Including Fracturing Or Attacking Formation Patents (Class 166/259)
  • Patent number: 10837278
    Abstract: A device and a method for evaluating a gas-water two-phase flow fracture conductivity of a fractured shale. The device includes a seepage system, an injection system, a data collecting and processing system and a three-axis shale core holder, wherein the seepage system is subjected to two stages including a water injection stage and a gas flooding stage. When using the device, firstly the initial permeability and initial mass of the shale sample are determined; the water influx test is performed by injecting water to the shale sample until flow rate of the water discharged from the shale core is stable, then the water injection is ended. After the drying device is installed, the shale sample is subjected to gas flooding, and the aqueous fracturing fluid discharged by the gas flooding is collected until the flow meter determines that the gas volume is stable, and then the gas flooding is ended.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: November 17, 2020
    Assignee: UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
    Inventors: Weiyao Zhu, Ming Yue, Dongxu Ma, Ziheng Zhou, Hongyan Han, Zhiyong Song, Wenchao Liu
  • Patent number: 10612353
    Abstract: There is provided a downhole flow control apparatus comprising: a housing; a port extending through the housing; a passage disposed within the housing for conducting material to and from the port; a flow control member displaceable relative to the port; and a flow control member actuator configured for producing a pressurized fluid for urging the displacement of the flow control member.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 7, 2020
    Assignee: NCS Multistage Inc.
    Inventors: Don Getzlaf, John Edward Ravensbergen, Brock Gillis, Michael Werries
  • Patent number: 10597972
    Abstract: A method and apparatus are provided for controlling wellbore pressure within a wellbore during a perforation event by changing a state of a valve system multiple times. Information generated about the wellbore pressure within the wellbore may be received. A state of the valve system, which is positioned relative to a chamber within the wellbore, may be changed multiple times based on the information received to create a plurality of pressure conditions that substantially match a reference pressure profile. Each of the plurality of pressure conditions is selected from one of an underbalance condition and an overbalance condition.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 24, 2020
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Thomas Earl Burky, Dennis J. Haggerty, James Marshall Barker
  • Patent number: 10508523
    Abstract: Devices, systems, and processes are provided for retorting and extracting hydrocarbons from oil shale. A heat transfer fluid includes at least one liquefied petroleum gas (LPG) component such as, for example, propane or butane. The heat transfer fluid moves through a heat delivery loop to retort oil shale, thereby facilitating the production of recoverable hydrocarbons. While the heat transfer fluid moves through the heat delivery loop, cracking of a portion of the heat transfer fluid may produce various hydrocarbon materials that may be provided to a product stream.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 17, 2019
    Assignee: American Shale Oil, LLC
    Inventors: James R. McConaghy, Alan K. Burnham
  • Patent number: 10494566
    Abstract: Embodiments of the invention provide methods and composition for stimulating a hydrocarbon-bearing, heavy oil containing formation, a deep oil reservoir, or a tight oil reservoir, whereby exothermic reactants are utilized to generate in-situ steam and nitrogen gas downhole in the formation or the reservoir as an enhanced oil recovery process. An oil well stimulation method is provided, which includes injecting, into the one of the formation and the reservoir, an aqueous composition including an ammonium containing compound and a nitrite containing compound. The method further includes injecting, into the one of the formation and the reservoir, an activator. The activator initiates a reaction between the ammonium containing compound and the nitrite containing compound, such that the reaction generates steam and nitrogen gas, increasing localized pressure and improving oil mobility, in the one of the formation and the reservoir, thereby enhancing oil recovery from the one of the formation and the reservoir.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: December 3, 2019
    Assignee: Saudi Arabian Oil Company
    Inventors: Ayman Raja Al-Nakhli, Michael J. Black
  • Patent number: 10392863
    Abstract: An apparatus and method for assigning drill holes. The apparatus is arranged to determine a forthcoming position of a bottom of a new drill hole before it is drilled. The forthcoming position of the drill hole bottom is determined on the basis of the current location and direction of a tool and a planned length of the drill hole.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: August 27, 2019
    Assignee: SANDVIK MINING AND CONSTRUCTION OY
    Inventor: Juoko Muona
  • Patent number: 10174601
    Abstract: A permeable cement stone fracturing exploitation method for non-conventional oil and gas layer comprising the following processes: transporting and storing a supercritical carbon dioxide to a well site; selecting, transporting, and storing an oil well cement and admixtures to the well site; mixing the oil well cement and the admixtures into a first mixture, forming a cement slurry; pumping the supercritical carbon dioxide and the cement slurry respectively into a high pressure mixer; automatically mixing the supercritical carbon dioxide and the cement slurry into a second mixture by the high pressure mixer; continuously on-line monitoring and temporarily storing the second mixture; and injecting the second mixture into the non-conventional oil and gas layer for fracturing to form a reticulate artificial fracture; the second mixture is automatically heated, pressure reduced, gasified, solidified, carbonic acid dissolved and eroded, leached to form the a permeable cement stone.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: January 8, 2019
    Assignees: Sichuan Xingzhi Zhihui Intellectual Property Operation Co., Ltd.
