Adding Metal-containing Material Patents (Class 164/57.1)
  • Publication number: 20110300404
    Abstract: An oxidation resistant component with high temperature strength and a method of creating such component are disclosed. A modified base metal may be formed by adding at least two strengthening additives to a base metal, the base metal being substantially free from both nickel and cobalt and comprising from about 1% to about 27% chromium by weight. The modified base metal may then be formed into a component and an aluminum-containing slurry may be applied to a surface of the component. The component may then be heated to diffuse aluminum into the component and to form an aluminum diffusion surface layer therein.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: George Albert Goller, Dennis William Cavanaugh
  • Publication number: 20110293467
    Abstract: The invention relates to hot-dip cast aluminum alloy for anticorrosion treatment on engineering parts resistant to marine climate and a preparation method thereof, wherein said cast aluminum alloy contains Al, Zn, Si, Mg, RE, Ti, Ni and nanometer oxide particle reinforcing agent, said nanometer oxide particle reinforcing agent is selected from one or two of TiO2 and CeO2, the mass percentage of the components is as follows: Zn: 35-58%, Si: 0.3-4.0%, Mg: 0.1-5.0%, RE: 0.02-1.0%, Ti: 0.01-0.5%, Ni: 0.1-3.0%, and the total content of the nanometer oxide particle reinforcing agent: 0.01-1.0%; and the balance consists of Al and unavoidable impurities.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 1, 2011
    Applicant: JIANGSU LINLONG NEW MATERIALS CO., LTD.
    Inventors: Lixin Feng, Minyan Zhang, Qiang Miao
  • Publication number: 20110142710
    Abstract: A Ti particle-dispersed magnesium-based composite material is a material having titanium particles uniformly dispersed in a magnesium matrix, and is characterized by having a titanium-aluminum compound layer at an interface between the magnesium alloy matrix and the titanium particles dispersed in the magnesium alloy matrix.
    Type: Application
    Filed: March 16, 2009
    Publication date: June 16, 2011
    Applicant: KURIMOTO LTD.
    Inventors: Katsuyoshi Kondoh, Kantaro Kaneko
  • Publication number: 20110100514
    Abstract: A zirconium-based amorphous alloy includes 10.0 to 15.0 wt % copper, 7.0 to 13.0 wt % nickel, 5.0 to 8.0 wt % niobium, and 2.0 to 5.0 wt % aluminum, with the remainder zirconium and unavoidable impurities. A method for constructing a spectacle frame, comprises forming a nickel-niobium alloy, a weight ratio of the nickel and the niobium of which is being in a range between 7:8 and 13:5, melting the nickel-niobium alloy, mixing the molten the nickel-niobium alloy with 55.0 to 75.0 wt % Zr, 10.0 to 15.0 wt % Cu, and 2.0 to 6.0 wt % Al to form a master alloy, melting the master alloy, and molding the master alloy into a spectacle frame.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 5, 2011
    Applicants: HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: QING LIU, YI-MIN JIANG
  • Publication number: 20110094699
    Abstract: There is produced a molten steel containing, in mass %, Si: not less than 0.1% nor more than 7.0%, Mn: 0.1% or more, Al: not less than 0.2% nor more than 5.0%, Cr: not less than 0.1% nor more than 10%, and the like, and a balance composed of Fe and inevitable impurities. To the molten steel, REM: not less than 0.0005% nor more than 0.03% is added. The molten steel to which REM has been added is casted. A cast slab of non-oriented electrical steel is manufactured as above.
