With Radio Frequency (rf) Antenna Or Inductive Coil Gas Energizing Means Patents (Class 156/345.48)
  • Patent number: 11114281
    Abstract: A method for radio frequency impedance matching includes performing frequency scanning matching using first n pulse phases of first m pulse periods as a frequency scanning stage, and from an (m+1)-th pulse period to an M-th pulse period, maintaining a frequency scanning parameter of a pulse phase corresponding to each frequency scanning stage of each pulse period. The radio frequency includes M pulse periods, each pulse period includes N pulse phases, M and N are integers greater than 1, m and n are integers greater than 0, m<M, n?N, and i=1, 2, . . . , m. A start value of the frequency scanning parameter of each frequency scanning stage of an (i+1)-th pulse period is consistent with an end value of the frequency scanning parameter of each frequency scanning stage of the i-th pulse period. Accordingly, an end value of the frequency scanning parameter of each frequency scanning stage of an m-th pulse period matches a preset target value of the frequency scanning parameter.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: September 7, 2021
    Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.
    Inventors: Gang Wei, Jing Wei, Jing Yang
  • Patent number: 11011350
    Abstract: A power capacitor (7) is described for use in an RF power delivery system. The power capacitor comprises at least two RF electrodes (18, 19) separated by a capacitor dielectric (17) comprising a solid paraelectric dielectric material whose relative permittivity is controllable by varying a DC bias voltage applied across the dielectric (17) at DC bias electrodes (10, 26, 28). Composite capacitor configurations, an RF power system and a method of controlling the power capacitor are also described.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: May 18, 2021
    Inventors: Mike Abrecht, Thomas Fink, Walter Bigler
  • Patent number: 11003085
    Abstract: In an extreme ultraviolet light generating apparatus, the film thickness of debris adhering to a surface of a component can be measured easily without need of large-scale removal of the component disposed in the chamber. The extreme ultraviolet light generating apparatus includes a chamber in which a droplet made of a target material is irradiated with a laser beam and extreme ultraviolet light is generated, an EUV light collector mirror that is an optical element disposed in the chamber, and a measurement device movable along a surface of the EUV light collector mirror and configured to measure the film thickness of the target material adhering to the surface.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: May 11, 2021
    Assignee: Gigaphoton Inc.
    Inventor: Katsuhiko Sugisawa
  • Patent number: 10984993
    Abstract: A plasma processing apparatus includes a chamber (20) and a target (25) above the chamber (20). The surface of the target (25) contacts the processing area of the chamber (20). The chamber (20) includes an insulating sub-chamber (21) and a first conductive sub-chamber (22), which are superposed. The first conductive sub-chamber (22) is provided under the insulating sub-chamber (21). The insulating sub-chamber (21) is made of insulating material, and the first conductive sub-chamber (22) is made of metal material. A Faraday shield component (10) which is made of metal material or insulating material electroplated with conductive coatings and includes at least one slit is provided in the insulating sub-chamber (21). An inductance coil (13) surrounds the exterior of the insulating sub-chamber (21). The problem about the wafer contamination due to particles formed on the surface of the coil during the sputtering process can be solved by using the plasma processing apparatus.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 20, 2021
    Assignee: BEIJING NAURA MICROELECTRONICS EQUIPMENT CO., LTD.
