With Extruding Or Drawing Patents (Class 148/689)
  • Patent number: 6136106
    Abstract: The invention relates to a method for manufacturing thin-walled pipes, which are made of a heat-resistant and wear-resistant aluminum-based material. The method comprises the spray-compacting of a thick-walled pipe made of a hypereutectic aluminum-silicon AlSi material, possibly a subsequent overaging annealing, and the hot deformation to a thin-walled pipe. Such a method is in particular united for the production of cylinder liners of internal combustion engines, since the produced liners exhibit the required properties in regard to wear resistance, heat resistance and reduction of pollutant emission.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: October 24, 2000
    Assignee: Erbsloh Aktiengesellschaft
    Inventors: Bernhard Commandeur, Rolf Schattevoy, Klaus Hummert
  • Patent number: 6134779
    Abstract: An improved high performance aluminum connecting rod and a method for manufacturing such a connecting rod are disclosed, the connecting rod being capable of carrying particularly high compressive loads with a substantially reduced deformation resulting from such high compressive loads. In the preferred embodiment, the connecting rod of the present invention is made of an extruded bar stock forging made of an aluminum alloy material which is forged and machined to make the connecting rod. The connecting rod of the present invention has a substantially increased compressive yield strength as well as a substantially increased tensile yield strength. This increase in the compressive yield strength of the connecting rod of the present invention effectively prevents bending of the connecting rod beam, elongation of the wrist pin bore, and a marked deterioration in the roundness of the bearing housing bore.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: October 24, 2000
    Inventors: Bruce K. Walker, Raymal Childs
  • Patent number: 6113711
    Abstract: Disclosed is a method of making lithium-containing aluminum base alloy extrusion having at least a section thereof having a low aspect ratio or which is generally axisymmetrical, the extrusions having improved properties in sections thereof having the low aspect ratio or which are axisymmetrical. The method comprises providing a body of a lithium-containing aluminum alloy, pressing a portion of the body which is to form the axisymmetrical or low aspect ratio section through a tortuous path and extruding an axisymmetrical or a low aspect ratio extrusion section. The axisymmetrical or low aspect ratio section of the extrusion has a tensile strength of at least 60 ksi and an ultimate yield strength at least 4.5 ksi greater than the tensile yield strength.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: September 5, 2000
    Assignee: Aluminum Company of America
    Inventors: Kevin P. Armanie, Roberto J. Rioja, Diana K. Denzer, Charles E. Brooks, Walter D. Coker, Daniel K. Gadbery, Robert Newell
  • Patent number: 5932037
    Abstract: A method of making a pressurized gas cylinder comprises providing an ingot of composition (in wt %); Zn 5.0-7.0; Mg 1.5-3.0; Cu 1.0-2.7; recrystallization inhibitor 0.05-0.40; Fe up to 0.30; Si up to 0.15; other impurities up to 0.05 each and 0.15 in total, balance Al of at least commercial purity, if necessary homogenizing the ingot at a temperature of at least 470.degree. C. and for a time sufficient to reduce the volume fraction of S phase to a value below 1.0%, extruding the ingot preferably by cold backward extrusion, and forming and over-aging the resulting pressurized gas cylinder.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: August 3, 1999
    Assignee: Luxfer Group Limited
    Inventors: Nigel John Henry Holroyd, Warren Hepples
  • Patent number: 5925314
