Incorporating Particulate Material Patents (Class 164/97)
  • Patent number: 5711362
    Abstract: A reinforcing phase comprising fly ash is combined with an aqueous medium comprising a binder to produce a slurry. The slurry is then dried to produce a preform of the reinforcing phase. Molten metal is then introduced into the preform, resulting in a metal matrix composites. The reinforcing phase of the subject composites may be present in excess of 50%.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: January 27, 1998
    Assignee: Electric Power Research Institute
    Inventor: Pradeep K. Rohatgi
  • Patent number: 5701943
    Abstract: Metal matrix composite is made by blending non-metal reinforcement powder with powder of metal or metal alloy matrix material, heating to a temperature high enough to cause melting of the matrix metal/alloy and subjecting the mixture to high pressure in a die press before solidification occurs.
    Type: Grant
    Filed: January 19, 1996
    Date of Patent: December 30, 1997
    Assignee: AEA Technology PLC
    Inventor: Robin Michael Kurt Young
  • Patent number: 5697421
    Abstract: The present invention provides a method for infrared pressureless infiltration of composites, including infiltration of carbon fibers and silicon carbide fibers with aluminum and titanium matrices. Composites produced by the methods of the present invention are also included within the scope of this invention.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: December 16, 1997
    Assignee: University of Cincinnati
    Inventors: Ray Y. Lin, Sunil G. Warrier
  • Patent number: 5669434
    Abstract: A method for producing an aluminum alloy composite material comprises disposing in a mold, in sequence from bottom to top, an infiltration enhancer containing Mg, a preform and an aluminum matrix alloy ingot, and then inserting the mold into an atmospheric furnace. The interior of the atmospheric furnace is then turned into an argon atmosphere. Thereafter, the internal temperature of the furnace is raised to a first predetermined temperature which is maintained for a given period of time so that the infiltration enhancer sublimates to permit the Mg component thereof to infiltrate into the preform. The atmosphere inside the furnace is then turned from the argon atmosphere into a nitrogen atmosphere.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: September 23, 1997
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhiro Nakao, Kunitoshi Sugaya
  • Patent number: 5664616
    Abstract: A process for pressure infiltration casting of a metal matrix composite in a metallic article is disclosed. A metallic base component is formed. A portion of the exterior surface of the metallic base component is adapted for mating with a corresponding exterior surface of a preform at an interface. A preform having interconnecting porosity is formed. An infiltration metal for forming a molten infiltrant charge and having a melting temperature "y" at least equal to or greater than the melting temperature "x" of the base metal is selected. A first mold including the base component is provided and preheated to a temperature in the range of (x-200).degree.F. to (x-50).degree.F. A second mold including the preform and the infiltration metal is provided and positioned adjacent the first mold. The second mold, preform and infiltration metal are heated to a temperature in the range of about (y-200).degree.F. to about (y+200).degree.F. The preform is evacuated and a vacuum is isolated in the preform.
    Type: Grant
    Filed: February 29, 1996
    Date of Patent: September 9, 1997
    Assignee: Caterpillar Inc.
    Inventor: Gerald A. Gegel
  • Patent number: 5662157
    Abstract: A method of forming a metal matrix composite. The method comprises the steps of surrounding at least one insert with reinforcement material. Next, there is the step of orienting the insert and reinforcement material within a mold. Then, there is the step of infiltrating the mold with liquid metal such that the reinforcement material around the insert is infiltrated. A package comprising a metal matrix composite formed of reinforcement material infiltrated with metal. The package also comprises an insert supported in the reinforcement material by the metal. An electronic package comprising a first wall and a second wall integrally connected and extending in a continuous manner from the first wall. The first wall and second wall are a metal matrix composite formed of reinforcement material infiltrated with metal. The metal extends continuously from the first wall to the second wall. Additionally, there is an insert disposed in the reinforcement material and supported by the metal.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: September 2, 1997
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5657811
    Abstract: The present invention describes a component with an in-situ formed insulator and a method of forming a component of the same. The method includes the step of orienting an insulator in a mold. Then, there is the step of introducing molten material, such as metal into the mold about the insulator to form a component having a cast-in electrical feed-through. Preferably, the feed-through is hermetically sealed within the component. In one embodiment, the insulator has at least one hole and the introducing step includes the step of filling the mold with molten metal to bond the metal to the insulator and to fill the hole with metal. Preferably, after the introducing step, there is the step of removing any skin of metal between metal within the hole and metal outside of the insulator. After the removing step, there can be the steps of drilling a hole into the metal within the insulator and inserting a conductor into the hole. The conductor can be brazed or cemented to the metal within the insulator.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: August 19, 1997