    Type: Application
    Filed: July 3, 2009
    Publication date: April 28, 2011
    Inventors: Masafumi Miyazaki, Yousuke Kurosaki, Takahide Shimazu, Kazuo Ohnuki
  • Publication number: 20110067526
    Abstract: Disclosed is a desulfurizing agent of improved oxidation resistance, ignition resistance and productivity, and a method for manufacturing the desulfurizing agent. The desulfurizing agent may include a plurality of magnesium-aluminum alloy grains with grain boundaries, and a compound of one selected from consisting of magnesium and aluminum and one selected from consisting of alkaline metal and alkaline earth metal, the compound existing in the grain boundaries which are not inside but outside of the magnesium-aluminum alloy grains.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 24, 2011
    Inventors: Shea Kwang Kim, Jung Ho Seo, Dong In Jang
  • Publication number: 20110070120
    Abstract: Disclosed are a magnesium mother alloy, a manufacturing method thereof, a metal alloy using the same, and a method of manufacturing the metal alloy. In particular, there are provided a magnesium mother alloy with improved oxidation and ignition properties, and a manufacturing method thereof, and also provided a metal alloy with low cost that is suitable for design purposes using the magnesium mother alloy, and a method of manufacturing the metal alloy. The magnesium mother alloy includes a plurality of magnesium grains, and scandium dissolved in the magnesium grains, or a scandium compound crystallized at grain boundaries which are not inside but outside the magnesium grains. Also, the metal alloy suitable for design purposes is manufactured at low cost by adding the magnesium mother alloy containing scandium into a magnesium alloy or an aluminum alloy.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 24, 2011
    Inventors: Shea Kwang Kim, Jung Ho Seo, In Kyum Kim
  • Publication number: 20110056077
    Abstract: A method of inoculating magnesium (Mg) on compacted graphite iron (CGI) comprises: providing a partition having a predetermined height on the bottom of a radle so as to divide the interior of the radle into a first space and a second space; laminating an Mg inoculant and a cover in order in the second space; and tapping liquid CGI cast iron onto the first space, whereby the Mg inoculant becomes in contact with the liquid CGI iron after the liquid CGI tapped onto the first space goes over the partition toward the second space and after the cover is melted by the liquid CGI. According to the method, the deviation of density of Mg is minimized, and a secondary inoculating process can thus be omitted.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 10, 2011
    Applicant: Hyundai Motor Company
    Inventors: Won Soo Nam, Heong Joo Park, Jae Kee Lee, Myoung Gu Hong
  • Publication number: 20110030911
    Abstract: A low-carbon steel slab producing method includes: adding Ti to a molten steel decarbonized to have a carbon concentration of 0.05 mass % or less, and subsequently adding at least one of La and Ce to adjust a constitution, and producing a smelted molten steel; and pouring the smelted molten steel into a casting mold via a tundish; wherein at least one of La and Ce in a total amount of 0.2 to 1.2 times an increased amount of oxygen in the smelted molten steel during contained in the tundish is added to the smelted molten steel in the tundish, so as to obtain a steel slab having inclusions which contain oxides of Ti and at least one of La and Ce as chief components, and so as to make a composition of each of the inclusions have a mass ratio of 0.1 to 0.7, in terms of (La2O3+Ce2O3)÷TiOn (n=1˜2).
    Type: Application
    Filed: July 15, 2009
    Publication date: February 10, 2011
    Inventors: Masafumi Miyazaki, Hideaki Yamamura, Satoru Mineta
  • Patent number: 7870885
    Abstract: A method of producing a liquid-solid metal composition (8), including the steps of charging a vessel (2) with a molten metal or alloy (3), charging the vessel (2) with a solid metal or alloy (6), stirring the molten metal or alloy (3) upon cooling thereof. The amount of solid metal or alloy (6) is chosen such that a substantial amount of solid particles (7) will be formed in the melt (3) due to the enthalpy exchange between the solid metal or alloy (6) and the molten metal or alloy (3), and at least a part of the added solid metal or alloy (6) is melted by the heat transferred to it by the molten metal or alloy (3).
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 18, 2011
    Inventors: Magnus Wessen, Haiping Cao
  • Publication number: 20110000585
    Abstract: The present invention relates to novel non-ferromagnetic amorphous steel alloys represented by the general formula: Fe—Mn-(Q)-B—M, wherein Q represents one or more elements selected from the group consisting of Se, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and M represents one or more elements selected from the group consisting of Cr, Co, Mo, C and Si. Typically the atomic percentage of the Q constituent is 10 or less.
    Type: Application
    Filed: November 6, 2008
    Publication date: January 6, 2011
    Inventors: S. Joseph Poon, Vijayabarathi Ponnambalam, Gary J. Shiflet
  • Publication number: 20100319872
    Abstract: A manufacturing method for a composite alloy bonding wire is provided. A primary material of Au and Ag is melted in a vacuum melting furnace, and then a secondary metal material of Pd is added into the vacuum melting furnace and is co-melted with the primary material to obtain a Au-Ag-Pd alloy solution. The obtained Au-Ag-Pd alloy solution is drawn to obtain a Au-Ag-Pd alloy wire. The Au-Ag-Pd alloy wire is then drawn to obtain a Au-Ag-Pd alloy bonding wire with a predetermined diameter.