    Inventors: Peng Chen, Mengxin Zhao, Gang Wei, Liang Zhang, Bai Yang, Guilong Wu, Peijun Ding
  • Patent number: 10964511
    Abstract: A semiconductor manufacturing device includes a plasma chamber, a source power supply, and first and second bias power supplies. The source power supply applies a first source voltage to the plasma chamber at a first time and a second source voltage to the plasma chamber at a second time. The first bias power supply applies a first turn-on voltage to the plasma chamber at the first time and a first turn-off voltage to the plasma chamber at the second time. The second bias power supply applies a second turn-off voltage to the plasma chamber at the first time and a second turn-on voltage to the plasma chamber at the second time. The plasma chamber forms plasmas of different conditions from a gas mixture in the plasma chamber based on the source, turn-on, and turn-off voltages.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: March 30, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Bo Shim, Myung Sun Choi, Nam Jun Kang, Doug Yong Sung, Sang Min Jeong, Peter Byung H Han
  • Patent number: 10957781
    Abstract: In accordance with an embodiment of the present invention, a method and semiconductor device is described, including forming a plurality of gaps of variable size between device features, each of the gaps including vertical sidewalls perpendicular to a substrate surface and a horizontal surface parallel to the substrate surface. Spacer material is directionally deposited concurrently on the horizontal surface in each gap and in a flat area using a total flow rate of gaseous precursors that minimizes gap-loading in a smallest gap compared to the flat area such that the spacer material is deposited on the substrate surface in each gap and in the flat area to a uniform thickness.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Oleg Gluschenkov
  • Patent number: 10950417
    Abstract: A substrate processing apparatus includes a process container; a process gas supply mechanism; a substrate loading table; a temperature adjusting medium passage; a temperature adjusting medium extraction mechanism; a heater; and a temperature controller. The temperature controller is configured to adjust a temperature of a target substrate to a first temperature by allowing a temperature adjusting medium to flow through the temperature adjusting medium passage of the substrate loading table; and adjust the temperature of the target substrate to a second temperature higher than the first temperature by extracting the temperature adjusting medium of the temperature adjusting medium passage using the temperature adjusting medium extraction mechanism while heating the target substrate using the heater.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 16, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Einosuke Tsuda, Seishi Murakami, Takayuki Kamaishi
  • Patent number: 10936933
    Abstract: An antenna device includes a coil antenna including a coil conductor wound around a winding axis, and a planar conductor. The coil antenna includes a first region in which the coil conductor overlaps the planar conductor in a plan view of the planar conductor (when viewed from the Z-direction) and a second region in which the coil conductor does not overlap the planar conductor in the plan view of the planar conductor. The line width of the coil conductor in the first region is wider than the line width of a portion (portion extending in the X-direction) of the coil conductor in the second region. Accordingly, an inductance per unit length in the circumferential direction of the coil conductor in the first region is lower than the inductance per unit length in the circumferential direction of the coil conductor in the second region.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 2, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Xiaodong Shi
  • Patent number: 10932353
    Abstract: The impedance of an antenna is reduced and gaps generated between electrodes constituting a capacitance element and a dielectric body are eliminated. An antenna (3) for generating inductively coupled plasma P includes at least two conductor elements (31), an insulation element (32) that is arranged between the mutually adjacent conductor elements (31) and insulates the conductor elements (31), and a capacitance element (33) that is connected electrically to and in series with the mutually adjacent conductor elements (31). The capacitance element (33) is configured from a first electrode (33A) electrically connected to one of the mutually adjacent conductor elements (21), a second electrode (33B) electrically connected to the other of the mutually adjacent conductor elements (21), and a liquid dielectric body filling the space between the first electrode (33A) and the second electrode (33B).
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: February 23, 2021
    Assignee: NISSIN ELECTRIC CO., LTD.
    Inventors: Yasunori Ando, Dongwei Li, Kiyoshi Kubota
  • Patent number: 10910227
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan, Mohamad A. Ayoub, Jian J. Chen
  • Patent number: 10777394
    Abstract: Implementations of the present disclosure generally relate to methods for cleaning processing chambers. More specifically, implementations described herein relate to methods for determining processing chamber cleaning endpoints. In some implementations, a “virtual sensor” for detecting a cleaning endpoint is provided. The “virtual sensor” is based on monitoring trends of chamber foreline pressure during cleaning of the chamber, which involves converting solid deposited films on the chamber parts into gaseous byproducts by reaction with etchants like fluorine plasma for example. Validity of the “virtual sensor” has been confirmed by comparing the “virtual sensor” response with infrared-based optical measurements. In another implementation, methods of accounting for foreline pressure differences due to facility design and foreline clogging over time.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: September 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hemant P. Mungekar, William Pryor, Zhijun Jiang
  • Patent number: 10699878