    Inventors: Rui Fu, Huiying Niu, Wanchun Fu
  • Patent number: 10113404
    Abstract: A system and method for underground gasification. A system for underground gasification system may comprise a recovery system, a supply line, and a downhole ignition device operable to ignite an underground energy source. The downhole device may be connected to the supply line and the supply line may be connected to the recovery system. The system for underground gasification may further comprise an information handling system that may be operable to control the downhole device. A method for igniting an underground energy source may comprise disposing a downhole ignition device into an injection well, positioning the downhole ignition device within the underground energy source, activating the downhole ignition device, igniting the underground energy source, and recovering a gas from the underground energy source.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 30, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Iosif Hriscu, Christopher T Linsky, Nicholas Moelders, Wei-Ming Chi, Richard Joseph Hampson
  • Patent number: 9803133
    Abstract: Embodiments of the invention provide methods and composition for stimulating a hydrocarbon-bearing, heavy oil containing formation, a deep oil reservoir, or a tight oil reservoir, whereby exothermic reactants are utilized to generate in-situ steam and nitrogen gas downhole in the formation or the reservoir as an enhanced oil recovery process. An oil well stimulation method is provided, which includes injecting, into the one of the formation and the reservoir, an aqueous composition including an ammonium containing compound and a nitrite containing compound. The method further includes injecting, into the one of the formation and the reservoir, an activator. The activator initiates a reaction between the ammonium containing compound and the nitrite containing compound, such that the reaction generates steam and nitrogen gas, increasing localized pressure and improving oil mobility, in the one of the formation and the reservoir, thereby enhancing oil recovery from the one of the formation and the reservoir.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: October 31, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Ayman Raja AL-Nakhli, Michael J. Black
  • Patent number: 9790775
    Abstract: Apparatus, systems, and methods in which a fracturing fluid source is in fluid communication with a wellbore extending into a subterranean formation. A compressor has an input in fluid communication with a natural gas source, and has an output in fluid communication with the wellbore. The compressor is operable to compress natural gas received at the input for delivery at the output. A liquefied gas source is also in fluid communication with the wellbore.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 17, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jijo Joseph, Richard D. Hutchins, William Troy Huey, Joel Clinkscales, Philippe Enkababian, Alejandro Pena, George Waters, Salvador Ayala, J. Ernest Brown
  • Patent number: 9726157
    Abstract: The present invention relates to systems and methods of intelligently extracting heat from geothermal reservoirs. One geothermal well system includes at least one injection well extending to a subterranean formation and configured to inject a working fluid into the subterranean formation to generate a heated working fluid. At least one production well extends to the subterranean formation and produces the heated working fluid from the subterranean formation. A production zone defines a plurality of production sub-zones within the subterranean formation and provides fluid communication between the at least one injection well and the at least one production well. Each production sub-zone is selectively accessed in order to extract heated working fluid therefrom and thereby provide a steady supply of heated working fluid to the surface.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: August 8, 2017
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ronald E. Sweatman, Jason L. Pitcher, Norm R. Warpinski, Mark S. Machala, Joel D. Shaw
  • Patent number: 9624443
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation. Hydrocarbon-containing materials are also used as feedstocks.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: April 18, 2017
    Assignee: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 9556719
    Abstract: One or more specific embodiments herein includes a method for recovering hydrocarbon gas from a shale formation comprising injecting oxidizer through a horizontal wellbore into a fracture in the shale formation comprising pores containing hydrocarbon gas, and recovering some of the hydrocarbon gas from the shale formation. Some of the injected oxidizer combusts and increases the temperature of a portion of the shale formation and of the hydrocarbon gas contained in some of the pores in the shale formation, the pressure of some of the hydrocarbon gas increases to a point sufficient to cause formation of new fractures, and some of the hydrocarbon gas passes from the pores through some of the new fractures and is recovered. Preferably, one or more specific embodiments further comprises injecting hydraulic fracturing fluid into the first fracture after the one or more second fractures is formed, sometimes referred to as re-fracing.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: January 31, 2017