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5657815
    Abstract: A process and an apparatus for producing a composite of a particulate inorganic material, such as Shirasu balloons, and a metal, such as aluminum, in four inventive aspects. The composite is produced successively by the process steps comprising charging a mold cavity of a mold with the particulate inorganic material to form an aggregation of the particles, injecting a molten metal into the aggregation through a molten metal permeable refractory partition wall from a molten metal storage vessel, forwarding the resulting aggregation impregnated with the molten metal, cooling the impregnated aggregation to solidify and taking the solidified molded composite out of the mold. The composite according to the present invention is stout, light weighing, non-inflammable and easily processible and exhibits high dimensional stability and uniform distribution of the material properties, so that it can be used for construction and architecture purposes.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: August 19, 1997
    Assignee: Sugitani Kinzoku Kogyo Kabushiki Kaisha
    Inventor: Nobuhiro Sugitani
  • Patent number: 5649585
    Abstract: At least one preliminary pattern body, which is then used as part of a pattern or the pattern itself, is produced with fibers and a pattern material. A ceramic mold is formed around the pattern with a portion of the fibers having ends embedded into the mold. The pattern material is removed and finally, metal in liquid, liquid-solid or powdery form is introduced into the mold, wherein the metal is at least partially liquefied in the mold when it is introduced in powdery form. This process allows investment castings having an increased resistance to be produced with relatively simple casting equipment.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: July 22, 1997
    Inventors: Markus Nolte, Juergen Schaedlich-Stubenrauch, Eric Neussl
  • Patent number: 5641817
    Abstract: This invention relates to the discovery of organometallic ceramic precursor binders used to fabricate shaped bodies by different techniques. Exemplary shape making techniques which utilize hardenable, liquid, organometallic, ceramic precursor binders include the fabrication of negatives of parts to be made (e.g., sand molds and sand cores for metalcasting, etc.), as well as utilizing ceramic precursor binders to make shapes directly (e.g., brake shoes, brake pads, clutch parts, grinding wheels, polymer concrete, refractory patches and liners, etc.). In a preferred embodiment, this invention relates to thermosettable, liquid ceramic precursors which provide suitable-strength sand molds and sand cores at very low binder levels and which, upon exposure to molten metalcasting exhibit low emissions toxicity as a result of their high char yields of ceramic upon exposure to heat. Another preferred embodiment of the invention involves the fabrication of preforms used in the formation of composite articles.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 24, 1997
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael Kevork Aghajanian, Jonathan Wayne Hinton, Alexander Lukacs, III, James Allen Jensen, Marc Stevens Newkirk, Ratnesh Kumar Dwivedi
  • Patent number: 5638886
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies and novel products produced by the method. Particularly, a permeable mass of filler material or a preform is provided which has included therein at least some matrix metal powder. Moreover, an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with the filler material or preform, at least at some point during the process, which permits molten matrix metal, upon contact with the filler material or preform, to spontaneously infiltrate the filler material or preform. The presence of powdered matrix metal in the preform or filler material reduces the relative volume fraction of filler material to matrix metal.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: June 17, 1997
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael Kevork Aghajanian, Alan Scott Nagelberg, Christopher Robin Kennedy
  • Patent number: 5626692
    Abstract: The invention provides an aluminum-base composite material. The aluminum-base material contains a uniform distribution of carbide particles and lubricating phase particles such as carbon or graphite. The carbide particles increase hardness for improved wear resistance. The lubricating phase particles provide improved wear resistance and especially improve unlubricated wear resistance under increased loads. Finally, a dispersoid of nickel aluminide intermetallic phase may also be used to provide additional hardness and wear resistance. The composite is formed by introducing carbide particles and lubricating phase such as graphite into a molten aluminum alloy to neutraliize buoyancy and to form an aluminum-base mixture. Mixing the aluminum-base mixture to uniformly distribute carbide and carbon particles throughout the molten aluminum. Carbide and carbon particles counteract each other to remain uniformly distributed throughout the aluminum-base alloy despite prolonged holding or cooling times.