    Abstract: It is an object of the invention to provide high-ductility alloy which is improved both in casting characteristics and elongation without lowering strength by selecting a good combination of ingredients and a proportion thereof. It is another object of the invention to provide a casting which has an good elongation without being heat-treated. It is a further object of the invention to provide a method of manufacturing integral parts having some portions with specific construction which make it impossible for a set of molding dies to be separated after finishing casting by means of in-one-piece molding. Those objects can be accomplished bay providing an high ductility aluminum alloy which contains manganese ingredient, iron ingredient, magnesium ingredient and slice of unavoidable impurity, wherein a content of the iron usually regarded as impurity is set within specified limits, magnesium content is relatively less and manganese content is relatively more than that in a conventional aluminum alloy.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 20, 1999
    Assignee: Mazda Motor Corporation
    Inventors: Katsuya Nishiguchi, Yukio Yamamoto, Yukihiro Sugimoto
  • Patent number: 5916390
    Abstract: The invention relates to a cylinder liner sealed into a reciprocating piston engine comprising a supereutectic aluminum/silicon alloy which is free of mixed-in particles of hard material and which is composed in such a way that fine silicon primary crystals and intermetallic particles automatically form from the melt as hard particles. A blank is allowed to grow from finely sprayed melt droplets by spray compaction, with a fine distribution of hard particles being produced by setting the spray for small melt droplets. The blank can then be formed by cold extrusion to create a shape approximating the cylinder lining. After premachining, the surface is fine machined, honed in at least one stage and then the hard particles lying at the surface are mechanically exposed, is forming plateau areas of hard particles which project above the remaining surface of the base microstructure of the alloy.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: June 29, 1999
    Assignee: Mercedes-Benz AG
    Inventors: Franz Ruckert, Peter Stocker, Roland Biedermann
  • Patent number: 5911845
    Abstract: A high-strength extruded article of an age-hardening aluminum alloy capable of educing an achromatic dark gray color after the anodizing treatment thereof and a method for the production thereof are disclosed. The method comprises subjecting an alloy billet comprising 0.9 to 3.0% by weight of Si, 0.3 to 0.6% by weight of Mg, less than 0.3% by weight of Fe, and the balance of Al and unavoidable impurities or an alloy billet comprising 0.005 to 0.1% by weight of Ti either alone or in combination with 0.001 to 0.02% by weight of B besides the components mentioned above to a soaking treatment at a temperature in the range of from 350 to 480.degree. C. for 2 to 12 hours, extruding the soaked alloy billet at a billet temperature in the range of from 380 to 450 .degree. C., and subjecting the extruded alloy to an aging treatment at a temperature in the range of from 170 to 200.degree. C. for 2 to 8 hours.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: June 15, 1999
    Assignee: YKK Corporation
    Inventors: Kazuyuki Fukagawa, Shoso Yamamoto, Hiroshi Chiba, Mitsunao Satomura, Kengo Kawase
  • Patent number: 5911844
    Abstract: A method for drawing a portion of metallic material having a known hardness. The method includes the step of applying a localized heat treatment to predetermined portions of the metallic material. Additionally, the method comprises forming the localized heat treated regions into a desired drawn or stamped configuration, wherein the configuration is substantially devoid of cracks.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: June 15, 1999
    Assignee: Alumax Extrusions Inc.
    Inventor: Joseph C. Benedyk
  • Patent number: 5902546
    Abstract: There is disclosed a high heat resistant aluminum alloy impeller, which is suitably used as an impeller, especially for a centrifugal compressor, and for the rotor and the blade of a turbo molecular pump or the scroll of a scroll compressor. Also, a method for manufacturing this aluminum alloy impeller is disclosed. The impeller is composed of an Al--Fe rapid solidification aluminum alloy, which is produced by a spray forming process for spraying a molten metal with inert gas and rapidly solidifying the metal at a cooling speed of 10.sup.2 .degree. C./sec. or higher while simultaneously deposing the metal. The rapid solidification aluminum alloy is subjected to hot extrusion processing within a temperature range of 200.degree. C. to 600.degree. C. and further subjected to hot forging.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: May 11, 1999