    Type: Application
    Filed: August 27, 2010
    Publication date: December 23, 2010
    Inventor: Jun-Der LEE
  • Publication number: 20100322813
    Abstract: A cast article of a ductile iron wherein the ductile iron includes carbon from about 2.8 to 3.7 w/o, silicon from about 3.0 to 3.5 w/o, molybdenum from 0.8 to 1.5 w/o, magnesium from about 0.025 to 0.60 w/o, sulfur less than 0.01 w/o and nickel from about 0.0 to 1.3 w/o, the remaining content being iron is provided. The cast article is suitable for a gas turbine casing. A method of manufacturing a cast article is also provided.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gregory Keith Bouse, Joseph Jay Jackson, Jason Robert Parolini, Thangirala Subrahmanyam
  • Publication number: 20100308612
    Abstract: The present invention relates to an axle forged from seamless tubes, with a chemical composition suitable to guarantee high fatigue strength, improved yield strength and tensile strength, and having reduced weight for use on railroad vehicles. The present invention further relates to a process of manufacturing the axle forged from seamless steel tube with high fatigue strength, improved yield strength and tensile strength, and having reduced weight for use on railroad vehicles, which is produced from pig iron or scrap, casting, reheating furnace, perforation of billets, elongation of perforated billets, hollow finishing, forging and finish machining, which includes a supporting and centering chamfer at the inner edge of the inspection bore of the end and smooth recess in the entrance of the threaded bores.
    Type: Application
    Filed: December 1, 2008
    Publication date: December 9, 2010
    Inventors: Ronaldo Faria Antunes, Jose Antonio Filho
  • Publication number: 20100304942
    Abstract: The present invention is directed to a rolling mill cast roll with a higher resistance to adhesion and propagation of cracks, and the process for the manufacture thereof, said process comprising the steps of: introduction (1) of waste liquid metal (a), alloy elements (b) and a lot of scrap (c) into a melting furnace; next, melting (2) of the load at about 1,200° C. to 1,500° C.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: ACOS VILLARES S.A.
    Inventors: Mario BOCCALINI, JR., Gilson Teixeira CORNELIO, Renato Rufino XAVIER
  • Publication number: 20100296961
    Abstract: A process is used for applying carbiding agents to the surface of ferrous metal castings, using the “lost foam” method. Carbiding agents are applied to the foam form at selected places so that the final product has the desired amount of carbidic content at the right locations to endure high stress applications on the casting.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 25, 2010
    Inventor: Mark DeBruin
  • Patent number: 7828915
    Abstract: A method for making Mg(magnesium)-based intermetallic compound uses a thermal process during a melting process to produce largely the Mg-based intermetallic compound. The vapor pressure of Mg is high, thereby Mg is prone to be vaporized from a melt and a wrought solid alloy in the melting process of high temperature, for purifying the wrought Mg-based intermetallic compound. The method may simplify the process and devices for making the Mg-based intermetallic compound, and produce efficiently a larger of high purity Mg-based intermetallic compound.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 9, 2010
    Assignee: National Central University
    Inventors: Sheng-Long Lee, Jing-Chie Lin, Che-Wei Hsu, Cheng-Yu Chou, Yin-Chun Cheng, Chia-Wang Weng, Chien-Chang Chiang, Chien-Wei Chen
  • Publication number: 20100175508
    Abstract: An improved nickel-chromium-iron alloy is provided, which comprises up to about 5% of hafnium-containing particles. In one embodiment, an improved creep resistant castable oxide dispersion strengthened nickel-chromium-iron alloy comprises up to about 5% of hafnium, with at least part of the hafnium being present as finely dispersed oxidized particles. Further embodiments of the improved alloy can comprise additionally up to about 15% by weight aluminum. The alloy is particularly useful in the production of creep resistant tubes and castings, for example, for the petrochemical market.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 15, 2010
    Inventor: Dominique Flahaut
  • Publication number: 20100172784
    Abstract: The present invention provides tough cast iron and cast iron semi-finished products excellent in workability without heat treatment requiring massive heat energy and long time and a method of production enabling these to be efficiently produced, that is, cast iron of ingredients of white cast iron where particles of spheroidal graphite or flattened graphite are dispersed, cast iron where the ingredients of the white cast iron satisfy, by wt %, (% C)?4.3?(% Si)÷3 and C?1.7% and where the particles of spheroidal graphite are dispersed at a density of 50 particles/mm2 or more, or cast iron where the particles of flattened graphite have a width of 0.4 mm or less and a length of 50 mm or less.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 8, 2010
    Applicant: Nippon Steel Corporation
    Inventors: Hideaki Yamamura, Wataru Ohashi
  • Publication number: 20100155236
    Abstract: Disclosed is a structural alloy with oxidation resistance for electrolytic reduction equipment for treatment of spent nuclear fuel. More particularly, the present invention relates to a structural alloy with oxidation resistance for electrolytic reduction equipment for treatment of spent nuclear fuel wherein Cr, Si, Al, Nb and Ti are added to a Ni-based substrate so as to form an oxide coating film which is stable in a LiCl—Li2O molten salt and, in addition, a process thereof and use of the same.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Applicant: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Jong-Hyeon LEE, Soo-Haeng CHO, Eung-Ho KIM, Seong-Won PARK
