invention is a copper alloy for electronic materials, containing 1.0 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, and 0.30 to 1.2 mass % of Si, the balance being Cu and unavoidable impurities, wherein the copper alloy for electronic material has a [Ni+Co+Si] content in which the median value ? (mass %) satisfies the formula 20 (mass %)???60 (mass %), the standard deviation ? (Ni+Co+Si) satisfies the formula ? (Ni+Co+Si)?30 (mass %), and the surface area ratio S (%) satisfies the formula 1%?S?10%, in relation to the compositional variation and the surface area ratio of second-phase particles size of 0.1 ?m or greater and 1 ?m or less when observed in a cross section parallel to a rolling direction.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: May 21, 2013
    Assignee: JX Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Hiroshi Kuwagaki
  • Patent number: 8409375
    Abstract: A method of producing a copper alloy wire rod, containing: a casting step for obtaining an ingot by pouring molten copper of a precipitation strengthening copper alloy into a belt-&-wheel-type or twin-belt-type movable mold; and a rolling step for rolling the ingot obtained by the casting step, which steps are continuously performed, wherein an intermediate material of the copper alloy wire rod in the mid course of the rolling step or immediately after the rolling step is quenched.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 2, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hirokazu Yoshida, Tsukasa Takazawa
  • Patent number: 8361255
    Abstract: A copper alloy material having: 1.0 to 5.0 mass % of Ni; 0.2 to 1.0 mass % of Si; 1.0 to 5.0 mass % of Zn; 0.1 to 0.5 mass % of Sn; 0.003 to 0.3 mass % of P; and the balance consisting of Cu and an unavoidable impurity. The mass ratio between Ni and each of Si, Zn and Sn is to be Ni/Si=4 to 6, Zn/Ni=0.5 or more, and Sn/Ni=0.05 to 0.2.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 29, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hiroaki Takano, Yoshiki Yamamoto, Koichi Kotoku, Chingping Tong
  • Patent number: 8317948
    Abstract: The invention provides Cu—Ni—Si alloys containing Co, and having excellent strength and conductivity. A copper alloy for electronic materials in accordance with the invention contains about 0.5-about 2.5% by weight of Ni, about 0.5-about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si ([Ni+Co]/Si ratio) satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co (Ni/Co ratio) satisfies the formula: about 0.5?Ni/Co?about 2.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 27, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Patent number: 8211249
    Abstract: A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) where I(hkl) is the X-ray diffraction intensity from (hkl)plane measured with respect to a rolled surface is 2.0 or more.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 3, 2012
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Tetsuo Sakai, Naokuni Muramatsu, Koki Chiba, Naoki Yamagami
  • Patent number: 8137489
    Abstract: A copper alloy material has a rolled surface having a plurality of crystal faces parallel to the rolled surface. The crystal faces includes at least one crystal face selected from a group consisted of {011}, {1nn} (n is an integer, n?1), {11m} (m is an integer, m?1), {023}, {012}, and {135}. Diffraction intensities of the crystal faces in an inverse pole figure obtained by crystal diffraction measurement of the rolled surface as a reference satisfy the relationships of: {011}>{155}>{133}, {011}>{023}>{012}, and {011}>{135}>{112}.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 20, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Takemi Muroga, Noboru Hagiwara, Yoshiki Yamamoto
  • Patent number: 8097102
    Abstract: Provided is a Cu—Ti-based copper alloy sheet material that satisfies all the requirements of high strength, excellent bending workability and stress relaxation resistance and has excellent sprig-back resistance. The copper alloy sheet material has a composition containing, by mass, from 1.0 to 5.0% of Ti, and optionally containing at least one of at most 0.5% of Fe, at most 1.0% of Co and at most 1.5% of Ni, and further optionally containing at least one of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V in an amount within a suitable range, with the balance of Cu and inevitable impurities, and having a crystal orientation satisfying the following expression (1) and preferably also satisfying the following expression (2). The mean crystal grain size of the material is controlled to be from 10 to 60 ?m. I{420}/I0{420}>1.0??(1) I{220}/I0{220}?3.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Dowa Metaltech Co., Ltd.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 8070893