    Abstract: A chamber member of a plasma source is provided and includes a sidewall, a transition member, a top wall and an injector connecting member. The sidewall is cylindrically-shaped and surrounds an upper region of a substrate processing chamber. The transition member is connected to the sidewall. The top wall is connected to the transition member. The injector connecting member is connected to the top wall, positioned vertically higher than the sidewall, and configured to connect to a gas injector. Gas passes through the injector connecting member via the gas injector and into the upper region of the substrate processing chamber. A center height to low inner diameter ratio of the chamber member is 0.25-0.5 and/or a center height to outer height ratio of the chamber member is 0.4-0.85.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 30, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: James Eugene Caron, Ivelin Angelov, Jason Lee Treadwell, Joon Hong Park, Canfeng Lai
  • Patent number: 10685811
    Abstract: A switchable matching network and an inductively coupled plasma processing apparatus having such network are disclosed. The switchable matching network enables selection between two bias power frequencies. The network is particularly suitable for an inductively-coupled plasma processing apparatus. The switchable matching network comprises: a first match circuit having a first input port connected to a first signal source and a first output port coupled to a load; a second match circuit having a second input port connected to a second signal source and a second output port coupled to the load; a switching device having a first connection port, a second connection port and a third connection port, the first connection port connected to the first input port and the second connection port connected to the second output port; a variable capacitor connected between ground and the third connection port of the switching device.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 16, 2020
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: Kui Zhao, Hiroshi Iizuka, Tuqiang Ni, Xiaobei Pang
  • Patent number: 10570512
    Abstract: A substrate processing apparatus of the present disclosure includes a placing table provided to be rotatable around an axis; a gas supplying section that supplies gas to regions through which a substrate sequentially passes while being moved in a circumferential direction with respect to the axis as the placing table is rotated; and a plasma generating section that generates plasma using the supplied gas. The plasma generating section includes an antenna that radiates microwaves, and a coaxial waveguide that supplies the microwaves to the antenna. Line segments constituting a plane shape of the antenna when viewed in a direction along the axis include two line segments which are spaced to be distant from each other as being spaced away from the axis. The coaxial waveguide supplies the microwaves to the antenna from a gravity center of the antenna.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 25, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Toshihiko Iwao, Takahiro Hirano, Kiyotaka Ishibashi, Satoru Kawakami
  • Patent number: 10541115
    Abstract: In a plasma processing apparatus that can adjust an induction magnetic field distribution of power feeding sections of an induction coil, correct a plasma distribution on a specimen, and apply uniform plasma processing to the specimen, the specimen is subjected to plasma processing, a dielectric window that forms the upper surface of the vacuum processing chamber, a gas lead-in section that leads gas into the vacuum processing chamber, a specimen table that is arranged in the vacuum processing chamber and on which the specimen is placed, an induction coil provided above the dielectric window, and a radio-frequency power supply that supplies radio-frequency power to the induction coil. The plasma processing apparatus includes a flat conductor arranged below the induction coil. The induction coil includes crossing power feeding sections. The conductor is arranged below the power feeding sections.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: January 21, 2020
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yusaku Sakka, Ryoji Nishio, Tadayoshi Kawaguchi
  • Patent number: 10535506
    Abstract: A vacuum pumping line plasma source is provided. The plasma source includes a body defining a generally cylindrical interior volume extending along a central longitudinal axis. The body has an input port for coupling to an input pumping line, an output port for coupling to an output pumping line, and an interior surface disposed about the generally cylindrical interior volume. The plasma source also includes a supply electrode disposed adjacent to a return electrode, and a barrier dielectric member, a least a portion of which is positioned between the supply electrode and the return electrode. The plasma source further includes a dielectric barrier discharge structure formed from the supply electrode, the return electrode, and the barrier dielectric member. The dielectric barrier discharge structure is adapted to generate a plasma in the generally cylindrical interior volume.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: January 14, 2020
    Assignee: MKS Instruments, Inc.
    Inventors: Gordon Hill, Scott Benedict, Kevin Wenzel
  • Patent number: 10510625
    Abstract: An apparatus for supporting a wafer during a plasma processing operation includes a pedestal configured to have bottom surface and a top surface and a column configured to support the pedestal at a central region of the bottom surface of the pedestal. An electrical insulating layer is disposed over the top surface of the pedestal. An electrically conductive layer is disposed over the top surface of the electrical insulating layer. At least three electrically conductive support structures are distributed on the electrically conductive layer. The at least three support structures are configured to interface with a bottom surface of a wafer to physically support the wafer and electrically connect to the wafer. An electrical connection extends from the electrically conductive layer to connect with a positive terminal of a direct current power supply at a location outside of the pedestal.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 17, 2019
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Edward Augustyniak, Douglas Keil
  • Patent number: 10395903