  • Publication number: 20100150771
    Abstract: An austenitic series stainless steel and relevant casting method mainly comprises procedures of a preparation, a heat, a refinement, and a formation; wherein the present method mainly applies cheap scraps of stainless steels with about 13 to 18 wt % chromium basic to the manufacture. Further, the element manganese is used to substitute nickel and thence the proportion of nitrogen is increased while manufacturing. Accordingly, a component of the austenitic stainless steel of the present invention contains less than 0.08 wt % carbon, less than 0.9 wt % silicon, about 13 to 19 wt % manganese, less than 0.04 wt % phosphorus, less than 0.04 wt % sulfur, about 13 to 18 wt % chromium, less than 0.1 wt % nickel, less than 0.8 wt % nitrogen, and essentially iron and residuals. Such inclusion assists the austenitic stainless steel to attain same properties of preferable corrosion resistance and mechanism behaviors as those of the typical 300 series stainless steel.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Inventor: Chen-Tung Tseng
  • Publication number: 20100117252
    Abstract: A method of making a treating wash includes mixing brass granules with acetone, mixing carbon nanotube material, silver granules, iron pyrite granules and copper granules in the acetone brass mixture, and straining the liquid from the remaining solid material. Methods of treating materials such as brass granules, silver granules, iron pyrite granules, carbon nanotube material, and brass granules comprises washing the materials in the treating wash, followed by straining and drying the materials.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 13, 2010
    Inventor: John Bourque
  • Publication number: 20100078097
    Abstract: A steel material superior in high temperature characteristics and toughness is provided, that is, a steel material containing, by mass %, C: 0.005% to 0.03%, Si: 0.05% to 0.40%, Mn: 0.40% to 1.70%, Nb: 0.02% to 0.25%, Ti: 0.005% to 0.025%, N: 0.0008% to 0.0045%, B: 0.0003% to 0.0030%, restricting P: 0.030% or less, S: 0.020% or less, Al: 0.03% or less, and having a balance of Fe and unavoidable impurities, where the contents of C and Nb satisfy C?Nb/7.74?0.02 and Ti-based oxides of a grain size of 0.05 to 10 ?m are present in a density of 30 to 300/mm2.
    Type: Application
    Filed: April 4, 2008
    Publication date: April 1, 2010
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Publication number: 20100080726
    Abstract: A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability and heat conductivity sufficient to provide appropriate target material.
    Type: Application
    Filed: April 16, 2009
    Publication date: April 1, 2010
    Inventors: Yurii D. Seropeghin, Boris L. Zhuikov
  • Patent number: 7648598
    Abstract: A manufacturing method for an isothermal evaporation casting process is disclosed and to design the manufacturing method for the simple atmospheric casting. The present invention can melt the Mg—Ni alloy with the aspect of totally different melting points thereof, and the other elements can be added during melting simultaneously. Through the Mg—Ni alloy with a suitable weight ratio, the eutectic alloy of Mg/Mg2Ni and high purified ?-phase Mg2Ni can be made. Then adding other elements are to produce the composition of Mg/Ni/M. By way of the manufacturing method of the present invention, the melting equipment is simplified; and, through different manufacturing steps, the purposes of time-saving and low cost are reached; further that, a large amount of the eutectic alloy of Mg/Mg2Ni with different kinds of ratios of Mg, high purified ?-phase Mg2Ni, or the composition of Mg/Ni/M can be obtained.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: January 19, 2010
    Assignee: National Central University
    Inventors: Sheng-Long Lee, Ten-Fu Wu, Jing-Chie Lin, Che-Wei Hsu, Fu-Kai Hsu, Cheng-En Jiang
  • Publication number: 20090252643
    Abstract: An aluminum alloy and a method of casting. At least one of zirconium, scandium, a nucleating agent selected from the group consisting of metal carbides, aluminides and borides, and rare earth elements are added to the alloy while in the molten state such that upon solidification, the cast alloy exhibits improved hot tear resistance. In a particular form, the nucleating agent may be titanium diboride for grain refining. Other agents that can be used for grain refining include scandium, zirconium, silicon, silver and one or more rare earth elements. In the case of rare earth elements, mischmetal may be used as a precursor. Combinations of titanium diboride and at least one other agent are especially effective in reducing the incidence of hot tearing in products cast from the modified aluminum alloy.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: Herbert W. Doty, Fawzy H. Samuel, Ahmed M. Nabawy
  • Publication number: 20090226340
    Abstract: A method of making a degradable alloy includes adding one or more alloying products to an aluminum or aluminum alloy melt; dissolving the alloying products in the aluminum or aluminum alloy melt, thereby forming a degradable alloy melt; and solidifying the degradable alloy melt to form the degradable alloy. A method for manufacturing a product made of a degradable alloy includes adding one or more alloying products to an aluminum or aluminum alloy melt in a mould; dissolving the one or more alloying products in the aluminum or aluminum alloy melt to form a degradable alloy melt; and solidifying the degradable alloy melt to form the product. A method for manufacturing a product made of a degradable alloy includes placing powders of a base metal or a base alloy and powders of one or more alloying products in a mould; and pressing and sintering the powders to form the product.