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nozomu Kawasetsu, Masatomo Shinohara, Kouichiro Imakiire, Masanori Kimura, Keiichi Shiraishi, Masayuki Hayakawa, Kazuhisa Shibue, Yoshimasa Okubo, Naoki Tokizane
  • Patent number: 5876525
    Abstract: In order to simplify the production of a nigh-resistance bobbin body made of an aluminum alloy, the following process steps are performed: (a) extruding or flow extruding an essentially cylindrical bobbin blank; (b) cutting the bobbin blank to a length including the desired bobbin body length plus an overlength sufficient to form end flanges on the bobbin body; (c) shaping end flanges at both ends of the bobbin body from the overlength portion; hardening the bobbin body; and age-hardening (aging) the bobbin body. Various process parameters are described.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: March 2, 1999
    Assignee: Hilebrandt-Spolen-Bobbins GmbH
    Inventors: Michael Prechtel, Davorin Lenarcic
  • Patent number: 5858134
    Abstract: The invention concerns a process for the production of rolled or extruded products of high strength AlSiMgCu aluminium alloy with good intergranular corrosion resistance, comprising the following steps:casting a plate or billet with the following composition (by weight):Si: 0.7-1.3%Mg: 0.6-1.1%Cu: 0.5-1.1%Mn: 0.3-0.8%Zr: <0.20%Fe: <0.30%Zn: <1%Ag: <1%Cr: <0.25%other elements: <0.05% each and <0.15% in total remainder: aluminium; with: Mg/Si<1homogenising in the range 470.degree. C. to 570.degree. C.;hot working, and optionally cold working;solution heat treating in the range 540.degree. C. to 570.degree. C.;quenching;annealing, comprising at least one temperature plateau in the range 150.degree. C. to 250.degree. C., preferably in the range 165.degree. C. to 220.degree. C., the total period measured as the equivalent time at 175.degree. C. being in the range 30 h to 300 h.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: January 12, 1999
    Assignee: Pechiney Rhenalu
    Inventors: Denis Bechet, Timothy Warner
  • Patent number: 5820708
    Abstract: This invention relates to the extrusion of aluminium-lithium alloys, desirably in the form of relatively thin sections, which are particularly suitable for aerospace applications. The invention provides a method of extruding a lithium-containing aluminium alloy containing at least 0.1% by weight of copper, which method comprises: a) providing a billet of the alloy in an homogenised condition at a temperature suitable for extrusion, wherein the alloy contains at least 1.5% by weight of lithium, b) extruding the billet at a temperature and at an extrusion rate such that essentially all of the components thereof are in solid solution as the extrudate leaves the extrusion die, and c) cooling the extrudate at a rate sufficient to avoid substantially any precipitation of the components thereof taking place. Corrosion of the extruded sections after quenching and after ageing can be substantially reduced by means of the present invention.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: October 13, 1998
    Assignee: Alcan International Limited
    Inventor: Martin Roy Jarrett
  • Patent number: 5810952
    Abstract: A process for making an essentially lead-free screw machine stock alloy, comprising the steps of providing a cast aluminum ingot having a composition consisting essentially of about 0.55 to 0.70 wt. % silicon, about 0.15 to 0.45 wt. % iron, about 0.30 to 0.40 wt. % copper, about 0.8 to 0.15 wt. % manganese, about 0.80 to 1.10 wt. % magnesium, about 0.08 to 0.14 wt. % chromium, nor more than about 0.25 wt. % zinc, about 0.007 to 0.07 wt. % titanium, about 0.20 to 0.8 wt. % bismuth, about 0.15 to 0.25 wt. % tin, balance aluminum and unavoidable impurities; homogenizing the alloy at a temperature ranging from about 900.degree. to 1060.degree. F. for a time period of at least 1 hour; cooling to room temperature; cutting the ingot into billets; heating and extruding the billets into a desired shape; and thermomechanically treating the extruded alloy shape.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: September 22, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Larry E. Farrar, Jr., Norman LeRoy Coats, II