    Abstract: A processing system is disclosed, having an electron beam source chamber that excites plasma to generate an electron beam, and an ion beam source chamber that houses a substrate and also excites plasma to generate an ion beam. The processing system also includes a dielectric injector coupling the electron beam source chamber to the ion beam source chamber that simultaneously injects the electron beam and the ion beam and propels the electron beam and the ion beam in opposite directions. The voltage potential gradient between the electron beam source chamber and the ion beam source chamber generates an energy field that is sufficient to maintain the electron beam and ion beam as a plasma treats the substrate so that radio frequency (RF) power initially applied to the processing system to generate the electron beam can be terminated thus improving the power efficiency of the processing system.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: August 27, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Zhiying Chen, Lee Chen, Merritt Funk
  • Patent number: 10325758
    Abstract: A plasma processing apparatus includes a plasma generation unit configured to convert a processing gas supplied into a processing chamber into plasma by an inductive coupling. The plasma generation unit includes a first high frequency antenna formed of a vortex coil arranged adjacent to the processing chamber through a dielectric window, a second high frequency antenna having a natural resonant frequency and formed of a vortex coil arranged at an outer or inner peripheral side of the first high frequency antenna, and an impedance adjustment unit for adjusting a resonant frequency of a circuit viewed from the high frequency power supply toward the first high frequency antenna. The circuit viewed from the high frequency power supply toward the first high frequency antenna is configured to have two resonant frequencies depending on adjustment of the impedance adjustment unit when a frequency of high frequency power is changed.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 18, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Tatsuo Matsudo, Chishio Koshimizu
  • Patent number: 10327321
    Abstract: A microwave chamber for plasma generation. The microwave chamber comprises a launch structure at a first end of the microwave chamber to accommodate a microwave source for producing microwave energy and a termination section at a second end of the microwave chamber opposite the first end. The termination section is configured to substantially block propagation of the microwave energy from the second end of the chamber. The microwave chamber further comprises an internal wall structure for guiding the microwave energy received within the microwave chamber at the first end toward the second end and defines a cavity. The internal wall structure comprises an impedance matching section intermediate the first end and the second end, and a capacitive loaded section intermediate the impedance matching section and the second end, wherein the capacitive loaded section comprises at least one ridge extending along a longitudinal axis of the chamber.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 18, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Michael Ron Hammer
  • Patent number: 10269938
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a base and a fin structure over the base. The fin structure has sidewalls. The semiconductor device structure includes a passivation layer over the sidewalls. The passivation layer includes dopants. The dopants include at least one element selected from group 4A elements, and the dopants and the substrate are made of different materials. The semiconductor device structure includes an isolation layer over the base and surrounding the fin structure and the passivation layer. A first upper portion of the fin structure and a second upper portion of the passivation layer protrude from the isolation layer. The semiconductor device structure includes a gate electrode over the first upper portion of the fin structure and the second upper portion of the passivation layer.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Chin Hsu, Yi-Wei Chiu, Wen-Zhong Ho, Tzu-Chan Weng
  • Patent number: 10242845
    Abstract: A substrate is positioned on a substrate support structure within a plasma processing volume of an inductively coupled plasma processing chamber. A first radiofrequency signal is supplied from a first radiofrequency signal generator to a coil disposed outside of the plasma processing volume to generate a plasma in exposure to the substrate. A second radiofrequency signal is supplied from a second radiofrequency signal generator to an electrode within the substrate support structure. The first and second radiofrequency signal generators are controlled independent of each other. The second radiofrequency signal has a frequency greater than or equal to about 27 megaHertz. The second radiofrequency signal generates supplemental plasma density at a level of the substrate within the plasma processing volume while generating a bias voltage of less than about 200 volts at the level of the substrate.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: March 26, 2019
    Assignee: Lam Research Corporation
    Inventors: Zhongkui Tan, Yiting Zhang, Qian Fu, Qing Xu, Ying Wu, Saravanapriyan Sriraman, Alex Paterson
  • Patent number: 10242847
    Abstract: The invention discloses a plasma processing apparatus comprising a chamber lid, a chamber body and a support assembly. The chamber body, defining a processing volume for containing a plasma, for supporting the chamber lid. The chamber body is comprised of a chamber sidewall, a bottom wall and a liner assembly. The chamber sidewall and the bottom wall define a processing volume for containing a plasma. The liner assembly, disposed inside the processing volume, comprises of three or more slots formed thereon for providing an axial symmetric RF current path. The support assembly supports a substrate for processing within the chamber body. With the liner assembly with several symmetric slots, the present invention can prevent electromagnetic fields thereof from being azimuthal asymmetry.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: March 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: James D. Carducci, Zhigang Chen, Shahid Rauf, Kenneth S. Collins
  • Patent number: 10096495
    Abstract: A substrate processing apparatus includes a processing container configured to air-tightly accommodate substrates, a plurality of mounting stands configured to mount the substrates, a process gas supply part configured to supply a process gas to the mounting stands, an exhaust mechanism configured to evacuate an interior of the processing container, a partition wall configured to independently surround the mounting stands with a gap left between the partition wall and each of the mounting stands, and cylindrical inner walls configured to independently surround the mounting stands with a gap left between each of the inner walls and each of the mounting stands. Slits are formed in the inner walls. The process gas in the processing spaces is exhausted via the slits. The inner walls include partition plates for bypassing the process gas so that the process gas does not directly flow into the slits.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: October 9, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Manabu Amikura, Toshiki Hinata