    Type: Application
    Filed: February 24, 2009
    Publication date: September 10, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Manuel Marya
  • Patent number: 7578336
    Abstract: A casting mold and method for its use to achieve in-mold modification of the casting metal is disclosed. One or more chambers are located within the casting mold's runner system. Each chamber can contain metallurgical modifiers for adjusting the chemical composition of the metal to improve the mechanical and physical properties of an article cast from the metal. One or more modifiers can be placed in the chamber(s) as the casting mold is assembled for use. As the melt is introduced to the casting mold, it passes through the chamber(s) and liquefies the modifier. Amounts of the liquid modifier, then, are carried away and become dispersed in the melt as it continues through the runner system and into the mold cavity. The metallurgical modifiers can be selected from any number of known additives or alloying elements, including strontium, among others.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: August 25, 2009
    Inventors: Kenneth George Stahl, Jr., Venkatramanan Srinivasan, James T. Singer, Edward C. Wall, Mark A. Osborne
  • Publication number: 20090183848
    Abstract: A process for production of compacted graphite iron using in-mould addition of a magnesium alloy is disclosed. The process is characterised by a step of pre-treating the base iron in a ladle or in a furnace with an alloy containing cerium and performing a structure forming treatment in a reaction chamber in the mould using an alloy containing magnesium and lanthanum.
    Type: Application
    Filed: December 14, 2006
    Publication date: July 23, 2009
    Applicant: NOVACAST TECHNOLOGIES AB
    Inventor: Rudolf Sillen
  • Publication number: 20090145568
    Abstract: A method of making a wear and fatigue resistant component of a power tool (e.g., a clutch) includes providing a quantity of base steel and a quantity of alloying elements to be added to the base steel to form a desired alloyed grade of steel. The base steel and alloying elements are combined and melted to produce a molten alloyed steel (e.g., SAE 9310 or AISI M2). The molten alloyed steel is cast using a near-net-shape investment casting process to form a component of a power tool. An edge of the component is pre-radiused. and the component is case hardened after the edge of the component has been pre-radiused. In one implementation, the component is a clutch that has a lifespan of at least twice a lifespan of a second clutch that has not been pre-radiused prior to case hardening.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 11, 2009
    Applicant: Black & Decker Inc.
    Inventors: Bimal Kumar Chaterjee, Alan Phillips, John Robert Kriaski, Daniel Paxton wall
  • Publication number: 20090123324
    Abstract: A method and cast wear resistant component made of an alloy that includes carbon, tungsten, chromium, and cobalt with the balance essentially iron and other alloying components made using waste, surplus or worn-out cemented carbide product, such as cemented carbide cutting tool inserts. In one method, the alloy further includes silicon, manganese, nickel, titanium, and molybdenum. In practicing the method, pieces of waste, surplus or worn-out cemented carbide product having tungsten carbide (WC) are added to a cast iron alloy melt. The melt includes enough chromium to control solubility of the WC. In one method, precipitated carbide structure having chromium and carbon is produced with tungsten in the melt being substitutionally dissolved. In one implementation, tungsten is substitutionally dissolved in a lattice of the precipitated carbide structure. Carbide can be added to the melt via super inoculation. The cast wear resistant component can be a cutting tool.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 14, 2009
    Inventors: Carl-Hakan Andersson, Mikael Andersson, Henrik Andersson, Helena Andersson, Anders Nilsson, Jan-Eric Stahl
  • Publication number: 20090014097
    Abstract: A copper alloy casting with excellent machinability, strength, wear resistance and corrosion resistance contains Sn: 0.5 to 15 mass %; Zr: 0.001 to 0.049 mass %; P: 0.01 to 0.35 mass %; one or more elements selected from Pb: 0.01 to 15 mass %, Bi: 0.01 to 15 mass %, Se: 0.01 to 1.2 mass %, and Te: 0.05 to 1.2 mass %; and Cu: 73 mass % or more serving as a remainder. In this case, f1=[P]/[Zr]=0.5 to 100, f2=3[Sn]/[Zr]=300 to 15000, and f3=3[Sn]/[P]=40 to 2500 (the content of an element ‘a’ is expressed as [a] mass %). The total content of ?, ? and ?-phases is 95% or more, and the mean grain size is 300 ?m or less.