    Inventor: Don P. Griffin
  • Patent number: 9482077
    Abstract: In one aspect, a method is provided for controlling fluid flow in a wellbore containing a plurality of production devices, wherein the method includes the steps of defining a first setting of each production device in the plurality of production devices, defining a change in a parameter relating to fluid flow in the wellbore and using a model to determine a second setting for at least one of the plurality of production devices based on the change in the parameter. The method also includes the step of generating a script corresponding to the second setting, wherein the script is configured to be implemented without modification, and storing the script in a suitable storage medium.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: November 1, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Garabed Yeriazarian, Chee M. Chok
  • Patent number: 9366126
    Abstract: Apparatus for solution mining and gas storage in a salt cavern formed by solution mining comprises a flow diverting conduit string that is provided in fluid communication with two or more concentric conduits within the single main bore, with at least one lateral opening from an internal passageway with an outer annular passageway communicating with the surface under a single valve tree. Flow control devices, flow diverters and/or isolation conduits can be inserted into the flow diverting conduit string, enabling a dissolution zone in the salt cavern to be varied to control the shape of the cavern. Furthermore the flow diverting conduit string used to form the cavern can also be used for dewatering and gas storage.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: June 14, 2016
    Inventor: Bruce Tunget
  • Patent number: 9255469
    Abstract: A fracturing system can include an integral fracturing manifold. More particularly, a fracturing system can include a plurality of fracturing trees and an integral fracturing manifold may be directly coupled to each of the plurality of fracturing trees. The integral fracturing manifold may also include adjustment and pivot joints that accommodate spacing and elevation differences between the fracturing trees.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: February 9, 2016
    Assignee: CAMERON INTERNATIONAL CORPORATION
    Inventor: Gregory A. Conrad
  • Patent number: 9140109
    Abstract: A technique enables improvements in hydraulic fracturing treatments on heterogeneous reservoirs. Based on data obtained for a given reservoir, a fracturing treatment material is used to create complex fractures, which, while interacting with the interfaces and planes of weakness in the reservoir, develop fracture connectors, e.g. step-overs, which often grow for short distances along these planes of weakness. The technique further comprises closing or sealing at least one of the fracture connectors to enable reinitiation of fracturing from the truncated branches, and to subsequently develop additional connectors. As a result, the overall fracturing becomes more complex (more branches and more surface area per unit reservoir volume is created), which leads to an increase in the effective fracture area and improved fluid flow through the reservoir.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 22, 2015
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Roberto Suarez-Rivera, Dean M. Wulberg, Timothy M. Lesko, Marc Jean Thiercelin, Gisele Thiercelin
  • Patent number: 9027648
    Abstract: Methods including providing at least one target interval in a wellbore, wherein the at least one target interval has a temperature of at least about 70° F. to at least about 290° F.; providing a pad fluid; providing a treatment fluid comprising proppant particulates coated with a one-step furan resin composition, wherein the one-step furan resin composition comprises a furan polymer, a hydrolyzable ester, a silane coupling agent, a surfactant, and a solvent; introducing the pad fluid into the wellbore at a rate and pressure sufficient to create or enhance at least one fracture within the target interval; introducing the treatment fluid into the wellbore so as to deposit the proppant particulates coated with the one-step furan resin composition into the at least one fracture; and setting the one-step furan resin composition so as to form at least a partially consolidated permeable proppant pack in the at least one fracture.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: May 12, 2015
    Assignee: Halliburton Engergy Services, Inc.