    Type: Grant
    Filed: March 1, 1994
    Date of Patent: May 6, 1997
    Assignee: INCO Limited
    Inventors: Pradeep K. Rohatgi, James A. E. Bell, Thomas F. Stephenson
  • Patent number: 5605186
    Abstract: The invention provides a method of die-casting of metals, with dispersion of predetermined quantities of solid particles in resulting metal castings. This is achieved by inserting a cartridge into the runner system, which cartridge is normally sealed at both ends with foil and contains the predetermined quantity of the solid particles. When molten metal is injected through the runner system and thus through the cartridge, it entrains the solid particles therewith which are thereby intermixed with the molten metal and form the composite material of which the die-cast part is thus made. The cartridge is preferably formed of the same metal as the one used for the die-casting, so that it may then be recycled.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: February 25, 1997
    Assignee: Institut de la technologie du magnesium (ITM)
    Inventors: Andre Dusablon, Claude Berthiaume
  • Patent number: 5588477
    Abstract: A method of making a heterogeneous metal matrix composite (MMC), and preform therefor. An open cell foam substrate is infiltrated with a slurry of reinforcement particles carried in a vehicle. The vehicle is removed leaving the particles trapped within the interstices of the foam. In one embodiment, the substrate is a fugitive polymer foam which is removed prior to filling the preform with metal. In another embodiment, the substrate is a metal foam which remains with the preform and the MMC after filling with metal.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: December 31, 1996
    Assignee: General Motors Corporation
    Inventors: Gerald E. Sokol, Howard H. Lee, Bradley W. Kibbel
  • Patent number: 5577546
    Abstract: Particles of metal alloys and composites have been developed that are particularly suitable for use in producing thixotropic alloys and in the injection molding of such alloys. The particulate material comprises particles of metal alloy or composite, wherein a substantial proportion of the particles is shaped such that the ratio of the length of the largest dimension of a particle to the effective diameter of the particle is in the range of 1.0 to 4.0 and the substantial proportion of particles has a particle size wherein the largest dimension of the particles lies within the range of 0.5 to 5.0 mm. This allows convenient handling of the particles whilst also avoiding binding or clogging of the screw, in the case where a screw extruder is used.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: November 26, 1996
    Assignee: Comalco Aluminium Limited
    Inventors: Anthony R. Kjar, Ronald G. Iacocca, Randall M. German, John L. Mihelich
  • Patent number: 5570502
    Abstract: A method of fabricating a metal matrix composite containing electrically isolated areas and the MMC formed from the method. The method comprises: (a) providing a liquid pool of unreinforced aluminum alloy; (b) infiltrating the unreinforced aluminum alloy into a stack comprising upper and lower porous preforms and an electrical insulator material placed between the preforms; (c) solidifying the liquid-phase metal to form a metal matrix composite product that completely surrounds the stack; and (d) forming at least one groove in the solidified metal, the groove extending downward to at least one insulating substrate so as to electrically isolate at least one region on the surface of the metal matrix composite.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: November 5, 1996
    Assignee: Aluminum Company of America
    Inventors: Ralph R. Sawtell, M. K. Premkumar, David I. Yun
  • Patent number: 5560420
    Abstract: A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: October 1, 1996
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Jeffrey S. Hansen, Paul C. Turner, Edward R. Argetsinger, Rick D. Wilson
  • Patent number: 5553657
    Abstract: The present invention relates to the use of a gating means in combination with a spontaneous infiltration process to produce a metal matrix composite body. Particularly, a permeable mass of filler material or a preform is spontaneously infiltrated by molten matrix metal to form a metal matrix composite body. A gating means is provided which controls or limits the areal contact between molten matrix metal and the filler material or preform. The use of a gating means provides for control of the amount of matrix metal which can contact the preform or filler material, which may result in less machining of a formed metal matrix composite body compared with a similar metal matrix composite body made without a gating mean. Moreover, the use of a gating means ameliorates the tendency of a formed metal matrix composite body to warp due to the contact between the formed composite body and matrix metal carcass.
    Type: Grant
    Filed: May 31, 1994
    Date of Patent: September 10, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Ralph A. Langensiepen, Christopher R. Kennedy, Michael A. Rocazella, Robert J. Wiener, Gregory E. Hanon, John J. Crowther, Allyn L. McCormick
  • Patent number: 5553656
    Abstract: The present invention is a method of cooling. The method comprises the steps of positioning material in a liquid state within a chamber. Then, there is the step of providing pressurized fluid about the chamber to form a thermal gradient across the chamber to directionally cool the material within. Preferably, the positioning step includes the step of positioning a mold with a mold chamber having material in a liquid state in the mold chamber, within an interior of a pressure vessel. Preferably, the providing step includes the step of introducing fluid, such as gas, into the pressure vessel such that the fluid that initially enters the pressure vessel is heated to a greater temperature than fluid subsequently introduced into the pressure vessel due to the fluid absorbing heat from the interior of the pressure vessel.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: September 10, 1996
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5553658
    Abstract: A method for pressure infiltration casting is provided wherein steps of preheating and evacuating a mold cavity and infiltrant charge are carried out in a separate vessel from a pressure vessel wherein the mold cavity is filled, allowing for rapid finished article throughput. An apparatus for pressure infiltration casting is also provided.