    Type: Application
    Filed: August 10, 2005
    Publication date: January 15, 2009
    Applicant: SANBO SHINDO KOGYO KABUSHIKI KAISHA
    Inventor: Keiichiro Oishi
  • Patent number: 7448427
    Abstract: A fine metal particle producing mechanism has a metal holder for housing a body of magnesium, a tube for supplying an argon gas to the body of magnesium, an argon gas flow rate controller for controlling a rate at which the argon gas is supplied to the tube, and an argon gas heating controller for heating the argon gas supplied to the tube to a predetermined temperature.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: November 11, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Ishii, Toshihide Sunada, Yukihiro Mukaida, Tomonori Sakai, Yasushi Iseda
  • Publication number: 20080253924
    Abstract: An advantage of the invention is to provide a master alloy used in a casting of a modified copper alloy, grains of which can be refined during a melt-solidification, and also a method of casting a modified copper alloy using the same. In order to achieve the advantage, master alloy for casting a copper alloy in a form of Cu: 40 to 80%, Zr: 0.5 to 35% and the balance of Zn; and Cu: 40 to 80%, Zr: 0.5 to 35%, P: 0.01 to 3% and the balance of Zn are used, and thus grain-refined copper alloy casting products are obtained.
    Type: Application
    Filed: August 10, 2005
    Publication date: October 16, 2008
    Inventor: Keiichiro Oishi
  • Patent number: 7389808
    Abstract: The invention relates to a method for producing a cast component, particularly a gas turbine component, by casting. According to the invention, the method comprises at least the following steps: a) preparing a melting crucible; b) preparing a semifinished granular material from an intermetallic titanium/aluminum material; c) filling the melting crucible with the semifinished granular material, whereby the quantity of the semifinished granular material placed inside the melting crucible corresponds to the quantity necessary for casting the component; d) melting the semifinished granular material made of the intermetallic titanium/aluminum material inside the melting crucible; e) preparing a casting mold; f) pouring the melt into the casting mold; g) solidifying the melt inside the casting mold, and; h) removing the cast component from the casting mold.
    Type: Grant
    Filed: July 16, 2005
    Date of Patent: June 24, 2008
    Assignee: G4T GmbH
    Inventors: Manfred Renkel, Wilfried Smarsly
  • Publication number: 20080115906
    Abstract: A method and apparatus for preparing and delivering various types of carbon and microalloy steel, free of oxygen with abundance of nuclei, when cast producing ultra fine grain steel free of internal defeats with excellent quality. A horizontal sealed table caster has a chamber, containing a suitable atmosphere for casting, with a tube connecting to a tundish so as to allow a liquid to flow into the chamber. The liquid metal is captured on a cooling belt along the bottom of the chamber and is maintained as a specific width and depth. The cooling belt serves as a heat sink causing the liquid metal to solidify from the bottom up, allowing inclusions to migrate to the surface of the steel. A layer of liquid metal is maintained on top of the solidifying steel until the solidification reaches the surface. The belt moves the solid metal toward the exit of the chamber.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Inventor: Oren V. Peterson
  • Publication number: 20080093046
    Abstract: A manufacturing method for an isothermal evaporation casting process is disclosed and to design the manufacturing method for the simple atmospheric casting. The present invention can melt the Mg—Ni alloy with the aspect of totally different melting points thereof, and the other elements can be added during melting simultaneously. Through the Mg—Ni alloy with a suitable weight ratio, the eutectic alloy of Mg/Mg2Ni and high purified ?-phase Mg2Ni can be made. Then adding other elements are to produce the composition of Mg/Ni/M. By way of the manufacturing method of the present invention, the melting equipment is simplified; and, through different manufacturing steps, the purposes of time-saving and low cost are reached; further that, a large amount of the eutectic alloy of Mg/Mg2Ni with different kinds of ratios of Mg, high purified ?-phase Mg2Ni, or the composition of Mg/Ni/M can be obtained.