    Abstract: The invention provides Cu—Ni—Si—Co—Cr copper alloys for electronic materials having excellent characteristics such as dramatically improved strength and electrical conductivity. In one aspect, the invention is a Cu—Ni—Si—Co—Cr copper alloy for electronic materials, containing about 0.5-about 2.5% by weight of Ni, about 0.5 -about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and about 0.09 -about 0.5% by weight of Cr, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si in the alloy composition satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co in the alloy composition satisfies the formula: about 0.5?Ni/Co?about 2, and wherein Pc is equal to or less than about 15/1000 ?m2, or Pc/P is equal to or less than about 0.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: December 6, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Publication number: 20110244260
    Abstract: Provided is a Cu—Ni—Si—Co based copper alloy with which high levels of strength and conductivity are achieved, and that also has excellent permanent fatigue resistance. The copper alloy for electronic materials contains Ni: 1.0-2.5 mass %, Co: 0.5-2.5 mass %, and Si: 0.3-12 mass %, and the remainder comprises Cu and unavoidable impurities. Of the second phase particles precipitated in the matrix, the number density of those having a particle diameter of 5-50 nm is 1×1012 to 1×1014/mm3, and the number density of those having a particle diameter of 5 nm to less than 20 nm is 3-6 as represented by the ratio to the number density of those having a particle diameter of 20-50 nm.
    Type: Application
    Filed: November 20, 2009
    Publication date: October 6, 2011
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20110240182
    Abstract: Disclosed is a Ni—Si—Co copper alloy that is suitable for use for various kinds of electronic parts and has particularly good uniform plating adhesion properties. The copper alloy for electronic materials comprises Ni: 1.0-2.5 mass %, Co: 0.5-2.5 mass % and Si: 0.3-1.2 mass % and the remainder is made of Cu and unavoidable impurities. For the copper alloy for electronic materials, the mean crystal size, at the plate thickness center, is 20 ?m or less, and there are five or fewer crystal particles that contact the surface and have a long axis of 45 ?m or greater per 1 mm rolling direction length. The copper alloy may comprise a maximum of 0.5 mass % Cr and may comprise a maximum in total of 2.0 mass % of one, two or more selected from a group comprising Mg, P, As, Sb, Be, B, Mn, Sn, Ti, Zr, Al, Fe, Zn and Ag.
    Type: Application
    Filed: December 11, 2009
    Publication date: October 6, 2011
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20110146855
    Abstract: A copper alloy material includes, by mass %, Mg of 0.3 to 2%, P of 0.001 to 0.1%, and the balance including Cu and inevitable impurities. An area fraction of such crystal grains that an average misorientation between all the pixels in each crystal grain is less than 4° is 45 to 55% of a measured area, when orientations of all the pixels in the measured area of the surface of the copper alloy material are measured by an EBSD method with a scanning electron microscope of an electron backscattered diffraction image system and a boundary in which a misorientation between adjacent pixels is 5° or more is considered as a crystal grain boundary, and a tensile strength is 641 to 708 N/mm2, and a bending elastic limit value is 472 to 503 N/mm2.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 23, 2011
    Applicant: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshihiro Kameyama, Yoshio Abe
  • Publication number: 20100276037
    Abstract: A high strength titanium copper alloy consists of Ti at 2.0% by mass or more to 3.5% by mass or less; the balance of copper and inevitable impurities; an average grain size of 20 ?m or less; and a 0.2% proof stress expressed by “b” of 800 N/mm2 or more. The alloy further comprises a bending radius ratio (bending radius/sheet thickness) not causing cracking as expressed by “a” by a W-bending test in a transverse direction to a rolling direction, wherein “a” and “b” satisfy a?0.
