Residual Oil Or Oil Saturation Patents (Class 166/252.2)
  • Patent number: 9410424
    Abstract: The invention relates to the use of a compound of the general formula (I), wherein A represents an alkanediyl radical having 2 to 4 carbon atoms, which may be substituted by one or more methyl and/or ethyl groups, and either R represents a linear or branched C1 to C4 alkyl group and R? represents a hydrogen atom, or R and R? are linked together to form a cycle, and the —R—R?— radical represents —CO—, as a tracer for use in a Single-Well Chemical Tracer Test, to determine the Residual Oil Saturation in oil reservoirs.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: August 9, 2016
    Assignee: TOTAL SA
    Inventor: Nicolas Agenet
  • Patent number: 9010441
    Abstract: A reservoir production management system includes a plurality of dielectric spectrometers disposed at different locations along the length of production tubing within a wellbore, each of the plurality dielectric spectrometers being in fluid communication with separate producing zones of the reservoir, wherein the plurality of dielectric spectrometers are configured to detect one or more dielectric properties by measuring the response of incident radio waves through fluids from each of the respectively separate producing zones, and a plurality of valves in the production tubing to selectively control production from each of the respectively separate producing zones in response to detected dielectric fluid properties.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: April 21, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventor: Luis Phillipe Tosi
  • Patent number: 8917094
    Abstract: Downhole tools and techniques acquire information regarding nearby conductors such as pipes, well casing, and conductive formations. At least some method embodiments provide a current flow along a drill string in a borehole. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates may be obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 23, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael S. Bittar, Jing Li
  • Patent number: 8871694
    Abstract: Compositions and methods for their use are disclosed, where the compositions comprise an amine component, an amine/phosphate ester component and optionally a solvent component. The compositions are adapted to coat solid materials, substrates and/or surfaces of producing reservoirs and formations and methods for making and using same, where the coating agents modify surface properties of the solid materials, substrates and/or surfaces of producing formations decreasing residual oil saturation.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 28, 2014
    Inventors: Sarkis R. Kakadjian, Frank Zamora, Ray Veldman, Ron van Petegen
  • Patent number: 8278928
    Abstract: An apparatus for detecting a position of a component in an earth formation is disclosed. The apparatus includes: a transmitter configured to emit a first magnetic field into the earth formation and induce an electric current in the component, the transmitter having a first magnetic dipole extending in a first direction; and a receiver for detecting a second magnetic field generated by the component in response to the first magnetic field, the receiver having a second magnetic dipole extending in a second direction orthogonal to the first direction. A method and computer program product for detecting a position of a component in an earth formation is also disclosed.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Alexandre N. Bespalov
  • Patent number: 8146659
    Abstract: The present invention relates to an optimized method for modelling flows in a geological hydrocarbon reservoir, comprising injecting an aqueous polymer solution to sweep the hydrocarbons, determining a relationship between a parameter linked with the mobility reduction of the solution in the reservoir and the water saturation, and accounting for this relationship in a flow simulator to achieve modelling.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 3, 2012
    Assignee: IFP
    Inventors: René Tabary, Laurent Neau, Matthieu Olivaud
  • Patent number: 8069018
    Abstract: A method for modeling fluid depletion in a reservoir is disclosed. A map is divided into cells. For each of the cells a value is stored that is based at least in part on a physical characteristic of the cell. At least one cell that contains a depletion location is identified along with a depletion amount corresponding to that location. An amount of walkers associated with the depletion location is determined. For each walker, a plurality of steps are calculated with each step to an adjacent cell. Each walker starts in the cell containing the depletion location associated with that walker. The visits of all the walkers are recorded by cell. The fluid depletion of each cell is then assessed based at least in part on the number of walker visits for each cell.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: November 29, 2011
    Assignee: Swanson Consulting, Inc.