    Type: Application
    Filed: October 23, 2006
    Publication date: April 24, 2008
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventors: Sheng-Long Lee, Ten-Fu Wu, Jing-Chie Lin, Che-Wei Hsu, Fu-Kai Hsu, Cheng-En Jiang
  • Patent number: 7360579
    Abstract: The invention relates to a method for the production of a cast component, in particular a gas turbine component. The inventive method comprises at least the following steps: a) a crucible and at least one semi-finished product is prepared from an intermetallic titanium-aluminium material; b) the or each semi-finished product made of intermetallic titanium-aluminium material is melted in the crucible; c) at least one additional element or an additional compound is added to the melt, whereby the or each element and/or the or each compound is introduced into the melt according to the melting temperature thereof; d) a casting mold is prepared; e) the casting mold is filled with the melt; f) the melt is solidified in the casting mold; g) the casting component is extracted from the casting mold.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: April 22, 2008
    Assignee: G4T GmbH
    Inventors: Manfred Renkel, Wilfried Smarsly
  • Publication number: 20070246184
    Abstract: Disclosed is an apparatus and method for verifying the treatment of molten metal wherein a sensing device detects an in situ response resulting from the treatment of the molten metal. The in situ response is compared to a pre-set limit or condition in order to determine whether or not proper treatment of the molten metal has occurred. In particular, the sensing device detects an in situ response resulting from the mixture of a molten metal addition to a molten metal. An electronic transformation device can be used to transform the in situ response into a response data set. The response data set can be transmitted to and received by a microprocessor. The microprocessor can manipulate the response data set. The in situ response to the treatment of the molten metal can be in the form of heat, light intensity, light wavelength, density of smoke particles, composition of smoke particles, mechanical vibration and combinations thereof.
    Type: Application
    Filed: March 20, 2007
    Publication date: October 25, 2007
    Applicant: THYSSENKRUPP--WAUPACA DIVISION
    Inventors: Ronald Thurston, Robert Jezwinski, Gene A. Johnson, Timothy Owens
  • Patent number: 7201210
    Abstract: Preferred embodiments of the present invention include methods that allow for casting alloys, and preferentially casting wrought alloys to circumvent problems such as, for example, hot tearing. Preferred embodiments of the present invention provide for alloys having predominantly spherical primary ?-aluminum grains in their microstructure (i.e., substantially free of dendrites) formed by mixing two liquids of differing compositions that are held at predetermined temperatures, such that when mixed they produce a predetermined alloy composition at a predetermined temperature that is inclined to solidify with a predominantly spherical grain structure that minimizes the alloy's tendency towards hot tearing.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 10, 2007
    Assignee: Worcester Polytechnic Institute
    Inventors: Deepak Saha, Sumanth Shankar, Diran Apelian, Makhlouf M. Makhlouf
  • Patent number: 7108042
    Abstract: An aluminum alloy suitable for diecasting of components with high elongation in the cast state contains, as well as aluminum and unavoidable impurities, 8.0 to 11.5 w. % silicon, 0.3 to 0.8 w. % manganese, 0.08 to 0.4 w. % magnesium, max 0.4 w. % iron, max 0.1 w. % copper, max 0.1 w. % zinc, max 0.15 w. % titanium and 0.05 to 0.5 w. % molybdenum. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium, 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminum master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 19, 2006
    Assignee: Aluminum Rheinfelden GmbH
    Inventor: Hubert Koch
  • Patent number: 7094273
    Abstract: A steel article is fabricated by providing an iron-base alloy having less than about 0.5 weight percent aluminum, melting the alloy to form a melt, adding calcium to the melt, thereafter adding aluminum to the melt to increase the aluminum content of the melt to more than about 0.5 weight percent aluminum, and casting the melt to form a casting. Other calcium additions may be made simultaneously with the adding of aluminum, and after the adding of aluminum but before casting the melt. The calcium additions deoxidize the melt to minimize the formation of clustered aluminum-oxygen-based inclusions.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: August 22, 2006
    Assignee: General Electric Company
    Inventors: Edward Lee Raymond, Mark Alan Rhoads, Glenn Charles Culbertson
  • Patent number: 7081150
    Abstract: An additive for increasing the toughness of thin-wall iron castings is provided. The additive includes amounts of a non-ferrous metal oxide and a metal sulfide in which the non-ferrous metal has an affinity for oxygen less than that of iron, and the metal has an affinity for sulfur less than that of magnesium. The metals contained in the oxides and sulfides are also not alkali, alkali earth or rare earth metals to reduce the incidence of defect formation in the castings. The metal oxide and metal sulfide, when added to a cast iron melt react with magnesium added to the melt as a spheroidizing graphite element to form nucleation sites having a core of magnesium oxide surrounded by magnesium sulfide. These nucleation sites allow for increased nucleation of graphite, whether in vermicular or spheroidal form, such that the cross-section of the thin-wall iron casting is more uniform, thereby decreasing the amount of carbide formed in the casting and increasing the toughness of the casting.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: July 25, 2006
    Inventors: Carl R. Loper, Jr., Simon N. Lekakh
  • Patent number: 7036554