    Type: Application
    Filed: December 31, 2007
    Publication date: November 4, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Michiharu Yamamoto, Tositeru Nonaka, Takahiro Umegaki
  • Publication number: 20100224292
    Abstract: A copper alloy material has a rolled surface having a plurality of crystal faces parallel to the rolled surface. The crystal faces includes at least one crystal face selected from a group consisted of {011}, {1nn} (n is an integer, n?1), {11m} (m is an integer, m?1), {023}, {012}, and {135}. Diffraction intensities of the crystal faces in an inverse pole figure obtained by crystal diffraction measurement of the rolled surface as a reference satisfy the relationships of: {011}>{155}>{133}, {011}>{023}>{012}, and {011}>{135}>{112}.
    Type: Application
    Filed: June 19, 2009
    Publication date: September 9, 2010
    Inventors: Takemi Muroga, Noboru Hagiwara, Yoshiki Yamamoto
  • Patent number: 7776166
    Abstract: The present invention relates to methods for improving deposited film uniformity and controlling the erosion of sputter targets. Improved methods for achieving predetermined microstructure orientation in copper hollow cathode magnetron (HCM) sputter targets and targets prepared by such methods are disclosed.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 17, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Bjoern Pigur, Alfred Snowman
  • Publication number: 20100193092
    Abstract: A copper alloy for an electrical and electronic device in accordance with the present invention is characterized in that the copper alloy for an electrical and electronic device includes: nickel (Ni) between 1.5 mass % and 5.0 mass %; silicon (Si) between 0.4 mass % and 1.5 mass %; and a remaining portion formed of Cu and an unavoidable impurity, wherein a mass ratio between Nickel (Ni) and Silicon (Si) as Ni/Si is not smaller than two and not larger than seven, an average crystalline grain diameter is not smaller than 2 ?m and not larger than 20 ?m, and a standard deviation of the crystalline grain diameter is not larger than 10 ?m.
    Type: Application
    Filed: March 26, 2008
    Publication date: August 5, 2010
    Inventors: Ryosuke Matsuo, Tatsuhiko Eguchi, Kuniteru Mihara, Hiroshi Kaneko, Kiyoshige Hirose
  • Publication number: 20100139822
    Abstract: Provided is a Cu—Ti-based copper alloy sheet material that satisfies all the requirements of high strength, excellent bending workability and stress relaxation resistance and has excellent sprig-back resistance. The copper alloy sheet material has a composition containing, by mass, from 1.0 to 5.0% of Ti, and optionally containing at least one of at most 0.5% of Fe, at most 1.0% of Co and at most 1.5% of Ni, and further optionally containing at least one of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V in an amount within a suitable range, with the balance of Cu and inevitable impurities, and having a crystal orientation satisfying the following expression (1) and preferably also satisfying the following expression (2). The mean crystal grain size of the material is controlled to be from 10 to 60 ?m. I{420}/I0{420}>1.0 ??(1) I{220}/I0{220}?3.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 7727344
    Abstract: A copper alloy suitable for an IC lead pin for a pin grid array provided on a plastic substrate, which copper alloy is a Cu—Zn—Mg alloy, a Cu—Sn alloy, a Cu—SN—Ag alloy, a Cu—Fe—Zn—P alloy, or a Cu—Cr alloy, each having a given alloy composition, in which the copper alloy has conductivity of 50% IACS or more and tensile stress of 400 MPa to 650 MPa.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: June 1, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Takashi Miyoshi, Tsutomu Saito, Isao Takahashi
  • Patent number: 7648601
    Abstract: A high-strength, high conductivity copper alloy wire that is excellent in resistance to stress relaxation, which contains 1.0 to 4.5% by mass of Ni, 0.2 to 1.1% by mass of Si, 0.05 to 1.5% by mass of Sn, and less than 0.005% (including zero) by mass of S, with the balance being Cu and inevitable impurities, wherein the wire has a conductivity of from 20% to 60% IACS and a tensile strength of from 700 to 1,300 MPa, and a method of producing the same.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: January 19, 2010
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Katsumasa Hasegawa, Kuniteru Mihara, Katsuhiko Uda, Takashi Miyoshi
  • Patent number: 7628872
    Abstract: A lead-free free-cutting copper-antimony alloy comprises in percentage by weight: 55 to 65% Cu, 0.3 to 2.0% Sb, 0.2 to 1.0% Mn, at least two elements selected from the group of Ti, Ni, B, Fe, Se, Mg, Si, Sn, P and rare-earth metal in amount of 0.1-1.0%, as well as balance Zn and unavoidable impurities. The brass alloys according to the present invention possess superior cutting property, weldability, corrosion resistance, dezincification resistance and high-temperature-oxidation resistance, and are suitable for use in drinking-water installations, domestic appliances, toy for children, fastener, etc. The process for producing such alloys is also proposed.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: December 8, 2009
    Assignee: Ningbo Powerway Alloy Material Co., Ltd.