  • Patent number: 5785776
    Abstract: A method of improving the corrosion properties of an aluminum alloy product containing solid solution alloying elements includes the step of rapidly quenching the alloy product after it has been heated or hot deformed so as to maintain the alloying elements in solid solution to avoid microsegregation of the solid solution alloying elements and minimize preferential sites for corrosion onset.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: July 28, 1998
    Assignee: Reynolds Metals Company
    Inventor: Subhasish Sircar
  • Patent number: 5776269
    Abstract: A process for making an essentially lead-free screw machine stock alloy, comprising the steps of providing a cast aluminum ingot having a composition consisting essentially of about 0.55 to 0.70 wt. % silicon, about 0.15 to 0.45 wt. % iron, about 0.30 to 0.40 wt. % copper, about 0.8 to 0.15 wt. % manganese, about 0.80 to 1.10 wt. % magnesium, about 0.08 to 0.14 wt. % chromium, nor more than about 0.25 wt. % zinc, about 0.007 to 0.07 wt. % titanium, about 0.20 to 0.8 wt. % bismuth, about 0.15 to 0.25 wt. % tin, balance aluminum and unavoidable impurities; homogenizing the alloy at a temperature ranging from about 900.degree. to 1060.degree. F. for a time period of at least 1 hour; cooling to room temperature; cutting the ingot into billets; heating and extruding the billets into a desired shape; and thermomechanically treating the extruded alloy shape.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: July 7, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Larry E. Farrar, Jr., Norman LeRoy Coats, II
  • Patent number: 5620537
    Abstract: A method of superplastic extrusion is provided for fabricating large, complex-shaped, high strength metal alloy components, such as large, thin cross section, closed-box panels or integrally "T-stiffened" aircraft skin panels. Superplastic extrusion is similar to conventional extrusion except that strain rate and temperature are carefully controlled to keep an ultra-fine grain high strength metal alloy within the superplastic regime where deformation occurs through grain boundary sliding. A high strength, heat treatable metal alloy is first processed, such as by equal channel angular extrusion (ECAE), to have a uniform, equiaxed, ultra-fine grain size in thick section billet form. Temperature and strain rate are controlled during superplastic extrusion of the ultra-fine grained billet so that the stresses required for metal flow are much lower than those needed in conventional extrusion.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: April 15, 1997
    Assignee: Rockwell International Corporation
    Inventor: Clifford C. Bampton
  • Patent number: 5607524
    Abstract: Methods for making an aluminum drive shaft for automobiles or trucks or other drive shaft applications from aluminum alloy tube and methods for making said tube including using an aluminum alloy containing about 0.5 to 1.3% magnesium, about 0.4 to 1.2% silicon, and about 0.6 to 1.2% copper and preferred practices for making the tube. The preferred practices include extrusion temperature and other aspects of extrusion, along with cold drawing. One preferred practice includes reducing tube diameter and increasing wall thickness at one or both ends of the drive shaft tube shortly after solution heating and quenching and applies to various 6000 Series type aluminum alloys.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: March 4, 1997
    Assignee: Aluminum Company of America
    Inventors: Thomas J. Klemp, John A. Dickson, Jr., Darwin O. Collins
  • Patent number: 5605586
    Abstract: A method for manufacturing an aluminum alloy sheet suitable for high-speed forming includes subjecting the alloy to a homogenization treatment, hot rolling and cold rolling the homogenization treated alloy, thereby obtaining a cold-rolled sheet, and annealing the cold-rolled sheet. The aluminum alloy contains 4.0 to 10.0 wt. % of Mg, 0.2 wt. % of inevitable impurities of Fe and Si, 0.05 wt. % of other impurity elements, and the balance of Al. Another embodiment includes deep drawing the aluminum alloy sheet.