  • Patent number: 10050472
    Abstract: A controlling method and device for a wireless power transfer system, wherein the wireless power transfer system includes a transmitting component and a receiving component, and further includes a contactless transformer & compensation (CT&C) circuit, and the controlling method includes: obtaining positional relationship information of the transmitting component and the receiving component; adjusting the number of coil turns of the transmitting component based on the positional relationship information, and making conditions of a CT&C voltage gain characteristic and an input impedance characteristic after a charging inverter bridge of the wireless power transfer system meet a charging condition. The abovementioned technical solution can provide a protection for a stable operation of the wireless power transfer system with a non-mechanical adjusting device, and the wireless charging can be achieved without using a mechanical adjusting device to align and range.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: August 14, 2018
    Assignee: ZTE Corporation
    Inventors: Cheng Guo, Feiyun Tang, Jie Fan, Yong Luo, Jianping Zhou, Chuan He, Chen Liu, Yaoguang Gao, Wei Liu, Beibei Qiu, Jing Wang, Jianquan Liu, Lin Chi
  • Patent number: 9970111
    Abstract: A substrate processing apparatus includes: a processing vessel configured to be vacuumed; a holding unit configured to hold a plurality of substrates and to be inserted into or separated from the processing vessel; a gas supply unit configured to supply gas into the processing vessel; a plasma generation box partitioned and formed by a plasma partition wall; an inductively coupled electrode located at an outer sidewall of the plasma generation box along its length direction; a high frequency power supply connected to the inductively coupled electrode through a feed line; and a ground electrode located outside the plasma generation box and between the processing vessel and the inductively coupled electrode and arranged in the vicinity of the outer sidewall of the plasma generation box or at least partially in contact with the outer sidewall.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: May 15, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kohei Fukushima, Hiroyuki Matsuura, Yutaka Motoyama, Koichi Shimada, Takeshi Ando
  • Patent number: 9953888
    Abstract: An electromagnetic detection device is provided. The electromagnetic detection device includes an induction coil, a converter, and a controller. The induction coil is utilized to sense an RF signal and generate a sensing RF signal by electromagnetic induction of the induction coil which is proportional to the RF signal. The RF signal is transmitted to a shower head to perform a semiconductor process on a wafer for manufacturing an IC in association with the RF signal. The converter is utilized to convert the sensing RF signal into a DC signal. The controller is utilized to determine whether the semiconductor process is normal or abnormal according to the DC signal during the semiconductor process. The semiconductor process will be terminated when the semiconductor process is determined as abnormal.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: April 24, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Wei Fang, Yao-Fong Dai, Chih-Tung Lo, Ming-Hsien Tsai, Kai-Wen Wu
  • Patent number: 9941097
    Abstract: A plasma processing apparatus includes a processing chamber including a dielectric window; a coil-shaped RF antenna, provided outside the dielectric window; a substrate supporting unit provided in the processing chamber; a processing gas supply unit; an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber, the RF power having an appropriate frequency for RF discharge of the processing gas; a correction coil, provided at a position outside the processing chamber where the correction coil is to be coupled with the RF antenna by an electromagnetic induction, for controlling a plasma density distribution on the substrate in the processing chamber; a switching device provided in a loop of the correction coil; and a switching control unit for on-off controlling the switching device at a desired duty ratio by pulse width modulation.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: April 10, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Masashi Saito, Kazuki Denpoh, Jun Yamawaku
  • Patent number: 9840772
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 12, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Patent number: 9818584
    Abstract: An inductively coupled plasma source for a focused charged particle beam system includes a conductive shield within the plasma chamber in order to reduce capacitative coupling to the plasma. The internal conductive shield is maintained at substantially the same potential as the plasma source by a biasing electrode or by the plasma. The internal shield allows for a wider variety of cooling methods on the exterior of the plasma chamber.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: November 14, 2017
    Assignee: FEI Company
    Inventors: Thomas G. Miller, Shouyin Zhang
  • Patent number: 9807862
    Abstract: A plasma processing apparatus includes an ICP antenna, provided outside a processing chamber opposite to a mounting table, for supplying a high frequency power supply into the processing chamber, and a window member made of a conductor, disposed between the mounting table and the ICP antenna, forming a part of a wall of the processing chamber. The window member includes transmission units for transmitting the high frequency power in a thickness direction of the window member. Each of transmission units has a slit, which extends through the window member in the thickness direction and is configured such that its width is changeable.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 31, 2017
    Assignee: TOKOYO ELECTRON LIMITED
    Inventor: Hachishiro Iizuka
  • Patent number: 9754769