    Type: Grant
    Filed: April 1, 1994
    Date of Patent: September 10, 1996
    Assignee: Massachusetts Institute of Technology
    Inventor: James A. Cornie
  • Patent number: 5549151
    Abstract: The present invention relates to the formation of bodies having graded properties. Particularly, the invention provides a method for forming a metal matrix composite body having graded properties. The graded properties are achieved by, for example, locating differing amounts of filler material in different portions of a formed body and/or locating different compositions of filler material in different portions of a formed body and/or locating different sizes of filler materials in different portions of a formed body. In addition, the invention provides for the formation of macrocomposite bodies wherein, for example, an excess of matrix metal can be integrally bonded or attached to a graded metal matrix composite portion of a macrocomposite body. Moreover, if desired, it is possible to produce a metal matrix composite body with substantially the same properties throughout.
    Type: Grant
    Filed: December 12, 1994
    Date of Patent: August 27, 1996
    Assignee: Lanxide Technology Company, LP
    Inventor: Chwen-Chih Yang
  • Patent number: 5540271
    Abstract: The apparatus comprises a vessel having an interior. A mold is disposed within the interior of the vessel. A casting material is contained in the interior of the vessel. The apparatus also comprises a mechanism for providing the casting material to the mold in a manner such that vapors of the casting material are prevented from communicating with the interior of the vessel. The providing mechanism is in communication with the vessel. The providing mechanism comprises an inner chamber within which the mold and casting material are contained in. The providing mechanism further comprises a mechanism for heating the inner chamber, such as heating coils. The heating mechanism is disposed within the interior of the vessel adjacent to the inner chamber. Preferably, the inner chamber has a tube extending therefrom having a filter element, disposed therein for catching vapors of the casting material.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: July 30, 1996
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5535810
    Abstract: A method of forming a cast orthopaedic implant having a porous surface layer is disclosed. The method includes placing a porous layer on a wax replica of the implant such that a portion of the pores of the layer are filled with the wax material. The wax replica and porous surface layer are coated by a ceramic material consistent with investment casting technology. The ceramic material fills the remainder of the pores of the porous layer. After the ceramic material is solidified, the wax material is melted away leaving a cavity within the ceramic material. The pores once filled by wax are now exposed and extend into the cavity. A molten metal is poured into the cavity and partially melts the exposed porous layer to form a melt bond with the molten metal. When the metal is cooled, the ceramic material is stripped away exposing the portion of the porous layer previously filled with the ceramic medium.
    Type: Grant
    Filed: July 28, 1995
    Date of Patent: July 16, 1996
    Assignee: Zimmer, Inc.
    Inventors: Richard C. Compton, Leslie N. Gibertson
  • Patent number: 5531425
    Abstract: A method and apparatus for preparing a continuous flow of castable composite materials of nonmetallic particles in a metallic matrix, wherein particles are mixed into a molten metallic alloy to wet the molten metal to the particles, and the particles and metal are sheared past each other to promote wetting of the particles by the metal. The mixing occurs while minimizing the introduction of gas into the mixture, and while minimizing the retention of gas at the particle-liquid interface. Mixing is done at or below a maximum temperature whereat the particles do not substantially chemically degrade in the molten metal during the time required for processing, and casting is done at a temperature sufficiently high that there is no solid metal present in the melt.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: July 2, 1996
    Assignee: Alcan Aluminum Corporation
    Inventors: Michael D. Skibo, David M. Schuster, Richard S. Bruski
  • Patent number: 5531260
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies. Particularly, a permeable mass of filler material is formed into a preform. An infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are also in communication with the preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the preform when the preform is placed into the molten matrix metal. A means for maintaining the preform at least partially below the surface of the molten matrix metal can also be utilized.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: July 2, 1996
    Assignee: Lanxide Technology Company
    Inventor: John T. Burke
  • Patent number: 5529109
    Abstract: The present invention relates to a novel method for forming metal matrix composite bodies. Particularly, a permeable mass of filler material is formed into a preform. The preform material can then be placed onto the surface of or into a matrix metal alloy, whereupon the matrix metal alloy spontaneously infiltrates the preform. After substantial complete infiltration of the preform, the preform begins to at least partially sink into the matrix metal alloy supply. The depth to which the preform may sink into the molten matrix metal alloy is controlled by utilizing a support means. The support means prevents the preform being infiltrated from submerging completely beneath the surface of the matrix metal alloy supply. The matrix metal which has infiltrated the preform is then allowed to cool, thus forming a metal matrix composite body.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: June 25, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Ratnesh K. Dwivedi, John T. Burke, Gerhard H. Schiroky, Michael K. Aghajanian, Steven D. Keck
  • Patent number: 5529108
