Injection And Producing Wells Patents (Class 166/266)
  • Publication number: 20140158353
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Application
    Filed: May 16, 2013
    Publication date: June 12, 2014
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Publication number: 20140151040
    Abstract: Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
    Type: Application
    Filed: May 16, 2013
    Publication date: June 5, 2014
    Inventors: Sujin Yean, Darrell Lynn Gallup, Lyman Arnold Young, Russell Evan Cooper, Matthew Bernard Zielinski, Mark Anthony Emanuele, Brian Christopher Llewellyn, Dennis John O'Rear
  • Patent number: 8739869
    Abstract: Methods for enhanced oil recovery from a subterranean formation including adding a first salt to a first aqueous stream to form a first injection stream with an increased concentration of a first ion. A second salt is added to a second aqueous stream to form a second injection stream with an increased concentration of a second ion. The second injection stream is of different composition than the first injection stream and the first injection stream and the second injection stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity. The first injection stream is injected into the formation at a first time and the second injection stream is injected into the formation at a second time. The first injection stream and second injection stream contact at least some overlapping portion of the formation. Oil is recovered from the overlapping portion of the formation.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: June 3, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr., Jung-gi Jane Shyeh, Robert D. Kaminsky
  • Publication number: 20140144626
    Abstract: Methods and apparatus produce steam and, more particularly, utilize untreated feedwater as a source for steam used in steam assisted gravity drainage. Superheated steam, produced from treated feedwater in a boiler, is used to vaporize untreated feedwater that would otherwise foul a boiler. Contaminants in the untreated water can them be removed as solids or concentrated brine. The vaporization process occurs in stages to allow for the use of a higher fraction of untreated water.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 29, 2014
    Applicant: CONOCOPHILLIPS COMPANY
    Inventor: Scott MACADAM
  • Patent number: 8656996
    Abstract: Methods and systems for enhanced oil recovery from a subterranean formation are provided. An exemplary includes separating fluid produced from the subterranean formation into a first fluid stream that includes an aqueous stream containing multivalent ions. At least a portion of the multivalent ions in the first fluid are removed to form a second fluid stream and the second fluid stream is injected into the subterranean formation. The first fluid stream and the second fluid stream have substantially the same interfacial tension with a hydrocarbon and substantially the same kinematic viscosity, and the second fluid stream has a total concentration of ions greater than about 100,000 ppm.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr., Jung-gi Jane Shyeh
  • Patent number: 8656997
    Abstract: A system for producing oil and/or gas comprising a mechanism for releasing at least a portion of a sulfur containing compound into a formation; a first mechanism for converting at least a portion of the sulfur containing compound into a carbon disulfide formulation and/or a carbon oxysulfide formulation, the first mechanism for converting within the formation; and a second mechanism for converting at least a portion of the carbon disulfide formulation and/or a carbon oxysulfide formulation into another compound, the second mechanism for converting within the formation.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: February 25, 2014
    Assignee: Shell Oil Company
    Inventors: Claudia Van Den Berg, Paul Clinton, Kees Van Gelder, Carolus Matthias Anna Maria Mesters, Patrick Guy Monin, Gerard Mulder, Raul Valdez, Dean Chien Wang
  • Patent number: 8657000
    Abstract: Methods and systems for enhancing oil recovery from a subterranean formation comprising at least a first region and a second region are provided. An exemplary method includes creating an injection stream by adding a salt to a water stream to increase a concentration of an ion and injecting the injection stream into the subterranean formation through a first injection well in the first region of the subterranean formation. Fluid is produced from the subterranean formation and separated to generate an aqueous stream comprising at least a portion of the ion. The salt is added to the aqueous stream to adjust the concentration of the ion in the aqueous stream to a desired level. The aqueous stream is injected into the subterranean formation through a second injection well in the second region of the subterranean formation.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas W Willingham, Robin Gupta, Mauro Lo Cascio, Peter Griffin Smith, Jr.
  • Patent number: 8627886
    Abstract: Systems and methods are provided for low emission (in-situ) heavy oil production, using a compound heat medium, comprising products of combustion of a fuel mixture with an oxidant and a moderator, mixed with steam generated from direct contact of hot combustion products with water, under pressure. The compound heat medium, comprising mainly CO2 and steam, is injected at pressure into a hydrocarbon reservoir, where steam condenses out of the compound heat medium releasing heat to the reservoir. The condensate is produced with the hydrocarbon as a hydrocarbon/water mixture or emulsion. Non-condensable gases, primarily CO2, from the compound heat medium may remains in the reservoir through void replacement, leakage to adjacent geological strata. Beneficially, any CO2 produced is recovered at pressure, for use in other processes, or for disposal by sequestration. Produced water is recovered and recycled as a moderator and steam generating medium.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 14, 2014
    Assignees: Orion Projects Inc.