    Abstract: A process chamber for detecting formation of plasma during a semiconductor wafer processing, includes an upper electrode, for providing a gas chemistry to the process chamber. The upper electrode is connected to a radio frequency (RF) power source through a match network to provide RF power to the wafer cavity to generate a plasma. The process chamber also includes a lower electrode for receiving and supporting the semiconductor wafer during the deposition process. The lower electrode is disposed in the process chamber so as to define a wafer cavity between a surface of the upper electrode and a top surface of the lower electrode. The lower electrode is electrically grounded. A coil sensor is disposed at a base of the lower electrode that extends outside the process chamber. The coil sensor substantially surrounds the base of the lower electrode. The coil sensor is configured to measure characteristics of RF current conducting through the wafer cavity.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 5, 2017
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Yaswanth Rangineni, Jeremy Tucker, Douglas Keil, Edward Augustyniak, Sunil Kapoor
  • Patent number: 9685305
    Abstract: A plasma processing apparatus includes a dielectric member having communication holes through which an internal space communicates with a processing space; a first electrode and a second electrode; a first gas supply device which supplies a first processing gas; a first high frequency power supply which supplies a first high frequency power to at least one of the electrodes to generate a first plasma of the first processing gas; a depressurizing device which introduces the first processing gas and radicals in the first plasma; a second high frequency power supply which supplies a second high frequency power to generate a second plasma of the first processing gas and to attract ions; and a control unit which adjusts, by controlling a total amount of the first high frequency powers, the radical amount in the second plasma and adjusts, by controlling a ratio therebetween, the ion amount therein.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: June 20, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Koji Maruyama, Masato Horiguchi, Tetsuri Matsuki, Akira Koshiishi
  • Patent number: 9677171
    Abstract: A method of processing a workpiece is disclosed, where the plasma chamber is first coated using a conditioning gas and optionally, a co-gas. The conditioning gas, which is disposed within a conditioning gas container may comprise a hydride of the desired dopant species and a filler gas, where the filler gas is a hydride of a Group 4 or Group 5 element. The remainder of the conditioning gas container may comprise hydrogen gas. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant species, is introduced to the plasma chamber and ionized. Ions are then extracted from the plasma chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. In some embodiments, the desired dopant species may be boron.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 13, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, John A. Frontiero, Timothy J. Miller, Svetlana B. Radovanov
  • Patent number: 9596744
    Abstract: A radio frequency (RF) power supply is provided. The RF power supply includes a first frequency oscillator for generating a first frequency signal and a second frequency oscillator for generating a second frequency signal. Also provided is an amplifier and a first switch connected to an output of the first frequency oscillator and a second switch connected to an output of the second frequency oscillator. An output of the first switch and the second switch are connected to an input of the amplifier. Also provided is a switch control coupled to the first switch and the second switch. The switch control is configured to enable a connection via the first and second switches from only one of the first frequency oscillator or the second frequency oscillator to the amplifier at one time. The amplifier is configured to power amplify both of the first and second frequency signals from the first and second frequency oscillators.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 14, 2017
    Assignee: Lam Research Corporation
    Inventor: Karl F. Leeser
  • Patent number: 9595424
    Abstract: An impedance matching circuit (IMC) is described. The impedance matching circuit includes a first circuit. The first circuit has an input coupled to a kilohertz (kHz) radio frequency (RF) generator. The IMC includes a second circuit. The second circuit has an input coupled to a low frequency megahertz (MHz) RF generator. The IMC includes a third circuit. The third circuit has an input coupled to a high frequency MHz RF generator. The IMC includes an output of the first, second, and third circuits coupled to an input of an RF transmission line. The first circuit and the second circuit provide isolation between a kHz RF signal sent through the first circuit and a low frequency MHz RF signal sent through the second circuit.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: March 14, 2017
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Felix Kozakevich, John Patrick Holland, Brett Jacobs
  • Patent number: 9530619
    Abstract: A filter unit 54(IN) includes a housing 82 formed of a cylindrical conductor. Further, in the housing 82, the air-core solenoid coils AL1 and BL1; the first capacitors AC1 and BC1; the troidal coils AL2 and BL2; and the second capacitors AC2 and BC2 are arranged in this sequence from top to bottom. In the vicinity of the air-core solenoid coils AL1 and BL1, a multiple number of rod-shaped comb-teeth members 86, which are extended in parallel to a coil axis direction, are provided adjacent to outer peripheries of the air-core solenoid coils AL1 and BL1 at a regular interval in a circumferential direction thereof. A comb teeth M are formed on an inner surface of each comb-teeth member 86, and the comb teeth M are inserted into winding gaps of the air-core solenoid coils AL1 and BL1.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 27, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Naohiko Okunishi
  • Patent number: 9396960
    Abstract: A main etching process of forming a recess portion in a multilayer film having a laminated film where a first film and a second film having different relative permitivities are alternately formed on a base silicon film to a preset depth and an over etching process of forming the recess portion until the base silicon film is exposed are performed by introducing a processing gas including a CF-based gas and an oxygen gas and by performing a plasma etching process. In the over etching process, a first over etching process where a flow rate ratio of the oxygen gas to the CF-based gas is increased as compared to the main etching process and a second over etching process where the flow rate ratio of the oxygen gas to the CF-based gas is reduced as compared to the first over etching process are repeatedly performed two or more times.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: July 19, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuto Ogawa, Akira Nakagawa, Hideki Konishi