    Abstract: The present invention relates to a novel process for forming thin metal matrix composite bodies. Particularly, an infiltration enhancer and/or an infiltrating atmosphere are in communication with a filler material or preform, at least, at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform. Such spontaneous infiltration occurs without the application of any pressure or vacuum. In an embodiment of the present invention, the filler material may be sprayed upon a thin sheet of matrix metal. Alternatively, the filler material may be shaped via tape casting, slip casting, etc. to provide a thin preform. In another embodiment of the present invention, a body of matrix metal may be coated with a filler material such that upon spontaneous infiltration a metal matrix composite body is produced which inversely replicates the configuration of the original body of matrix metal.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: June 25, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Michael K. Aghajanian, Gregory E. Hannon, Allyn L. McCormick, Gerhard H. Schiroky, Michael A. Rocazella, Robert C. Kantner
  • Patent number: 5526867
    Abstract: The present invention relates to the formation of a macrocomposite body for use as an electronic package or container. The macrocomposite body is formed by spontaneously infiltrating a permeable mass of filler material or a preform with molten matrix metal and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body or a metal or metal containing body. Moreover, prior to infiltration, the filler material or preform is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform by molten matrix metal, the infiltrated material is bonded to said second material, thereby forming a macrocomposite body. The macrocomposite body may then be coated by techniques according to the present invention to enhance its performance or bonding capabilities.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: June 18, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Steven D. Keck, Michael A. Rocazella, Peter M. Engelgau, Gregory E. Hannon, Danny R. White, Alan S. Nagelberg
  • Patent number: 5524697
    Abstract: A method for producing composite materials by forming one material in a die cavity such that another material can be forced into the same die cavity and infiltrate the spaces in the first material. A method for producing a composite comprising the steps of injecting reinforcement material in a binder or suspension into a die cavity; burning off or removing the binder or suspension such that the reinforcement material remains in the die cavity; injecting liquid metal into the same die cavity such that it infiltrates the reinforcement material; solidifying the liquid metal; and removing the metal infiltrated composite material from the die cavity. An apparatus comprised of a die and a die cavity disposed inside the die. The apparatus is also comprised of a first port extending from the die cavity to the surface of the die through which reinforcement material in a binder is injected into a die cavity.
    Type: Grant
    Filed: February 1, 1993
    Date of Patent: June 11, 1996
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5524699
    Abstract: A method and system for producing a continuous supply of low volume fraction composite material that can be fed continuously into one or more molds. Composite inputs are fed into a mixing device such that a continuous supply of mixed composite material is available from the output side of the mixing device. The operation removes the step of creating master ingots and removes the need for a two step process in which the material is melted twice. This invention reduces the cost of producing composite components, reduces batch-to-batch variations, and allows for a continuous production flow. In addition, the invention allows for a much greater flexibility in the selection and optimization of material systems.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: June 11, 1996
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5518061
    Abstract: The present invention relates to modifying the properties of a metal matrix composite body by a post formation process treatment and/or a substantially contiguous modification treatment. The post formation process treatment may be applicable to a variety of metal matrix composite bodies produced by various techniques, and is particularly applicable to modifying the properties of a metal matrix composite body produced by a spontaneous infiltration technique. The substantially contiguous modification process may also be used primarily in conjunction with metal matrix composite bodies produced according to a spontaneous infiltration technique. Particularly, at least a portion of the matrix metal of the metal matrix composite body and/or the filler material of the metal matrix composite body is modified or altered during and/or after the formation process.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: May 21, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Michael K. Aghajanian, Mark G. Mortenson, Vilupanur A. Ravi, Alan S. Nagelberg
  • Patent number: 5511603
    Abstract: Metal-matrix composites and methods for producing these composites are provided. The manufacturing methods include providing a ceramic preform having a uniform distribution of ceramic particles sintered to one another. The particles include an average particle size of no greater than about 3 microns, and at least one half of the volume of the preform is occupied by porosity. The preform is then disposed into a mold and contacted by molten metal. The molten metal is then forced into the pores of the preform and permitted to solidify to form a solid metal-matrix composite. This composite is machinable with a high-speed steel (HSS) bit for greater than about 1 minute without excessive wear occurring to the bit. This invention preferably employs metal-matrixes including Al, Li, Be, Pb, He, Au, Sn, Mg, Ti, Cu, and Zn. Preferred ceramics include oxides, borides, nitrides, carbides, carbon, or a mixture thereof. Inert gas pressures of less than about 3,000 psi can be used to easily infiltrate the preforms.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: April 30, 1996
    Assignee: Chesapeake Composites Corporation
    Inventors: Alexander M. Brown, Eric M. Klier
  • Patent number: 5511604
    Abstract: A cast article having a reinforced structural composite core is disclosed. The cast article includes a structural element which is embedded in the otherwise cast metal article. The structural element is comprised of a metal matrix composite structural core. It includes a plurality of reinforcing fibers within a metal matrix. The fibers are generally a non-metallic material such as a ceramic which degrade at a temperature below the melting temperature of the cast metal comprising the article. The metal matrix composite structural core is encased with a sheath. The sheath, attached to and completely surrounding the core, is made of the same metal as the cast metal article. In a preferred embodiment, the article is a titanium alloy strut for a gas turbine engine.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: April 30, 1996