    Inventors: Michael W. Sanders, Philip D. Nguyen
  • Publication number: 20150107831
    Abstract: This invention provides a multi-frac composite perforation device having (i) a gun body having an outer wall, (ii) an inner gunpowder box between adjacent perforating charges in the charge frame 1 of said perforation device, and (iii) a structure for gunpowder charge with an outer gunpowder box 4 attached to an outer wall of the charge frame 1, the gun body has a pressure releasing structure corresponding to a closed end of the perforating charge. This invention further provides a method of using the multi-frac composite perforating device to fracture a formation and the choice of gunpowders and gun body thickness with regards to the pressure required for fracturing a formation.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Guoan ZHANG, Jianlong CHENG, Xianhong SUN
  • Publication number: 20150107830
    Abstract: The methods described are for determining distribution, orientation and dimensions of networks of hydraulically-induced fractures within a subterranean formation containing fluids. Micro-seismic events are generated by particles introduced into the fractures which are capable of explosive or chemical reaction. In one method, treated proppant having a reactive coating is positioned in the formation during fracturing and reactive particles are introduced. In another method, reactive particles having a reactive core and a non-reactive coating are positioned in the fractures and react upon removal of the non-reactive coating, such as by dissolving, and reaction with a reactive particle. The waves generated by the micro-seismic events are used to map fracture space.
    Type: Application
    Filed: May 17, 2013
    Publication date: April 23, 2015
    Inventors: Haluk Vefa Ersoz, Lee J. Hall, David Loveless
  • Publication number: 20140262249
    Abstract: Method of stimulating subterranean formations for are given in which a thermite is placed downhole and then ignited. The thermite may be ignited with a downhole tool, the fracture may be mapped, and the thermite-affected region of the formation may be reconnected to the surface after the thermite reaction through the original or a second wellbore.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Dean M. Willberg, James Ernest Brown
  • Patent number: 8826985
    Abstract: A fracturing operation is done in open hole without annular space isolation. The annular space is spanned by telescoping members that are located behind isolation valves. A given bank of telescoping members can be uncovered and the telescoping members extended to span the annular space and engage the formation in a sealing manner. Pressurized fracturing fluid can be pumped through the telescoped passages and the portion of the desired formation fractured. In a proper formation, cementing is not needed to maintain wellbore integrity. The telescoping members can optionally have screens. Normally, the nature of the formation is such that gravel packing is also not required. A production string can be inserted into the string with the telescoping devices and the formation portions of interest can be produced through the selectively exposed telescoping members.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: September 9, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Yang Xu, Bennett M. Richard
  • Patent number: 8807213
    Abstract: A perforation gun. The perforation gun comprises a tool body, the tool body defining at least one shouldered hole wherein the shouldered hole comprises a hole through a wall of the tool body and a shoulder that is thinner than the wall of the tool body and at least one perforating explosive charge disposed within the tool body.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jerry L. Walker, Corbin S. Glenn, Bryan D. Powell
  • Publication number: 20140117739
    Abstract: A method of degassing a coal seam by directionally drilling a borehole in a rock formation that is adjacent the coal seam, or between two different coal seams. The borehole is then pressurised to fracture the adjacent coal seam(s) to enhance the permeability thereof and allow fluids to flow from the coal seam to the borehole and be extracted from the coal seam.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 1, 2014
    Inventor: Ian Gray
  • Patent number: 8672027
    Abstract: A method for stimulating a hydrocarbon-containing formation that includes the steps of: introducing a heat source in the formation; heating a portion of liquid hydrocarbons in the formation to expand hydrocarbon volume, thereby rejuvenating fractures in the formation; passing at least some of the heated liquid hydrocarbons through the rejuvenated fractures; and producing at least a portion of the liquid hydrocarbons that passed through the rejuvenated fractures. The methods and processes provide for in-situ stimulation of hydrocarbon-containing formations using energy to expand in-situ liquid hydrocarbons, thus rejuvenating naturally occurring fractures. In some embodiments, the energy is supplied as heat from injection of an oxygen-containing fluid.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 18, 2014
    Assignee: EOG Resources Inc.
    Inventor: Albert Billman
  • Publication number: 20140034304
    Abstract: A method for extracting hydrocarbon compounds, especially crude oil, from underground oil sands deposits, including the following steps: at least two parallel boring sections are created in the oil sands deposits; at least some areas of the boring sections are filled with an explosive material; the explosive material is ignited in order to enlarge the boring sections; the combustible material is ignited in at least one of the boring sections in order to convert the hydrocarbon compounds in the oil sands deposit into a liquid and/or gaseous state; the hydrocarbon compounds in a liquid and/or gaseous state are collected; and auxiliary substances such as water and atmospheric oxygen are optionally introduced and removed for desired material conversions for the refining of hydrocarbons.