    Inventors: Daniel J. O'Connor, Cameron Hardy
  • Patent number: 8622129
    Abstract: A method of storing CO2 in a porous and permeable hydrocarbon reservoir having at least one injection well and at least one production well penetrating the reservoir, by recovering a produced fluid stream including produced hydrocarbons, produced water, and produced CO2 from the production well; passing the produced fluid stream to a production facility where a produced vapor stream of carbon dioxide and volatile hydrocarbons is separated from the produced fluid stream; compressing the produced vapor stream to above the cricondenbar for the produced vapor stream; cooling the compressed stream to form a cooled stream that in a dense phase state; importing a CO2 stream to an injection facility wherein the imported CO2 is either in a liquid state or a supercritical state; mixing the cooled stream with the imported CO2 stream thereby forming a co-injection stream; and injecting the co-injection stream into the hydrocarbon bearing reservoir from said injection well.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: January 7, 2014
    Assignee: BP Exploration Operating Company Limited
    Inventors: Ian Ralph Collins, Andrew Russell Mason
  • Publication number: 20140000880
    Abstract: A gas generator is provided with a combustion chamber into which oxygen and a hydrogen containing fuel are directed for combustion therein. The gas generator also includes water inlets and an outlet for a steam and CO2 mixture generated within the gas generator. The steam and CO2 mixture can be used for various different processes, with some such processes resulting in recirculation of water from the processor back to the water inlets of the gas generator. In one process a hydrocarbon containing subterranean space is accessed by a well and the steam and CO2 mixture is directed into the well to enhance removability of hydrocarbons within the subterranean space. Fluids are then removed from the subterranean space include hydrocarbons and water, with a portion of the hydrocarbons then removed in a separator/recovery step. The resulting hydrocarbon removal system can operate with no polluting emissions and with no water requirements.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Applicant: Clean Energy Systems, Inc.
    Inventors: Roger E. Anderson, Keith L. Pronske, Murray Propp
  • Patent number: 8616280
    Abstract: A method of completing a wellbore in a subsurface formation. The method principally has application to subsurface formations comprising organic-rich rock that is to be heated in situ. Heating the organic-rich rock pyrolyzes solid hydrocarbons into hydrocarbon fluids. The method includes identifying sections along the wellbore where the organic richness of formation rock within the identified zones varies over short distances. Such variance presents a risk of mechanical failure to downhole equipment. The method further includes strengthening the downhole equipment in at least one of the identified sections.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: December 31, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert D. Kaminsky, P. Matthew Spiecker, Kevin H. Searles
  • Publication number: 20130341246
    Abstract: Techniques for reducing a carbon emissions intensity of a fuel includes injecting a carbon dioxide fluid into a first wellbore; producing a hydrocarbon fluid from a second wellbore to a terranean surface; and producing a fuel from the produced hydrocarbon fluid, the fuel including a low-carbon fuel and assigned an emissions credit based on a source of the carbon dioxide fluid.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Inventors: David William Keith, James Rhodes
  • Patent number: 8592351
    Abstract: The present invention is directed to methods and apparatuses for generating an emulsion with enhanced stability. The methods include forming a stressed emulsion fluid using a high-shear mixer and stressing the emulsion by microporous flow, aging, heating, or another process, and reshearing the stressed emulsion fluid. The process may be repeated for enhanced stability. In some embodiments the generated emulsion may be used in hydrocarbon recovery operations. Optionally, the emulsion may include surfactants or solid microparticles for additional stability enhancement.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: November 26, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Robert D. Kaminsky
  • Patent number: 8567502
    Abstract: Nanoparticle-treated substrates, such as screens, sand beds or proppant beds, may effectively filter and purify fluids such as waste water or fluids produced from a formation, as well as other liquids. When tiny contaminant particles in a fluid such as waste water flow contact the nanoparticle-treated substrate, the nanoparticles will capture and hold the tiny contaminant particles on the substrate due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces or other associative forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the surfaces of structures in the filter beds or packs.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 29, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Edward J. O'Malley, Bennett M. Richard, Tianping Huang, Min Huang
  • Patent number: 8561698
    Abstract: Downhole tools and methods are provided for injecting fluid into a formation. A downhole tool may include a first chamber of injection fluid separated from a second chamber of working fluid by a piston. The working fluid may be employed to apply pressure to the piston to direct injection fluid from the first chamber to the formation. A flow regulator may regulate flow of the injection fluid from the first chamber to the formation.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: October 22, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Edward Harrigan, Douglas W. Grant, Nathan Church