    Assignee: General Electric Company
    Inventors: Richard Ravenhall, Charles R. Wojciechowski, Stephen C. Mitchell, Gary D. Mercer, Thomas J. Kelly, Melvin A. Schobert, Harvey M. Maclin
  • Patent number: 5507336
    Abstract: A method of constructing a fully dense metal part or a metal mold half for mating with another mold half to form a mold for casting multiple parts. Steps include placing a pattern in a tubular mold base, casting a ceramic member onto critical surfaces of the pattern, removing the pattern from the mold base, covering the critical surfaces transferred to the ceramic member with a powdered metal having a melting temperature greater than that of an infiltration metal, placing a quantity of an infiltration metal over the powdered metal, placing the tubular mold base in a furnace at a temperature sufficient to melt the infiltration metal without melting the powdered metal, and removing the ceramic member from the first open end of the tubular mold base to expose the critical surfaces. The quantity of the infiltration metal is sufficient to fill voids between the particles of the powdered metal when the infiltration metal is melted, thereby generating a fully dense metal part.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: April 16, 1996
    Assignee: The Procter & Gamble Company
    Inventor: James R. Tobin
  • Patent number: 5505248
    Abstract: The present invention relates to a novel process for forming metal matrix composite bodies by using a barrier material. Particularly, an infiltration enhancer or an infiltration enhancer precursor or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, which permits molten matrix metal to spontaneously infiltrate the filler material or preform up to the barrier material. Such spontaneous infiltration occurs without the requirement for the application of any pressure or vacuum. Accordingly, shaped metal matrix composite bodies can be produced having superior surface finish.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: April 9, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Steven D. Keck, John T. Burke, Gregory E. Hannon, Kurt J. Becker, Steven J. Taylor, Robert J. Wiener, Allyn L. McCormick, Ratnesh K. Dwivedi
  • Patent number: 5503213
    Abstract: A method to at least partially impregnate a porous ceramic body with a metal comprising positioning a sacrificial porous ceramic transport means in physical contact with the metal and between the porous ceramic body to be impregnated and the metal; interposing a sufficient amount of a ceramic powder in contacting relationship between the ceramic body and the transport means to enable the metal to flow from the ceramic transport means to the ceramic body and insufficient to permit metal bonding between the transport means and the ceramic body, at least one constituent of the powder being wettable by, and chemically reactive with the metal; and maintaining at least the ceramic body and metal transport means at a temperature, and for a time, sufficient for at least a portion of the metal to flow through the transport means and into the ceramic body to impregnate the ceramic body a predetermined amount to form a metal impregnated ceramic body of near net shape.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: April 2, 1996
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Jack Ott, Tim L. Allen
  • Patent number: 5501263
    Abstract: The present invention relates to a novel process for making a macrocomposite body. Specifically, a metal matrix composite body is first formed and thereafter, a ceramic body or a ceramic matrix composite body is caused to form from at least one surface of the already formed metal matrix composite body. The ceramic or ceramic composite body can be formed by, for example, changing from spontaneous infiltration conditions which permit a molten matrix metal to infiltrate a filler material or preform to conditions which favor the growth of a ceramic oxidation reaction product from the matrix metal (e.g., the matrix metal serves the dual role of a matrix metal and a parent metal for growth of oxidation reaction product). The growth of oxidation reaction product can occur from one or more surfaces of a metal matrix composite body and can be controlled to result in any desired shape.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: March 26, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Ratnesh K. Dwivedi, Kurt J. Becker, Danny R. White, Steven D. Keck, Mark G. Mortenson
  • Patent number: 5501264
    Abstract: A potassium hexatitanate whisker having a tunnel structure containing aluminum and niobium impurities in such amounts that Al.sub.2 O.sub.3 /Nb.sub.2 O.sub.3 molar ratio is 0.6 or higher and composite materials using the same. Also disclosed are processes for producing composite materials using the potassium hexatitanate whiskers having a tunnel structure with a light alloy or a thermoplastic resin.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: March 26, 1996
    Assignee: Titan Kogyo Kabushiki Kaisha
    Inventors: Hidefumi Harada, Yasuo Inoue, Eiji Sadanaga
  • Patent number: 5487420
    Abstract: The present invention relates to a novel process for forming metal matrix composite bodies. Specifically, a metal which typically would not exhibit spontaneous infiltration properties under a given set of processing conditions can be induced to infiltrate a filler material or preform when combined or contacted with a matrix metal which does exhibit spontaneous infiltration properties. Stated more particularly, when an infiltration enhancer and/or an infiltration enhancer precursor and/or an infiltrating atmosphere are in communication with a filler material or a preform, at least at some point during the process, and a metal which, under the process conditions, ordinarily would not exhibit spontaneous infiltration, is combined with (e.g., alloyed, mixed with and/or exposed to) a matrix metal which does exhibit spontaneous infiltration behavior under the same processing conditions, the combination of metals will spontaneously infiltrate the filler material or preform.