    Type: Application
    Filed: March 7, 2012
    Publication date: February 6, 2014
    Inventors: Ralph Eisenschmid, Hans-Kurt Schromm, Matthias Kleinhans
  • Patent number: 8544544
    Abstract: A system for forming a subterranean oriented fissure in a target zone by utilizing a connection between two well bores and a flexible linear cutting device, such as a segmented diamond wire saw, to form the fissure beginning at the connection of the well bores and extending along a specified the length of the well bores.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: October 1, 2013
    Assignee: JIMNI Development LLC
    Inventor: James K. Coleman, II
  • Patent number: 8534350
    Abstract: A method of producing heavy oil from a heavy oil formation with steam assisted gravity drainage. The method begins by drilling a borehole into a heavy oil formation comprising a steam barrier between a first pay zone and a second pay zone, wherein the steam barrier prevents a steam chamber to be formed between the first pay zone and the second pay zone. The steam barrier is then heated with a radio frequency. The steam barrier is then fractured to permit a steam chamber to be formed within the first pay zone and the second pay zone. Heavy oil is then produced from the heavy oil formation with steam assisted gravity drainage.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: September 17, 2013
    Assignees: ConocoPhillips Company, Harris Corporation
    Inventors: Daniel R. Sultenfuss, Wendell Menard, Wayne R. Dreher, Jr., Curtis G. Blount, Francis E. Parsche, Mark A. Trautman
  • Publication number: 20130220604
    Abstract: A method of creating a network of fractures in a reservoir is provided. The method includes designing a desired fracture network system, and determining required in situ stresses to create the desired fracture network within the reservoir. The method further includes designing a layout of wells to alter the in situ stresses within the stress field, and then injecting a fracturing fluid under pressure into the reservoir to create an initial set of fractures within the reservoir. The method also includes monitoring the in situ stresses within the stress field, and modifying the in situ stresses within the stress field. The method then includes injecting a fracturing fluid under pressure into the reservoir in order to expand upon the initial set of fractures and to create the network of fractures. A method for producing hydrocarbons from a subsurface formation is also provided herein, wherein a fracture network is created from a single, deviated wellbore production.
    Type: Application
    Filed: August 29, 2011
    Publication date: August 29, 2013
    Inventors: Abdel Wadood M. El-Rabaa, Leonard V. Moore, Michael E. McCracken, Chris E. Shuchart, Pavlin B. Entchev, Stephen Karner, Jose Oliverio Alvarez
  • Publication number: 20130081811
    Abstract: Methods and processes for in-situ stimulation of hydrocarbon containing formations using energy to expand in-situ liquid hydrocarbons, thus rejuvenating naturally occurring fractures. In some embodiments, the energy is supplied as heat from injection of an oxygen containing fluid.
    Type: Application
    Filed: October 25, 2012
    Publication date: April 4, 2013
    Inventor: Albert Billman
  • Publication number: 20130074470
    Abstract: An in-situ combustion process which process does not employ one or more separate gas venting wells. At least one vertical production well having a substantially vertical portion extending downwardly into the reservoir and a horizontal leg portion extending horizontally outwardly therefrom completed relatively low in the reservoir is provided. At least one vertical oxidizing gas injection well, positioned above and in spaced relation to the horizontal well, is positioned laterally along the horizontal well approximately midsection thereof. Oxidizing gas is injected therein and combustion fronts are caused to progress outwardly from such injection well in mutually opposite directions along the horizontal well.
    Type: Application
    Filed: December 10, 2010
    Publication date: March 28, 2013
    Applicant: ARCHON TECHNOLOGIES LTD.
    Inventor: Conrad Ayasse
  • Patent number: 8336621
    Abstract: A process for the energy efficient, environmentally friendly recovery of liquid and gaseous products from solid or semi-solid hydrocarbon resources, in particular, oil shale or tar sands. The process involves non-oxidative pyrolysis to recover fluid energy values, oxidative combustion to recover energy values as recoverable heat, and environmental sequestration of gases produced.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: December 25, 2012
    Assignee: JWBA, Inc.