  • Publication number: 20130269934
    Abstract: Embodiments presented herein provide an evaporation based zero liquid discharge method for generation of up to 100% quality high pressure steam from produced water in the heavy oil production industry. De-oiled water is processed in an evaporation system producing a distillate that allows steam to be generated with either drum-type boilers operating at higher pressures or once-through steam generators (OTSGs) operating at higher vaporization rates. Evaporator blowdown is treated in a forced-circulation evaporator to provide a zero liquid discharge system that could recycle >98% of the deoiled water for industrial use. Exemplary embodiments of the invention provide at least one “straight sump” evaporator and at least one hybrid external mist eliminator. Embodiments of the evaporation method operate at a higher overall efficiency than those of the prior art by producing distillate at a higher enthalpy which minimizes the high pressure boiler preheating requirement.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 17, 2013
    Inventors: Daniel P. Bjorklund, Gregory J. Mandigo, Richard M. Schoen, James Michael Marlett, Chandrakant Tiwari
  • Patent number: 8535538
    Abstract: Embodiments provided herein include methods and apparatuses for purification and recycling of hydrofracture water used in natural gas drilling and production. Embodiments include removal of dissolved solids by precipitation with sodium sulfate and by evaporation using, for example, a multiple effect evaporator.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: September 17, 2013
    Assignee: Fairmount Brine Processing, LLC
    Inventors: John J. Keeling, Rex B. Tennant, II, David B. Wingard
  • Patent number: 8528645
    Abstract: A system including a mechanism for releasing at least a portion of a sulfur containing compound into a formation; and a mechanism for converting at least a portion of the sulfur containing compound into a carbon disulfide formulation and/or a carbon oxysulfide formulation, the mechanism within the formation.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: September 10, 2013
    Assignee: Shell Oil Company
    Inventors: Claudia Van Den Berg, Paul Clinton, Kees Van Gelder, Carolus Matthias Anna Maria Mesters, Patrick Guy Monin, Gerard Mulder, Raul Valdez, Dean Chien Wang
  • Patent number: 8505627
    Abstract: A technique enhances hydrocarbon fluid production. The technique utilizes a well with a plurality of lateral wellbores positioned to facilitate removal of well fluid from a hydrocarbon reservoir. A separator is disposed in the well to receive well fluid that flows from a lateral production leg. Operation of the separator separates well fluid into an oil component and a water component to enable production of the oil component. The water component is injected into the reservoir in a manner that drives well fluid trapped in the reservoir into the lateral production leg.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 13, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Ryan Cox
  • Patent number: 8506680
    Abstract: Systems and techniques for the reclamation from boiler flue gas of all or substantially all gaseous substances for well injection oil recovery. A system can include one or more of a boiler for generating high pressure steam, a high pressure water pump, a tower scrubber, an induced draft fan, an absorber, a separating tank, a heat exchanger, a regenerator, a reboiler, a steam boiler, a water segregator, a carbon dioxide compressor, a purifier, a nitrogen compressor, drying beds, adsorption beds, a carbon dioxide pressurizer, a nitrogen pressurizer and a mixing tank of which: the boiler for generating high pressure steam, the tower scrubber, the absorber, the regenerator and the adsorption beds connect with each other in turn. In addition, the mixing tank connects by pipelines with a gas injection tube of an oil well. Mixed gases of carbon dioxide and nitrogen can be obtained for injection into the oil well, thus gaining favorable results of crude oil output increase as well as environment protection.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 13, 2013
    Assignee: Liaohe Petroleum Exploration Bureau, CNPC
    Inventors: Fengshan Zhang, Yuanwen Gao
  • Patent number: 8479814
    Abstract: An enhanced oil recovery method is provided. This method includes; introducing a first essentially pure oxygen stream into a subterranean hydrocarbon-bearing formation traversed by at least one injection well and at least one production well, and initiating and sustaining in-situ combustion in the vicinity of the injection well. This method also includes introducing a second essentially pure oxygen stream and a hydrocarbon-containing fuel gas stream into the combustion device of a power generation system, wherein the combustion device produces an exhaust gas stream comprising water and carbon dioxide. This method also includes separating the exhaust gas stream into a stream of essentially pure water, and a stream of essentially pure carbon dioxide, and introducing at least a portion of the essentially pure carbon dioxide stream into the subterranean hydrocarbon-bearing formation prior to initiating the in-situ combustion.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 9, 2013
    Assignee: American Air Liquide, Inc.