  • Patent number: 9273682
    Abstract: A pressure pump may include a reciprocating assembly including a dynamic seal configured to be in sliding contact with a surface. The surface may be implanted with positive ions such as hydrogen ions/protons to provided reduced wear and/or greater service life of the dynamic seal. According to embodiments, a pump may include an ultra-high molecular weight polyethylene dynamic seal may substantially fixed relative to a cylinder wall, and a proton impregnated reciprocating plunger may pump high pressure water or a water based fluid in a system. The pump may exhibit increased dynamic seal life.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 1, 2016
    Assignee: OMAX Corporation
    Inventor: Darren L. Stang
  • Patent number: 9257294
    Abstract: Apparatuses and methods for processing substrates are disclosed. A processing apparatus includes a chamber for generating a plasma therein, an electrode associated with the chamber, and a signal generator coupled to the electrode. The signal generator applies a DC pulse to the electrode with sufficient amplitude and sufficient duty cycle of an on-time and an off-time to cause events within the chamber. A plasma is generated from a gas in the chamber responsive to the amplitude of the DC pulse. Energetic ions are generated by accelerating ions of the plasma toward a substrate in the chamber in response to the amplitude of the DC pulse during the on-time. Some of the energetic ions are neutralized to energetic neutrals in response to the DC pulse during the off-time. Some of the energetic neutrals impact the substrate with sufficient energy to cause a chemical reaction on the substrate.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: February 9, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Patent number: 9214319
    Abstract: A plasma reactor and method for improved gas injection for an inductive plasma source for dry strip plasma processing are disclosed. According to embodiments of the present disclosure, gas is fed into a plasma chamber through a gas injection channel located adjacent to the side wall of the plasma chamber, rather than from the center, so that the process gas enters the plasma chamber in a close proximity to the induction coil. In particular embodiments, the process gas that enters the chamber is forced to pass through a reactive volume or active region adjacent the induction coil where efficient heating of electrons occurs, providing increased efficiency of the reactor by improving process gas flow and confinement in the heating area.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 15, 2015
    Assignee: Mattson Technology, Inc.
    Inventors: Vladimir Nagorny, Charles Crapuchettes
  • Patent number: 9184021
    Abstract: Etch rate distribution non-uniformities are predicted for a succession of hardware tilt angles of the RF source applicator relative to the workpiece, and the behavior is modeled as a non-uniformity function for each one of at least two plasma reactors. An offset ?? in tilt angle ? between the non-uniformity functions of the two plasma reactors is detected. The two reactors are then matched by performing a hardware tilt in one of them through a tilt angle equal to the offset ??.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: November 10, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gaurav Saraf, Xiawan Yang, Farid Abooameri, Wen Teh Chang, Anisul H. Khan, Bradley Scott Hersch
  • Patent number: 9184043
    Abstract: The embodiments provide apparatus and methods for removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In an exemplary embodiment, a plasma processing chamber configured to clean a bevel edge of a substrate is provided. The plasma processing chamber includes a substrate support configured to receive the substrate. The plasma processing chamber also includes a bottom edge electrode surrounding the substrate support. The bottom edge electrode and the substrate support are electrically isolated from one another by a bottom dielectric ring. A surface of the bottom edge electrode facing the substrate is covered by a bottom thin dielectric layer. The plasma processing chamber further includes a top edge electrode surrounding a top insulator plate opposing the substrate support. The top edge electrode is electrically grounded.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: November 10, 2015
    Assignee: Lam Research Corporation
    Inventors: Gregory S. Sexton, Andrew D. Bailey, III, Andras Kuthi, Yunsang Kim
  • Patent number: 9171734
    Abstract: A substrate processing apparatus includes a processing chamber accommodating a substrate; first and second process gas supply units that respectively supply first and second process gases from above and laterally relative to the substrate; and first and second reactive gas supply units that respectively supply first and second reactive gases from above and laterally relative to the substrate. A control unit controls the other units such that a total amount of the first and second process gases supplied to a center portion of the substrate is different from that supplied to a peripheral portion of the substrate, or a total amount of the first and second reactive gases supplied to the center portion of the substrate is different from that supplied to the peripheral portion of the substrate.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: October 27, 2015
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Kazuyuki Toyoda, Shun Matsui
  • Patent number: 9171724
    Abstract: A substrate processing apparatus includes a process chamber which processes a substrate, a conductive substrate support table which is installed within the process chamber, a dielectric plate on which the substrate is mounted, the dielectric plate being placed on the substrate support table, a microwave generator which is installed outside the process chamber, and a microwave supplying unit which supplies a microwave generated by the microwave generator into the process chamber.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 27, 2015
    Assignee: HITACHI KOKUSAIELECTRIC INC.