    Inventors: James W. Bunger, Christopher P. Russell, Donald E. Cogswell
  • Patent number: 8312924
    Abstract: The invention relates to methods and apparatuses for the subterranean injection of reactive substances like propellants into wellbores and subterranean reservoirs. These methods and apparatuses controls the temperature of a reactive substance for safe handling at surface and controls the decomposition rate of the substances in the subterranean environment. In addition, these methods and apparatuses provide a means for safe dilution of reactive fluids in the event of a leak or spillage of the reactive substance.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: November 20, 2012
    Inventor: David Randolph Smith
  • Patent number: 8302688
    Abstract: A perforating system and method for use in a wellbore. In operation, the perforating system is disposed in the wellbore and used to form perforations in the wellbore. Thereafter, the perforating system is used to perform a sequence of underbalance pulsations in the wellbore, wherein a first underbalance pulsation has a first underbalance signature and a second underbalance pulsation has a second underbalance signature that is different from the first underbalance signature such that perforating tunnel clean up can be optimized based upon wellbore conditions and without causing damage to the perforating tunnels.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: November 6, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventors: John D. Burleson, John H. Hales
  • Patent number: 8302690
    Abstract: A system and method for increasing hydrocarbon production from a subsurface reservoir by utilizing an intersection of two well bores and a flexible linear cutting device, such as a segmented diamond wire saw, to form a fissure beginning at the intersection of the well bores and extending along a specified the length of the well bores. The ends of the cutting device can be actuated above ground. The shape of the fissure can be a substantially ruled surface defined between the two bores between which the fissure is formed. Configurations for the well bores include both bores extending from the surface and, alternatively, a first bore extending from the surface and a second bore extending from a whipstock in the first bore. The fissure may be located and oriented to maximize the extent of the fissure formed within the hydrocarbon bearing horizon and to intersect with a maximum number of natural and/or previously formed fractures.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Jimni Development LLC
    Inventors: James K Coleman, II, Norman Hester
  • Patent number: 8261820
    Abstract: A system and method for increasing hydrocarbon production from a subsurface reservoir and/or sequestering waste material such as carbon dioxide by utilizing a connection between two well bores and a flexible linear cutting device, such as a segmented diamond wire saw, to form a fissure beginning at the connection of the well bores and extending along a specified the length of the well bores. Methods and systems relate to hydrocarbon production and/or waste sequestration, including for extracting or recovering oil or gas from coal beds or tar sands.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Jimni Development LLC
    Inventor: James K. Coleman, II
  • Patent number: 8082105
    Abstract: Disclosed is a method and apparatus for measuring in-situ stress in rock using a thermal crack. The method involves forming a borehole, cooling a wall of the borehole, applying tensile thermal stress, forming a crack in the borehole wall, and measuring temperature and cracking point. Afterwards, the borehole wall is heated to close the formed crack, the borehole wall is cooled again to re-open the crack, and temperature is measured when the crack is re-opened. The in-situ stress of the rock is calculated using a first cracking temperature at which the crack is formed and a second cracking temperature at which the crack is re-opened. Further, the apparatus cools, heats and re-cools the borehole wall, thereby measuring the first cracking temperature, the second cracking temperature, and the cracking point.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 20, 2011
    Assignee: Korea Institute of Geoscience and Mineral Resources (KIGAM)
    Inventors: Chang-Ha Ryu, Dong-Woo Ryu, Byung-Hee Choi, Loui Porathur John, Jung-Ho Synn
  • Patent number: 7913758
    Abstract: A method for completing an oil and gas well completion is provided. The perforators (10, 11) may be selected from any known or commonly used perforators and are typically deployed in a perforation gun. The perforators are aligned such that the cutting jets (12, 13) and their associated shockwaves converge towards each other such that their interaction causes increased fracturing of the rock strata. The cutting jets may be also be aligned such that the cutting jets are deliberately caused to collide causing further fracturing of the rock strata. In Ian alternative embodiment of the invention there is provided a shaped charge liner with at least two concave regions, whose geometry is selected such that upon the forced collapse of the liner a plurality of cutting jets is formed which jets are convergent or are capable of colliding in the rock strata.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: March 29, 2011
    Assignee: Qinetiq Limited
    Inventors: Stephen Wheller, Michael R Hoar
  • Publication number: 20100078167