    Type: Grant
    Filed: March 15, 1995
    Date of Patent: February 25, 1997
    Assignees: The Furukawa Electric Co., Ltd., Kawasaki Steel Corporation
    Inventors: Yoichiro Bekki, Minoru Hayashi, Ryo Syoji
  • Patent number: 5571348
    Abstract: A method for improving the properties of an alloy is provided. The method includes steps of a) preparing a raw alloy to be worked, b) providing a working apparatus, and c) repetitively kneading the raw alloy in the working apparatus until a desired property is achieved. The present invention also provides the working apparatus and discloses the product produced thereby.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: November 5, 1996
    Assignee: National Tsing Hua University
    Inventor: Jien-Wei Yeh
  • Patent number: 5527404
    Abstract: An improved elongate aluminum alloy product, and a method of producing such a product, ideally suited for use as a component in a vehicle frame or subassembly, i.e., body-in-white. The alloy consists of essentially 0.45 to 0.7% magnesium, and about 0.35 to 0.6%, silicon, and about 0.1 to 0.35%, vanadium, and, 0.1-0.4% iron, preferably 0.15 to 0.3%, the balance substantially aluminum and incidental elements and impurities.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: June 18, 1996
    Assignee: Aluminum Company of America
    Inventor: Allison S. Warren
  • Patent number: 5522950
    Abstract: An A-rated aluminum alloy suitable for machining, said alloy consisting essentially of: about 0.15-1.0 wt. % copper, about 1.01-1.5 wt. % tin, about 0.65-1.35 wt. % magnesium, about 0.4-1.1 wt. % silicon, about 0.00 2-0.35 wt. % manganese, up to about 0.5 wt. % iron, up to about 0.15 wt. % chromium and up to about 0.15 wt. % titanium, the remainder substantially aluminum. On a preferred basis, this alloy contains about 0.51-0.75 wt. % copper, about 1.1-1.3 wt. % tin, about 0.7-0.9 wt. % magnesium and about 0.45-0.75 wt. % silicon. The alloy is substantially free of lead, bismuth, nickel, zirconium and cadmium. There is further disclosed an improved method for making screw machine stock or wire, rod and bar product from this alloy by casting, preheating, extruding, solution heat treating, cold finishing and thermally processing the aforementioned alloy composition.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: June 4, 1996
    Assignee: Aluminum Company of America
    Inventors: Charles W. Bartges, Thomas J. Klemp, Gerald D. Scott, Matthew J. Allyn
  • Patent number: 5520754
    Abstract: A composition and method for producing a low density, high stiffness aluminum alloy which is capable of being processed into structural components having a desired combination of tensile strength, fracture toughness and ductility. The method includes the steps of forming, by spray deposition, a solid Al-Li alloy workpiece consisting essentially of the formula Al.sub.bal Li.sub.a Zr.sub.b wherein "a" ranges from greater than about 2.5 to 7 wt %, and "b" ranges from greater than about 0.13 to 0.6 wt %, the balance being aluminum, said alloy having been solidified at a cooling rate of about 10.sup.2 to 10.sup.4 K/sec. The method further includes several variations of selected thermomechanical process steps for: (1) eliminating any residual porosity which may be present in the workpiece as a result of the spray deposition step; and (2) producing components for a wide range of applications.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: May 28, 1996
    Assignee: Lockheed Missiles & Space Company, Inc.
    Inventors: Deborah L. Yaney, Richard E. Lewis
  • Patent number: 5512241
    Abstract: Weld filler alloys comprising aluminum, copper, lithium and, optionally, silver are disclosed which possess significantly improved fabricability and weldability. The weld filler alloys are free of magnesium and can be easily drawn into weld wire that is useful for welding aluminum-base alloys. Weldments made with the filler alloys exhibit highly improved mechanical, physical and corrosion resistance properties. The weld filler alloys may be used to weld cryogenic containers for space launch vehicles and the like.