    Abstract: The invention is relating to a system for casting metal, the system comprising a holding furnace (3) containing a base metal melt (2), at least one casting crucible (1) mounted inside the holding furnace (3) and situated at least partly in the base metal melt (2), the said casting crucible (1) divided to at least first volume (4) and second volume (5) with a separating wall (6), which separating wall (6) is forming a gap (10) with the casting crucible wall (11) said casting crucible (1) having at least one opening (12) in the wall (11) from the first volume (4) to the base metal melt (2) in holding furnace (3) and having means to import alloying material (7) to the first volume (4) and having at least one casting die (8) in the second volume (5) inserted into the alloyed metal melt (9). The invention also relates to a method of casting metal.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: May 2, 2006
    Inventors: Russell Nippert, Brian Swank, Ilppo Hiekkanen, Ilpo Koppinen
  • Patent number: 6988529
    Abstract: The present invention relates to a method and apparatus for preparing a metal or metal-alloy product for a casting process—wherein the product is brought into a partly solidified (semi-solidified) state before casting—in which the product contains crystallization nuclei uniformly distributed throughout its volume. The method involves introducing an amount of a chosen alloy (in pulverized form) and an amount of a chosen melt, which is at a temperature above the liquefaction temperature of the alloy, into a crystallization vessel, which is heated to below the liquefaction temperature of the alloy, and mixing the melt and the alloy together in the crystallization vessel by means of electrical and/or magnetic forces to create the desired product.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: January 24, 2006
    Inventor: Evgenij Sterling
  • Publication number: 20040244935
    Abstract: An aluminum casting process using a casting mold in which after the cavity (25) is filled with an inert gas, magnesium is introduced into the cavity to have a magnesium layer (58a) deposited on the cavity wall. Then, nitrogen gas is introduced into the cavity to form magnesium nitride (58b) on the surface of the magnesium layer after the cavity wall is heated to a specific temperature. Then, molten aluminum is supplied to have an aluminum casting molded, while the surface of the molten aluminum (39) is reduced with magnesium nitride. This makes it possible to form magnesium nitride within a short time and decrease the amount of nitrogen gas as required.
    Type: Application
    Filed: December 30, 2003
    Publication date: December 9, 2004
    Inventors: Yasuhiro Nakao, Hiroto Shoji, Kunitoshi Sugaya, Takashi Kato, Takaharu Echigo, Satoshi Matsuura
  • Patent number: 6764528
    Abstract: A method of producing a high nitrogen, ultra low carbon steel suitable to rolling material for use in cold rolled steel sheets having excellent age hardening property by an age hardening treatment after forming by working, with no defects in slabs or steel sheets, reliably, at a reduced cost and with a high productivity is proposed. The method for producing a rolling material for use in ultra low carbon steel sheets at: C≦0.0050 mass % comprises; applying primary decarburization refining to molten iron from a blast furnace, then controlling the composition in the molten steel after primary decarburization refining to a range satisfying the following relation: [mass % N]−0.15[mass % C]≧0.0060,  subsequently conducting secondary decarburization refining to a ultra low carbon concentration region while suppressing denitridation using a vacuum degassing facility, then conducting deoxidation by Al and, further, controlling the composition.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: July 20, 2004
    Assignee: JFE Steel Corporation
    Inventors: Seiji Nabeshima, Shuji Takeuchi, Hisashi Ogawa, Yuki Nabeshima, Yasuyuki Masumoto
  • Patent number: 6752199
    Abstract: A reduction casting method, in which a molten metal is poured into a cavity of a molding die and casting is performed while the oxide film formed on the surface of the molten metal is reduced by allowing the molten metal and the reducing compound to be contacted with each other in the cavity of the molding die, is characterized in that, at the time the molten metal is poured into the cavity, it is done while it is allowed to be in a turbulent flow.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 22, 2004
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Keisuke Ban, Koichi Ogiwara, Akira Sunohara
  • Patent number: 6722417
    Abstract: The method of deoxidation casting is capable of deoxidizing the oxide film formed on the surface of the molten metal, improving wettability to inner faces of a cavity of a casting die, and casting high quality products with high casting efficiency. The method of deoxidation casting includes the steps of reacting a deoxidizing compound, which is made by reacting a metallic gas on a reactive gas, on a molten metal; and deoxidizing an oxide film on a surface of the molten metal.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: April 20, 2004
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Keisuke Ban, Koichi Ogiwara
  • Patent number: 6692550
    Abstract: A steel article is fabricated by providing an iron-base alloy having less than about 0.5 weight percent aluminum, melting the alloy to form a melt, adding calcium to the melt, thereafter adding aluminum to the melt to increase the aluminum content of the melt to more than about 0.5 weight percent aluminum, and casting the melt to form a casting. Other calcium additions may be made simultaneously with the adding of aluminum, and after the adding of aluminum but before casting the melt. The calcium additions deoxidize the melt to minimize the formation of clustered aluminum-oxygen-based inclusions.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 17, 2004
    Assignee: General Electric Company
    Inventors: Edward Lee Raymond, Mark Alan Rhoads, Glenn Charles Culbertson