    Type: Grant
    Filed: May 4, 1994
    Date of Patent: January 30, 1996
    Assignee: Lanxide Technology Company, LP
    Inventor: Marc S. Newkirk
  • Patent number: 5480727
    Abstract: A single, integral Metal Matrix Composite structure (47) includes a base plate (11), circuit layer (25), and lead supports (30,32), forming the single integral structure (47). Such a structure is particularly suited for power module applications. The various elements are well matched, thermally. Additionally, the structure (47) can be fabricated using straightforward molding processes, rather than complicated, fixtured, bonding and solder processes which are typically used for conventional power modules.
    Type: Grant
    Filed: February 3, 1994
    Date of Patent: January 2, 1996
    Assignee: Motorola, Inc.
    Inventors: Guillermo L. Romero, Brent W. Pinder
  • Patent number: 5477905
    Abstract: Composites of materials in which the matrix material does not spontaneously or readily wet the disperse phase and in which the volume fraction of the disperse phase is less than that formed in a packed bed of dispersate particles can be made effectively by an indirect method of infiltrating a packed bed of dispersate particles, using pressure or other mechanical force as needed to overcome poor wetting and form an intermediate concentrated composite. The concentrated composite is then mixed with additional matrix-forming material to produce the finally desired composite. The technique is particularly valuable for composites with ceramic dispersates and metal or alloy matrixes.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: December 26, 1995
    Assignee: Massachusettes Institute of Technology
    Inventors: Christopher K. Knapp, Donald R. Gorsuch, Sjur V. Velken, Eric M. Klier, Andreas Mortensen, James A. Cornie, Merton C. Flemings
  • Patent number: 5458181
    Abstract: A fiber-organic composition includes from about 5% to 50% by volume of uniformly dispersed, non-planar or three dimensionally random oriented inorganic fibers or whiskers, and a thermoplastic material such as paraffin wax. The composition also includes surfactants to promote wetting and dispersion of the inorganic fibers or whiskers. These materials are subjected to high shear mixing to form a uniform randomly oriented three-dimensional dispersion of the inorganic fibers or whiskers. After molding the mixture in such a manner so as not to disrupt the uniform, three-dimensional orientation of the fibers or whiskers, a majority of the thermoplastic material is removed leaving a shaped body or preform having sufficient strength for handling. The shaped body or preform can then be infiltrated with molten metal or the like to form a metal matrix composite.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: October 17, 1995
    Assignee: Technical Ceramics Laboratories, Inc.
    Inventors: William J. Corbett, Marvin C. Lunde, Peter T. B. Shaffer
  • Patent number: 5458480
    Abstract: This invention relates generally to the fabrication of materials for use as tools in various applications. Specific emphasis is placed upon certain ceramic matrix composite materials and metal matrix composite materials for use as tools as well as certain ceramic matrix composite and/or metal matrix composite coatings on substrate materials, also for use as tools. This invention makes specific reference to a number of different materials for use as tools in the molding of thermoplastic materials (e.g., polymers, plastics, ceramics, glasses, metals) with particular emphasis being directed to the thermoplastic molding of plastics or polymers.