    Inventors: Daniel H. Horowitz, Gregory A. Stevens, Donald C. Swanson, Jeffrey S. Swanson
  • Patent number: 7676420
    Abstract: In one embodiment, a system can include a centralized storage module, for example a database, that stores data relating to petroleum, natural gas and other related products taken from several different sources and entities. The entity storing and maintaining this data can be an entity independent from the operators, producers and/or other working interests. This system can use automated techniques to reconcile distributions to all entities associated with a well due to the removal of a mineral, for example, petroleum, natural gas and/or other related products, from that well, on a periodic basis. These automated techniques include, for example, reconciling all agreements associated with the well, reconciling the amount of mineral removed at the well, reconciling the spot market price associated with the well at the time of removal, automating approval by the removing entity, automating payment and the like.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: March 9, 2010
    Assignee: Accenture Global Services GmbH
    Inventors: Thomas J. Agnew, Frank D. Agnew
  • Patent number: 7555390
    Abstract: Resistivity measurements at different radial depths of investigation obtained from time lapse resistivity data gained from multiple passes of a resistivity tool through a borehole are analyzed together to obtain indications of at least one of fractional flow, residual oil and water saturations, oil saturation, and water saturation in a formation. For each of the logging passes having resistivity measurements with multiple radial depths of investigation, filtrate loss into the formation is also obtained through joint inversion.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: June 30, 2009
    Assignee: Schlumberger Technology Corporation
    Inventor: Terizhandur S. Ramakrishnan
  • Patent number: 7324929
    Abstract: The invention is a method for simulating one or more characteristics of a multi-component, hydrocarbon-bearing formation into which a displacement fluid having at least one component is injected to displace formation hydrocarbons. The first step of the method is to equate at least part of the formation to a multiplicity of gridcells. Each gridcell is then divided into two regions, a first region representing a portion of each gridcell swept by the displacement fluid and a second region representing a portion of each gridcell essentially unswept by the displacement fluid. The distribution of components in each region is assumed to be essentially uniform. A model is constructed that is representative of fluid properties within each region, fluid flow between gridcells using principles of percolation theory, and component transport between the regions. The model is then used in a simulator to simulate one or more characteristics of the formation.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: January 29, 2008
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Chun Huh, Gary F. Teletzke, Sriram S. Nivarthi
  • Patent number: 7283941
    Abstract: A method for modeling fluid depletion in a reservoir is disclosed. A map is divided into cells. For each of the cells a value is stored that is based at least in part on a physical characteristic of the cell. At least one cell that contains a depletion location is identified along with a depletion amount corresponding to that location. An amount of walkers associated with the depletion location is determined. For each walker, a plurality of steps are calculated with each step to an adjacent cell. Each walker starts in the cell containing the depletion location associated with that walker. The visits of all the walkers are recorded by cell. The fluid depletion of each cell is then assessed based at least in part on the number of walker visits for each cell.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: October 16, 2007
    Assignee: Swanson Consulting Services, Inc.
    Inventors: Daniel H. Horowitz, Gregory A. Stevens, Donald C. Swanson, Jeffrey S. Swanson
  • Patent number: 7006959
    Abstract: The invention is a method for simulating one or more characteristics of a multi-component, hydrocarbon-bearing formation into which a displacement fluid having at least one component is injected to displace formation hydrocarbons. The first step of the method is to equate at least part of the formation to a multiplicity of gridcells. Each gridcell is then divided into two regions, a first region representing a portion of each gridcell swept by the displacement fluid and a second region representing a portion of each gridcell essentially unswept by the displacement fluid. The distribution of components in each region is assumed to be essentially uniform. A model is constructed that is representative of fluid properties within each region, fluid flow between gridcells using principles of percolation theory, and component transport between the regions. The model is then used in a simulator to simulate one or more characteristics of the formation.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: February 28, 2006
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Chun Huh, Gary F. Teletzke, Sriram S. Nivarthi
  • Patent number: 6321595
    Abstract: Characterization of organic contaminants in subsurface formation is performed by methods for detecting the presence of nonaqueous phase liquid in a subsurface formation, and for determining the composition and for determining the volume of nonaqueous phase liquids. Generally the methods comprise introducing one or more partitioning tracers and one or more non-partitioning tracers at one or more injection points located in the subsurface formation and measuring separation between the one or more partitioning tracers and the one or more non-partitioning tracers from one or more sampling points located in the subsurface formation to determine presence, composition and/or volume of nonaqueous phase liquid in the subsurface formation. In addition, the methods can be used to assess the performance of an attempted remediation.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: November 27, 2001
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gary A. Pope, Richard E. Jackson