    Inventors: Ming Zhang, Siqi Zhang, Jihua Cai, Haorong Lou, Xiao Xie
  • Patent number: 7544259
    Abstract: An element such as Cr is caused to dissolve sufficiently in a base-material metal (Cu) in a solid solution state at a high temperature and a material in a supersaturated condition is obtained by performing quenching. After that, a strain is applied to this material and this material is subjected to aging treatment at a low temperature simultaneously with or after the application of this strain. As a result of this, it is possible to obtain a copper alloy having properties desirable as an electrode material, for example, a hardness of not less than 30 HRB, an electrical conductivity of not less than 85 IACS %, and a thermal conductivity of not less than 350 W/(m·K).
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: June 9, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuhiro Funaki, Hiroki Baba, Shinya Ohyama, Toshiyuki Horimukai
  • Patent number: 7485200
    Abstract: This copper alloy contains at least zirconium in an amount of not less than 0.005% by weight and not greater than 0.5% by weight, includes a first grain group including grains having a grain size of not greater than 1.5 ?m, a second grain group including grains having a grain size of greater than 1.5 ?m and less than 7 ?m, the grains having a form which is elongated in one direction, and a third grain group including grains having a grain size of not less than 7 ?m, and also the sum of ? and ? is greater than ?, and ? is less than ?, where ? is a total area ratio of the first grain group, ? is a total area ratio of the second grain group, and ? is a total area ratio of the third grain group, based on a unit area, and ?+?+?=1.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 3, 2009
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Masahiko Ishida, Junichi Kumagai, Takeshi Suzuki
  • Publication number: 20090025840
    Abstract: The invention provides Cu—Ni—Si—Co—Cr copper alloys for electronic materials having excellent characteristics such as dramatically improved strength and electrical conductivity. In one aspect, the invention is a Cu—Ni—Si—Co—Cr copper alloy for electronic materials, containing about 0.5-about 2.5% by weight of Ni, about 0.5-about 2.5% by weight of Co, about 0.30-about 1.2% by weight of Si, and about 0.09-about 0.5% by weight of Cr, and the balance being Cu and unavoidable impurities, wherein the ratio of the total weight of Ni and Co to the weight of Si in the alloy composition satisfies the formula: about 4?[Ni+Co]/Si?about 5, and the ratio of Ni to Co in the alloy composition satisfies the formula: about 0.5?Ni/Co?about 2, and wherein Pc is equal to or less than about 15/1000 ?m2, or Pc/P is equal to or less than about 0.
    Type: Application
    Filed: March 31, 2006
    Publication date: January 29, 2009
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Kazuhiko Fukamachi, Hiroshi Kuwagaki
  • Publication number: 20080190523
    Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, and Co: 2.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0, ??(1) where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.