    Inventors: Shinji Yashima, Atsushi Umekawa
  • Patent number: 9155184
    Abstract: Plasma generation source employing dielectric conduit assemblies having removable interfaces and related assemblies and methods are disclosed. The plasma generation source (PGS) includes an enclosure body having multiple internal surfaces forming an internal chamber having input and output ports to respectively receive a precursor gas for generation of plasma and to discharge the plasma. A dielectric conduit assembly may guide the gas and the plasma away from the internal surface where particulates may be generated. The dielectric conduit assembly includes a first and second cross-conduit segments. The dielectric conduit assembly further includes parallel conduit segments extending from the second cross-conduit segment to distal ends which removably align with first cross-conduit interfaces of the first cross-conduit segment without leaving gaps. In this manner, the dielectric conduit assembly is easily serviced, and reduces and contains particulate generation away from the output port.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: October 6, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Siu Tang Ng, Changhun Lee, Huutri Dao, Roberto Cesar Cotlear
  • Patent number: 9053895
    Abstract: An inductively coupled plasma charged particle source for focused ion beam systems includes a plasma reaction chamber with a removably attached source electrode. A fastening mechanism connects the source electrode with the plasma reaction chamber and allows for a heat-conductive, vacuum seal to form. With a removable source electrode, improved serviceability and reuse of the plasma source tube are now possible.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 9, 2015
    Assignee: FEI COMPANY
    Inventors: Sean Kellogg, Anthony Graupera, N. William Parker, Andrew B. Wells, Mark W. Utlaut, Walter Skoczylas, Gregory A. Schwind, Shouyin Zhang, Noel Smith
  • Patent number: 9039865
    Abstract: The invention provides a plasma processing apparatus in which ring-like conductors 8a and 8b are arranged closed to and along an induction antenna 1 composed of an inner circumference coil 1a and an outer circumference coil 1b. Ring-like conductors 8a and 8b are each characterized in that the radius from the center of the apparatus and the cross-sectional shape of the conductor body varies along the circumferential angle of the coils. Since the mutual inductances between the ring-like conductors 8a and 8b and the induction antenna 1 and between the ring-like conductors 8a and 8b and the plasma along the circumferential position are controlled, it becomes possible to compensate for the coil currents varied along the circumference of the coils of the induction antenna 1, and to improve the non-uniformity in the circumferential direction of the current in the generated plasma.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Ken Yoshioka, Motohiko Yoshigai, Ryoji Nishio, Tadayoshi Kawaguchi
  • Patent number: 9039866
    Abstract: The present invention relates to a method of manufacturing a web of a plurality of conductive structures which may be used for example to produce an antenna, electronic circuit, photovoltaic module or the like. The method involved simultaneously patterning at least one pattern in a conductive layer using a plurality of registration marks. The registration marks serve to align and guide the creation of the plurality of conductive structures. Optical brighteners may also be utilized within the adhesive layer and the registration marks of the present invention in order to detect the location where conductive structures are to be placed.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: May 26, 2015
    Assignee: Avery Dennison Corporation
    Inventors: Ian J. Forster, Christian K. Oelsner, Robert Revels, Benjamin Kingston, Peter Cockerell, Norman Howard
  • Patent number: RE45527
    Abstract: There is provided an inductively coupled plasma reactor. The inductively coupled plasma reactor is connected to a transformer with multiple magnetic cores and a primary winding, to transfer an electromotive force for plasma discharge to a plasma discharge chamber of a reactor body. Parts of magnetic core positioned in side the plasma discharge chamber are protected by being entirely covered by a core protecting tube. The primary winding is electrically connected to a power supply source providing radio frequency power. In the inductively coupled plasma reactor, since a number of magnetic core cross sectional parts are positioned inside the plasma discharge chamber, the efficiency of transferring the inductively coupled energy to be connected with plasma is very high.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 26, 2015
    Assignee: NEW POWER PLASMA CO., LTD.
    Inventor: Dae-Kyu Choi