    Inventor: Errico De Francesco
  • Patent number: 8469091
    Abstract: Embodiments presented herein provide an evaporation based zero liquid discharge method for generation of up to 100% quality high pressure steam from produced water in the heavy oil production industry. De-oiled water is processed in an evaporation system producing a distillate that allows steam to be generated with either drum-type boilers operating at higher pressures or once-through steam generators (OTSGs) operating at higher vaporization rates. Evaporator blowdown is treated in a forced-circulation evaporator to provide a zero liquid discharge system that could recycle >98% of the deoiled water for industrial use. Exemplary embodiments of the invention provide at least one “straight sump” evaporator and at least one hybrid external mist eliminator. Embodiments of the evaporation method operate at a higher overall efficiency than those of the prior art by producing distillate at a higher enthalpy which minimizes the high pressure boiler preheating requirement.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 25, 2013
    Assignee: Aquatech International Corporation
    Inventors: Daniel P. Bjorklund, Gregory J. Mandigo, Richard M. Schoen, James Michael Marlett, Chandrakant Tiwari
  • Patent number: 8469092
    Abstract: A system comprising a well drilled into an underground formation comprising hydrocarbons; a water supply; a steam production facility, the steam production facility comprising a filter to remove at least 80% of a quantity of divalent cations in the water supply; an exchange resin to remove at least 80% of a quantity of divalent cations in a filtered water stream that has already passed through the filter; a steam injection facility connected to the well and the steam production facility, adapted to inject the steam into the well.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: June 25, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Alvin Curole, Eugene Bruce Greene
  • Publication number: 20130118735
    Abstract: A method for producing a purified carbon dioxide product suitable for EOR and surplus electricity uses a vaporous hydrocarbon feed and a SOFC system. A SOFC system includes a condensate removal system, an acid gas removal system, a hydrodesulfurization system, a sorption bed system, a pre-reformer, a solid oxide fuel cell, a CO2 separations system and a CO2 dehydration system operable to form the purified carbon dioxide product, where the SOFC system is operable to produce surplus electricity from the electricity produced by the solid oxide fuel cell. A method of operating the pre-reformer to maximize the internal reforming capacity of a downstream solid oxide fuel cell uses a pre-reformer fluidly coupled on the upstream side of a solid oxide fuel cell. A method of enhancing hydrocarbon fluid recovery from a hydrocarbon-bearing formation using a SOFC system.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 16, 2013
    Applicant: Saudi Arabian Oil Company
    Inventor: Saudi Arabian Oil Company
  • Patent number: 8408299
    Abstract: The present invention is directed to a method of generating a basic water-in-oil emulsion for use in recovering hydrocarbons from a subterranean formation. The emulsion may be used to displace hydrocarbons from the formation. The emulsions used are ‘basic’ in the sense that they do not have added surfactants and are not solid-stabilized. The emulsions are made using a hydrocarbon having at least one of the following properties: (i) greater than five weight percent (wt %) asphaltene content, (ii) greater than two wt % sulfur content, and (iii) less than 22 dyne/cm interfacial tension between the hydrocarbon liquid and the aqueous liquid.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: April 2, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert D. Kaminsky, Ramesh Varadaraj
  • Patent number: 8387691
    Abstract: A method for recovery of hydrocarbons from a subterranean reservoir is described. Adjacent injector producer well pairs are operated under conditions of steam assisted gravity drainage with a lateral drainage well between them. The lateral drainage well is operated under conditions of intermittent steam injection and alternating oil, water and gas production. NCG is co-injected with steam at selected intervals and in selected quantities in order to control the steam saturation of the SAGD steam chamber and the rise of the steam chamber, and to encourage lateral fluid communication between the adjacent well pairs and the LD well to control the rise of the steam chamber.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Athabasca Oils Sands Corporation
    Inventors: Laura A. Sullivan, Caroline Heron, Harald F. Thimm
  • Publication number: 20130025856