    Abstract: A process relates to the energy efficient, environmentally friendly recovery of liquid and gaseous products from solid or semi-solid hydrocarbon resources, in particular, oil shale or tar sands. The process involves non-oxidative pyrolysis to recover fluid energy values, oxidative combustion to recover energy values as recoverable heat, and environmental sequestration of gases produced.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 1, 2010
    Inventors: James W. Bunger, Christopher P. Russell, Donald E. Cogswell
  • Patent number: 7662275
    Abstract: The present disclosure relates to a system and method of providing water management and utilization during the process of dewatering and retorting of oil shale. More specifically, the process described relates to co-producing potable and non-potable water, for various uses, during the extraction of petroleum from shale oil deposits. Generally, the process allows the production of multiple streams of waters or varying salinity and pressures at least one of which is of high enough pressure for reinsertion into geological formations or reservoirs, and another which may supply a potable water source. In one embodiment, the high pressure required for reinserting the non-potable water into geological formation or reservoirs may be utilized for producing the potable water supply. In another embodiment, the non-potable water supply may also be used for entraining and sequestering undesired emissions, such as CO2.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: February 16, 2010
    Assignee: Colorado School of Mines
    Inventor: John R. Dorgan
  • Patent number: 7647967
    Abstract: A system and method for increasing hydrocarbon production from a subsurface reservoir by utilizing an intersection of two well bores and a flexible linear cutting device, such as a segmented diamond wire saw, to form a fissure beginning at the intersection of the well bores and extending along a specified the length of the well bores. The ends of the cutting device can be actuated above ground. The shape of the fissure can be a substantially ruled surface defined between the two bores between which the fissure is formed. Configurations for the well bores include both bores extending from the surface and, alternatively, a first bore extending from the surface and a second bore extending from a whipstock in the first bore. The fissure may be located and oriented to maximize the extent of the fissure formed within the hydrocarbon bearing horizon and to intersect with a maximum number of natural and/or previously formed fractures.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 19, 2010
    Assignee: Jimni Development LLC
    Inventors: James K. Coleman, II, Norman C. Hester
  • Publication number: 20090159277
    Abstract: The present invention is a method and apparatus for the enhanced recovery of petroleum fluids from the subsurface by in situ combustion of the hydrocarbon deposit, from injection of an oxygen rich gas and drawing off a flue gas to control the rate and propagation of the combustion front to be predominantly horizontal and propagating vertically downwards guided by the vertical highly permeable hydraulic fractures. Multiple propped vertical hydraulic fractures are constructed from the well bore into the oil sand formation and filled with a highly permeable proppant containing hydrodesulfurization and thermal cracking catalysts. The oxygen rich gas is injected via the well bore into the top of the propped fractures, the in situ hydrocarbons are ignited by a downhole burner, and the generated flue gas extracted from the bottom of the propped fractures through the well bore and mobile oil gravity drains through the propped fractures to the bottom of the well bore and pumped to the surface.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 25, 2009
    Inventor: Grant Hocking
  • Patent number: 7543638
    Abstract: Methods and systems for enhancing oil recovery are disclosed. A method for enhancing oil recovery in a formation includes placing a catalyst in a wellbore; and introducing an oxidizing agent into the wellbore to contact the catalyst such that a hydrocarbon in the formation is oxidized to produce heat and at least one gas. A system for enhancing oil recovery in a reservoir formation includes a catalyst arranged within a well adjacent the reservoir formation; and an oxidizing agent for engaging the catalyst, the oxidizing agent adapted to generate heat and at least one gas when engaging the catalyst and oxidizing a hydrocarbon. The oxidizing agent may be air or oxygen. The catalyst may be one selected from platinum, palladium, rhodium, ruthenium, lead, manganese, nickel and metal oxides thereof. Further, the catalyst may be in the form of nanoparticles.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: June 9, 2009
    Assignee: Schlumberger Technology Corporation
    Inventor: Kenneth R. Goodman
  • Patent number: 7520325
    Abstract: The present invention is a method and apparatus for the enhanced recovery of petroleum fluids from the subsurface by in situ combustion of the hydrocarbon deposit, from injection of an oxygen rich gas and drawing off a flue gas to control the rate and propagation of the combustion front to be predominantly horizontal and propagating vertically downwards guided by the vertical highly permeable hydraulic fractures. Multiple propped vertical hydraulic fractures are constructed from the well bore into the oil sand formation and filled with a highly permeable proppant containing hydrodesulfurization and thermal cracking catalysts. The oxygen rich gas is injected via the well bore into the top of the propped fractures, the in situ hydrocarbons are ignited by a downhole burner, and the generated flue gas extracted from the bottom of the propped fractures through the well bore and mobile oil gravity drains through the propped fractures to the bottom of the well bore and pumped to the surface.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: April 21, 2009