    Type: Grant
    Filed: April 13, 1994
    Date of Patent: April 30, 1996
    Assignee: Martin Marietta Corporation
    Inventors: Lawrence S. Kramer, Joseph R. Pickens, Carl E. Cross
  • Patent number: 5503690
    Abstract: In a method of extruding a 6000-series-type aluminum alloy by casting, homogenizing, extruding and optionally, aging and/or heat treating, an alloy composition is provided having silicon 0.6-1.2 wt. %, magnesium 0.7-1.2 wt. %, copper 0.3-1.1 wt. %, manganese 0.1-0.8 wt. %, zirconium 0.05-0.25 wt. %, up to 0.5 wt. % iron, up to 0.15 wt. % chromium, up to 0.25 wt. % zinc, up to 0.10 wt. % titanium with the balance aluminum and incidental impurities wherein an effective amount of zirconium, in combination with effective amounts of manganese, produces a fibrous grain structure which contributes to a combination of high strength and fracture toughness in the extruded alloy. The fibrous grain structure also permits improvements in forming the extrusion by enabling lower temperatures to be utilized during the homogenization step.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: April 2, 1996
    Assignee: Reynolds Metals Company
    Inventors: Kenneth D. Wade, Michael H. Skillingberg
  • Patent number: 5447583
    Abstract: Apparatus for cooling a metal extrusion, such as an aluminum extrusion, may include a carriage which houses the cooling liquid delivery system and is relatively movable with respect to the extrusion press in order to provide the desired amount of air cooling prior to quenching. The quenching apparatus may have a plurality of generally parallel cooling liquid delivery tubes, each having a plurality of nozzles which are preferably independently adjustable as to volume and spray pattern. The cooling liquid delivery tubes may be axially rotated and flow of the cooling liquid within each tube may be independently adjusted. The housing of the quenching unit may have an upper portion which is rotatable generally upwardly and is provided with a transparent window to facilitate viewing of the spraying action. A method of quenching an aluminum extrusion employing such apparatus is provided.
    Type: Grant
    Filed: June 9, 1993
    Date of Patent: September 5, 1995
    Assignee: Aluminum Company of America
    Inventors: William R. Arthur, Douglas T. Bozich, Richard B. Jacobus, Thomas J. Rodjom, Joseph R. Sikora
  • Patent number: 5344508
    Abstract: Rapidly solidified aluminum base alloy is flow formed into tubes and tubular components using conventional flow forming equipment. A preform of preselected configuration and wall thickness for either forward or back spinning is fabricated. Flow forming is then carried out. The beginning of the flow forming step is offset by leaving undeformed a small section of the preform.
    Type: Grant
    Filed: October 12, 1993
    Date of Patent: September 6, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Paul S. Gilman, Anthony Testa
  • Patent number: 5306365
    Abstract: Apparatus and process are disclosed for providing, and continuously monitoring and controlling, a tapered temperature profile in solid metal first heated to a specified initial temperature. Temperatures are monitored at a plurality of locations along the length of the metal and are adjusted by successively withdrawing and returning a portion to a heating source through physical movementIn one aspect, apparatus and process continuously monitor and control a tapered temperature profile in a billet of aluminum alloy through a first step of rapid heating in a single-zone electric induction furnace to a temperature sufficient to bring the billet to its cold end set point while not exceeding its maximum skin temperature. The temperatures of the billet are monitored at its die end and its ram end and are adjusted by successively withdrawing and returning the billet to the induction furnace to reduce the heat in the ram end relative to the die end.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: April 26, 1994
    Assignee: Aluminum Company of America
    Inventor: Scott E. Reighard
  • Patent number: 5286316
    Abstract: An aluminum-based alloy composition having improved corrosion resistance and high extrudability consists essentially of about 0.1-0.5% by weight of manganese, about 0.05-0.12% by weight of silicon, about 0.10-0.20% by weight of titanium, about 0.15-0.25% by weight of iron and the balance aluminum, wherein the aluminum alloy is essentially copper free. The inventive alloy is useful in automotive applications, in particular, heat exchanger tubing and finstock, and foil packaging. The process provided by the invention uses a high extrusion ratio and produces a product having high corrosion resistance.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: February 15, 1994
    Assignee: Reynolds Metals Company
    Inventor: Kenneth D. Wade
  • Patent number: 5284533
    Abstract: A method is disclosed for the preparation of metal reference samples for spectrographic analysis. The method consists of producing a substantially cylindrical preform or blank by spray deposition, followed by the consolidation of the blank in the form of a bar having an appropriate diameter and finally the cutting of the reference samples therefrom. Compared with the prior art methods, the method offers the advantages of an improved chemical homogeneity and low oxygen content.