    Type: Application
    Filed: July 13, 2007
    Publication date: August 14, 2008
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20080190524
    Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0, ??(1) where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 14, 2008
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 7291232
    Abstract: A process for producing a copper-nickel-silicon alloy having a yield strength above 90 ksi with an electrical conductivity above 50% IACS. The process includes melting and continuously casting raw material to obtain an alloy containing 1-3 wt. % nickel, 0.2 to 0.7 wt. % silicon, remainder copper and unavoidable impurities; cold delivering the alloy to form a cold-rolled alloy, solution annealing the cold-rolled alloy; cold rolling the annealed alloy; and precipitation annealing the cold-rolled annealed alloy at a temperature of 450-500 degrees C. for four to ten hours with a cooling rate of 10-20 degrees C. per hour.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 6, 2007
    Assignee: Luvata OY
    Inventor: Claes Anders Kamf
  • Patent number: 7204893
    Abstract: In the present invention, forming is carried out by employing casting to rapidly solidify molten material comprising a copper base alloy containing 3 to 20% Ag (mass % hereinafter), 0.5 to 1.5% Cr and 0.05 to 0.5% Zr. Next, an aging treatment for precipitation is carried out at 450 to 500° C., and the formed article is obtained by precipitation strengthening. In addition, in the aforementioned copper base alloy, molten material comprising a copper base alloy containing Ag in the amount of 3 to 8.5% is solidified by casting, and the solidified article or the hot worked article thereof is subjected to an aging treatment for precipitation and a thermomechanical treatment using forging or rolling, and the casting is obtained by forming the material into a specific shape and carrying out precipitation strengthening.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 17, 2007
    Assignee: Ishikawajima-Harima Heavy Industries, Co., Ltd.
    Inventor: Kazuaki Mino
  • Patent number: 7172665
    Abstract: A melt of a Cu-based alloy containing 2 to 6% (% by weight, the same shall apply hereinafter) of Ag and 0.5 to 0.9% of Cr are solidified by casting, and the solidified article after subjecting to a homogenizing heat treatment is subjected to hot-working. The hot-worked article is subjected to a solution treatment, the article is subjected to cold-working or warm-working by forging or rolling, and then the formed article is subjected to an aging treatment to obtain a metallic material capable of manufacturing a high strength and high thermal conductive metal formed article at a low price, regardless of the geometry, and a method of manufacturing the metal formed article using the same.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: February 6, 2007
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Kazuaki Mino
  • Publication number: 20040166017
    Abstract: An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu—Ti—X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 105 ksi and the electrical conductivity is at least 50% IACS.
    Type: Application
    Filed: September 5, 2003
    Publication date: August 26, 2004
    Applicants: Olin Corporation, Wieland-Werke AG
    Inventors: Ronald N. Caron, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Doris Humpenoder-Bogel, Hans-Achim Kuhn, Joerg Seeger
  • Publication number: 20040159379
    Abstract: A copper alloy that consists essentially of, by weight, from 0.15% to 0.7% of chromium, from 0.005% to 0.3% of silver, from 0.01% to 0.15% of titanium, from 0.01% to 0.10% of silicon, up to 0.2% of iron, up to 0.5% of tin, and the balance copper and inevitable impurities has high strength, a yield strength in excess of 80 ksi, and high electrical conductivity, in excess of 80% IACS. The alloy further has substantially isotropic bend characteristics when the processing route includes a solution heat anneal above 850° C. and subsequent cold rolling into sheet, strip or foil interspersed by bell annealing. As a result, the alloy is particularly suited for forming into box-type electrical connectors for both automotive or multimedia applications. The alloy is also suitable for forming into a rod, wire or section.