    Type: Grant
    Filed: October 6, 1993
    Date of Patent: October 17, 1995
    Inventors: Marc S. Newkirk, Robert L. Simpson, Paul W. Niskanen, Eric M. Klier
  • Patent number: 5456306
    Abstract: The present invention relates to the formation of a metal matrix composite body by a spontaneous infiltration technique. Particularly, an infiltration enhancer and/or infiltration enhancer precursor can be positioned at least partially between or at an interface between a matrix metal and a filler material (or preform) which is to be infiltrated by molten matrix metal. Moreover, at least at some point during the process, an infiltrating atmosphere may be in communication with the filler material or preform and/or matrix metal.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: October 10, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: Michael K. Aghajanian, Alan S. Nagelberg
  • Patent number: 5435374
    Abstract: A method for wetting and bonding refractory alumina or aluminosilicate fibers or particles with molten aluminum or aluminum alloys by forming a boron oxidized interface between the fiber and the metal is exists. The method comprises the steps of (a) coating alumina fibers with an effective amount of a thermally decomposable precursor of boron oxide; (b) heating the coated fiber sufficiently to form a boron oxide; and (c) forming a composite with aluminum metal or an aluminum alloy. Thermally decomposable precursors of boron oxide include ammonium pentaborate, ammonium diborate and orthoboric acid.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: July 25, 1995
    Assignee: Aluminum Company of America
    Inventors: Maya Fishkis, Chanakya Misra, Karl Wefers
  • Patent number: 5433260
    Abstract: Apparatus and methods for hermetically sealing materials that cannot be satisfactorily sealed directly to one another using conventional techniques are disclosed. A laminar sheet material having adjacent bonded dissimilar metallic layers is interposed between elements being sealed. One of the metallic layers bonds metallurgically to one of the elements, while the other metallic layer is hermetically sealed to the other element using conventional techniques such as welding. The methods and apparatus of the present inventions are especially suitable for hermetically sealing metal matrix composite electronics packages.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: July 18, 1995
    Assignee: Pacific Coast Technologies, Inc.
    Inventor: Edward A. Taylor
  • Patent number: 5402843
    Abstract: A cast composite material is made from particles and a matrix alloy of preselected composition that is difficult to wet to the particles. A wetting alloy having a composition that readily wets the particles is first mixed with the particles under conditions that wet the wetting alloy to the particles. The wetting alloy is selected so that it has no alloying elements in excess of that in the preselected matrix alloy, and preferably with wettability inhibiting elements reduced. After wetting and mixing have been achieved, the remaining alloying ingredients are added to the melt to adjust the matrix to the desired composition. The approach is applicable to cast composite materials containing both reactive and nonreactive particles.
    Type: Grant
    Filed: August 19, 1993
    Date of Patent: April 4, 1995
    Assignee: Alcan Aluminum Corporation
    Inventor: Michael D. Skibo
  • Patent number: 5400947
    Abstract: This invention relates generally to a novel method for joining at least one first self-supporting body to at least one second self-supporting body which is similar in composition to or different in composition from said at least one first self-supporting body and to novel products which result from such joining. In some of its more specific aspects, this invention relates to different techniques for joining ceramic matrix composite bodies to other ceramic matrix composite bodies of similar characteristics and for joining ceramic matrix composite bodies to bodies which have different characteristics (e.g., metals). The ceramic matrix composite bodies of this invention are produced by a reactive infiltration of a molten parent metal into a bed or mass containing at least one of a boron source material, a carbon source material, and a nitrogen source material and, optionally, one or more inert fillers.
    Type: Grant
    Filed: January 11, 1993
    Date of Patent: March 28, 1995
    Assignee: Lanxide Technology Company, LP
    Inventors: James C.-K. Wang, Terry D. Claar, Philip J. Roach, Gerhard H. Schiroky
  • Patent number: 5398745
    Abstract: The present invention is a method of cooling. The method comprises the steps of positioning material in a liquid state within a chamber. Then, there is the step of providing pressurized fluid about the chamber to form a thermal gradient across the chamber to directionally cool the material within. Preferably, the positioning step includes the step of positioning a mold with a mold chamber having material in a liquid state in the mold chamber, within an interior of a pressure vessel. Preferably, the providing step includes the step of introducing fluid, such as gas, into the pressure vessel such that the fluid that initially enters the pressure vessel is heated to a greater temperature than fluid subsequently introduced into the pressure vessel due to the fluid absorbing heat from the interior of the pressure vessel.
    Type: Grant
    Filed: May 7, 1993
    Date of Patent: March 21, 1995
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5394929
    Abstract: The invention relates to subjecting boron carbide to a heat treatment at a temperature within a range of 1250.degree. C. to less than 1800.degree. C. prior to infiltration with a molten metal such as aluminum. This method allows control of kinetics of metal infiltration and chemical reactions, size of reaction products and connectivity of B.sub.4 C grains and results in cermets having desired mechanical properties.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: March 7, 1995
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Jack J. Ott, Dniel F. Carroll, Arthur R. Prunier, Jr.