    Assignee: GeoSierra LLC
    Inventor: Grant Hocking
  • Patent number: 7431090
    Abstract: The invention relates to methods and apparatus for creating multiple fractures in subterranean formations. The apparatus is a jetting tool having a plurality of sets of jetting nozzles so that the sets of nozzles are substantially parallel to one another such that parallel cavities may be formed substantially simultaneously in the formation. The jetting nozzles may be adapted to provide a fluid jet that flares outwardly from the nozzle. The nozzles also may be aligned such that cavities in the formation overlap to form a single cavity. The nozzles may be further adapted so that holes jetted into the casing thereby are still spaced from one another. Methods of fracturing subterranean formations using the apparatus are also disclosed.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: October 7, 2008
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jim B. Surjaatmadja, Billy W. McDaniel, Mark Farabee, David Adams, Loyd East
  • Patent number: 7431083
    Abstract: A method of stimulating production of coalbed methane involves providing a perforation charge comprising a standard charge portion and a charge additive able to produce localized temporary oxidizing environments in perforations. A coal-bearing formation is perforated with the perforation charge to form initial perforations defined by carbonaceous material. The initial perforations have localized temporary oxidizing environments in them. Combustion of the carbonaceous material is initiated using the oxidizing environments, thus enlarging the initial perforations. Other methods involve perforating the coal-bearing formation with a standard perforation charge, thereby creating perforations. The perforations are treated with a composition creating temporary local oxidizing environments involving an oxidant in the perforations. Combustion of carbonaceous material is initiated using the excess oxidant, thus enlarging the perforations.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 7, 2008
    Assignee: Schlumberger Technology Corporation
    Inventor: Thomas N. Olsen
  • Publication number: 20080115935
    Abstract: A method of producing natural gas from a heavy hydrocarbon-containing subterranean formation includes: placing a catalyst having at least one transition metal into the formation, injecting an anoxic stimulation gas into the formation, and collecting the natural gas generated in the formation. The method may be performed outside the context of a subterranean formation under controlled conditions. Thus, a method of producing natural gas from bitumen includes: providing an anoxic mixture of heavy hydrocarbons and a catalyst having at least one transition metal, adding an anoxic stimulation gas to the mixture, and heating the mixture in the presence of the stimulation gas.
    Type: Application
    Filed: September 17, 2007
    Publication date: May 22, 2008
    Inventor: Frank D. Mango
  • Publication number: 20070199702
    Abstract: The present invention is a method and apparatus for the enhanced recovery of petroleum fluids from the subsurface by in situ combustion of the hydrocarbon deposit, from injection of an oxygen rich gas and drawing off a flue gas to control the rate and propagation of the combustion front to be predominantly horizontal and propagating vertically downwards guided by the vertical highly permeable hydraulic fractures. Multiple propped vertical hydraulic fractures are constructed from the well bore into the oil sand formation and filled with a highly permeable proppant containing hydrodesulfurization and thermal cracking catalysts. The oxygen rich gas is injected via the well bore into the top of the propped fractures, the in situ hydrocarbons are ignited by a downhole burner, and the generated flue gas extracted from the bottom of the propped fractures through the well bore and mobile oil gravity drains through the propped fractures to the bottom of the well bore and pumped to the surface.
    Type: Application
    Filed: January 23, 2007
    Publication date: August 30, 2007
    Inventor: Grant Hocking
  • Patent number: 7051809
    Abstract: A method for fracturing subterranean coal formations by injecting air into the formation, igniting the coal, driving the fire away from the wellbore by injecting a cooling media into the burning formation adjacent the wellbore, and subsequently extinguishing the fire. The method allows fractionation and fracture crosion of subterranean coal formations and offers the benefit of increasing production of clean gas from the coal formation.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: May 30, 2006
    Assignee: Conocophillips Company
    Inventor: Dennis Ray Wilson
  • Patent number: 7048051
    Abstract: A process and system for recovering hydrocarbonaceous products from in situ oil shale formations. A hole is drilled in the oil shale formation and a processing gas inlet conduit is positioned within the hole. A processing gas is pressurized, heated, and introduced through the processing gas inlet conduit and into the hole. The processing gas creates a nonburning thermal energy front within the oil shale formation so as to convert kerogen in the oil shale to hydrocarbonaceous products. The products are withdrawn with the processing gas through an effluent gas conduit positioned around the opening of the hole, and are then transferred to a condenser wherein a liquid fraction of the products is formed and separated from a gaseous fraction.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Gen Syn Fuels
    Inventor: Ronald E. McQueen