    Type: Application
    Filed: February 19, 2004
    Publication date: August 19, 2004
    Inventors: Andreas Bogel, Jorg Seeger, Hans-Achim Kuhn, John F. Breedis, Ronald N. Caron, Derek E. Tyler
  • Patent number: 6689235
    Abstract: A method of manufacturing the rolled copper foil by a process which comprises hot rolling an ingot repeating cold rolling and annealing alternately, and finally cold rolling the work to a foil, the annealing immediately preceding the final cold rolling being performed under conditions that enable the annealed recrystallized grains to have a mean grain diameter of not greater than 20 &mgr;m, the reduction ration of the final cold rolling being beyond 90.0%, whereby excellent flex fatigue property and adequate softening property are achieved.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: February 10, 2004
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Takaaki Hatano, Yoshio Kurosawa
  • Patent number: 6689232
    Abstract: The present invention relates to copper-magnesium-phosphorous alloys. In a first embodiment, copper-magnesium-phosphorous alloys in accordance with the present invention consist essentially of magnesium in an amount from about 0.01 to about 0.25% by weight, phosphorous in an amount from about 0.01 to about 0.2% by weight, silver in an amount from about 0.001 to about 0.1% by weight, iron in an amount from about 0.01 to about 0.25% by weight, and the balance copper and inevitable impurities. Preferably, the magnesium to phosphorous ratio is greater than 1.0. In a second embodiment, copper-magnesium-phosphorous alloys in accordance with the present invention consist essentially of magnesium in an amount from about 0.01 to about 0.25% by weight, phosphorous in an amount from about 0.01 to about 0.2% by weight, optionally silver in an amount from about 0.001 to about 0.1% by weight, at least one element selected from the group consisting of nickel, cobalt, and mixtures thereof in an amount from about 0.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: February 10, 2004
    Inventor: Ashok K. Bhargava
  • Patent number: 6679956
    Abstract: A process for making a copper base alloy comprises the steps of casting a copper base alloy containing tin, zinc, iron and phosphorous and forming phosphide particles uniformly distributed throughout the matrix. The forming step comprises homogenizing the alloy at least once for at least one hour at a temperature from 1000 to 1450° F., rolling to final gauge including at least one process anneal for at least one hour at 650 to 1200° F. followed by slow cooling, and stress relief annealing at final gauge for at lest one hour at 300 to 600° F.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: January 20, 2004
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Publication number: 20040003878
    Abstract: A titanium copper alloy having excellent strength and bendability comprising 1.0 to 4.5% by mass of Ti, the balance of copper and inevitable impurities, characterized in that; diameters of the intermetallic compound particles consisting of Cu and Ti precipitated in the alloy are 3 &mgr;m or less; the average number of the intermetallic compound particles having the diameters of 0.2 to 3 &mgr;m is 700 or less per a cross-sectional area of 1000 &mgr;m2 in a transverse direction to a rolling direction; the average grain size measured in the above cross-sectional area is 10 &mgr;m or less; and a tensile strength is 890 MPa or more.
    Type: Application
    Filed: June 19, 2003
    Publication date: January 8, 2004
    Applicant: NIPPON MINING & METALS Co., Ltd.
    Inventors: Chihiro Izumi, Takaaki Hatano
  • Patent number: 6627011
    Abstract: Copper alloy having the basic composition Cu—Zn—Sn contains 23-28 wt % Zn and 0.3-1.8 wt % Sn and satisfies the relation 6.0≦0.25X+Y≦8.5 (where X is the addition of Zn in wt % and Y is the addition of Sn in wt %). The alloy is cast into an ingot by melting and cooling over the range from the liquidus line to 600° C. at a rate of at least 50° C./min; the ingot is hot rolled at a temperature not higher than 900° C. and then subjected to repeated cycles of cold rolling and annealing at 300-650° C. to control the size of crystal grains, thereby producing a rolled strip having a 0.2% yield strength of at least 600 N/mm2, a tensile strength of at least 650 N/mm2, an electrical conductivity of at least 20% IACS, a Young's modulus of no more than 120 kN/mm2 and a percent stress relaxation of no more than 20%.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: September 30, 2003
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Akira Sugawara, Kazuki Hatakeyama, Le Ling
  • Patent number: 6506269
    Abstract: A high-strength and high-conductivity copper alloy is disclosed which contains essentially of: (a) from 0.5 to 2.5 wt % of Ni; (b) from 0.5 to 2.5 wt % of Co; (c) from 0.5 to 0.8 wt % of Si; (d) from 0.05 to 0.15 wt % of either Mg or P or both; and (e) the balance of Cu. The amounts of Co, Ni, and Si satisfy the following equations: 2%≦(Ni+Co)≦4%, and 0.8≦(Ni/4+Co/6)/Si≦1.2. The new copper alloy exhibits substantially improved electrical conductivity, greater than 65% IACA, than the commercially available C7025 copper alloy, while maintaining a satisfactory tensile strength (greater than 600 MPa), and, thus, can be most advantageously used for preparing leadframes for use in high pin-number (greater than 100 pins) IC application.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: January 14, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Yaw Liu, Yu-Lian Sha, I-Ching Lee, Mao-Ying Teng, Ray-Iun Liu, Ren-Der Jean