    Type: Grant
    Filed: April 17, 1992
    Date of Patent: February 8, 1994
    Assignee: Pechiney Recherche
    Inventors: Michel Courbiere, Hubert Dieudonne
  • Patent number: 5277719
    Abstract: Disclosed is a method of producing a forged and rolled Al-Zn-Cu-Mg alloy plate product having improved fatigue properties in the long transverse direction. The method comprises providing a body of an Al-Zn-Cu-Mg alloy, working said body by a forging operation to reduce its thickness in a C direction by at least 30% and rolling or working the forged body to provide a forged and rolled plate product having improved fatigue properties in the long transverse direction.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: January 11, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Paul E. Magnusen, Paul L. Mehr, Dell F. Skluzak, Andrew C. Spitznas, Paul T. Wang, Charles J. Warren, Kenton P. Young, John A. Schelin
  • Patent number: 5273594
    Abstract: The present invention provides a method for improving aluminum alloy plate product properties by delaying final stretching of the plate product. During processing of the product, a time interval or intentional delay is provided between the final cold rolling step and the final stretching step. By delaying the final stretching procedure, an aluminum alloy plate product is provided with an improved fracture toughness without significant decrease in strength values. The method of intentionally delaying final stretching is particularly adapted for 2000 series aluminum alloys.
    Type: Grant
    Filed: January 2, 1992
    Date of Patent: December 28, 1993
    Assignee: Reynolds Metals Company
    Inventor: William A. Cassada, III
  • Patent number: 5151136
    Abstract: Disclosed is a method of making lithium-containing aluminum base alloy extrusion having at least a section thereof having a low aspect ratio, the extrusions having improved properties in sections thereof having the low aspect ratio. The method comprises providing a body of a lithium-containing aluminum alloy, extruding a low aspect ratio extrusion section, the aspect ratio being in the range of 1 to 2.5, and maintaining the body in a temperature range of 400.degree. to 1000.degree. F. and at least a 4:1 extrusion reduction during said extrusion step, the extrusion section having tensile yield strength of at least 60 ksi and having an ultimate yield strength of at least 4.5 ksi greater than the tensile yield strength.
    Type: Grant
    Filed: December 27, 1990
    Date of Patent: September 29, 1992
    Assignee: Aluminum Company of America
    Inventors: Jeffrey J. Witters, Brian A. Cheney, Roberto J. Rioja
  • Patent number: 5141820
    Abstract: An aluminum pipe according to the present invention is used in forming a plurality of bulged portions on the peripheral wall thereof. At the same time by bulging has been so refined as to exhibit an elongation of at least 40% and a recrystallization texture of up to 60 .mu.m in grain size during bulging. The aluminum pipe to be bulged is produced by a process characterized by drawing an extruded aluminum pipe at a cold working ratio of at least 40%, and thereafter annealing the drawn pipe at a temperature of 350.degree. to 420.degree. C., whereby the pipe is refined to exhibit the specified elongation and recrystallization texture.
    Type: Grant
    Filed: January 4, 1991
    Date of Patent: August 25, 1992
    Assignee: Showa Aluminum Corporation
    Inventors: Minobu Sukimoto, Hitoshi Akiyoshi, Seijiro Taguchi, Kazuo Sugiyama, Isao Watanabe
  • Patent number: RE34442
    Abstract: In a method for producing an aluminum alloy, for instance to make a billet or ingot for extrusion purposes, and which may consist of a structural hardening Al-Mg-Si-alloy, the production comprises the following steps:casting an ingot or billet,homogenizing the billet,cooling of the homogenized billet,reheating the billet to a temperature in the alloy above the solubility temperature in the precipitated phases in the Al matrix, for instance the solubility temperature for the Mg-Si-phases in a billet made of an Al-Mg-Si-alloy,holding the billet at the temperature above the solubility temperature for the precipitated phases in the Al matrix, for instance the Mg-Si-phases in a billet made of an Al-Mg-Si-alloy, until the phases are dissolved,quick cooling of the billet to the desired extrusion temperature to prevent new precipitation of said phases in the alloy structure, or that the billet is extruded at said solubility temperature.[., until the phases are dissolved.]..
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: November 16, 1993
    Assignee: Norsk Hydro a.s
    Inventor: Oddvin Reiso