    Abstract: A well completion and related method are provided for formations susceptible to simultaneous production of oil and water. In one embodiment, two closely spaced, preferably horizontal wellbores are drilled from a single well into the reservoir. The reservoir rock surrounding one leg (typically the upper leg) is chemically treated to make it hydrophobic, whereas the reservoir rock surrounding the other leg is chemically treated to make it hydrophilic. Separate production tubing and a dual completion is installed in order to enable independent flow from each leg. Drawdown pressures in both legs are controlled to be sufficiently close to each other such that only oil flows into one leg and only water into the other. The water produced is re-injected downhole or brought to the surface.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: Schlumberger Technology Corporation
    Inventors: Terizhandur S. Ramakrishnan, Paul S. Hammond, John M. Cook
  • Publication number: 20130020078
    Abstract: An oil recovery process entails recovering an oil-water mixture from an oil bearing formation and separating the oil-water mixture to produce an oil product and produced water. The produced water includes suspended and dissolved solids and is subjected to treatment which removes suspended and dissolved solids therefrom. The treated water is then directed to a forced circulation steam generator that includes a furnace having a burner, water cooled walls and an evaporator unit. The treated water is pumped through the water cooled walls and the evaporator unit. The water passing through the water cooled walls and evaporator unit are heated to produce approximately 10% to approximately 30% quality steam in both the water cooled walls and the evaporator unit. The steam is collected and separated from a water-steam mixture to produce high quality steam, on the order of 95% or greater quality steam.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Applicant: Cleaver-Brooks, Inc.
    Inventor: Meenatchinathan Vasudevan
  • Patent number: 8353341
    Abstract: A well system comprising, in combination, a recipient ground area, a surface casing, a source well casing, a return well casing, and a return pipe. The return pipe is located within the return well casing, and the return well casing is located within the source well casing. This arrangement allows the removal of water from, and the return of water to different strata through the same drilled well hole, while also monitoring different aquifers water quality and/or aquifer parameters.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 15, 2013
    Inventor: Paul A. Petrey, III
  • Publication number: 20130000894
    Abstract: A process for the recovery of hydrocarbon such as bitumen/EHO from a hydrocarbon bearing formation in which are situated an upper injection well and a lower production well, the method comprising the steps: preheating an area around and between the wells by circulating hot solvent through the completed interval of each of the wells until sufficient hydraulic communication between both wells is achieved; injecting one of more hydrocarbon solvents into the upper injection well at or above critical temperature of the solvent or solvent mixture, thereby causing a mixture of hydrocarbon and solvent to flow by gravity drainage to the lower production well; and producing the hydrocarbon to the surface through the lower production well.
    Type: Application
    Filed: February 3, 2011
    Publication date: January 3, 2013
    Applicant: Statoil ASA
    Inventors: Jostein Alvestad, Aurelie Lagisquet, Eimund Gilje
  • Patent number: 8290632
    Abstract: A method for controlling the influx of fluids into a multizone well in which each inflow zone is provided with an inflow control device, comprises: assessing the flux of oil, gas, water and other effluents from the well; monitoring production variables, including ICD position and/or fluid pressure in each inflow zone upstream of each ICD and/or downstream of each ICD; sequentially adjusting the position of each of the ICDs and assessing the flux of crude oil, natural gas and/or other well effluents; monitoring production variables; deriving a zonal production estimation model for each inflow zone of the well; and adjusting each ICD to control the influx of crude oil, natural gas and/or other effluents into each inflow zone on the basis of data derived from the zonal production estimation model for each inflow zone of the well.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: October 16, 2012
    Assignee: Shell Oil Company
    Inventors: Jan Jozef Maria Briers, Keat-Choon Goh, Christophe Lauwerys, Peter Stefaan Lutgard Van Overschee, Henk Nico Jan Poulisse
  • Patent number: 8278251
    Abstract: Water flood materials may contain an effective amount of a nano-sized particulate additive to inhibit or control the movement of fines within a subterranean formation during a water flood secondary recovery operation. The particulate additive may be an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, transition metal oxide, transition metal hydroxide, post-transition metal oxide, post-transition metal hydroxide, piezoelectric crystal, and/or pyroelectric crystal. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help control and stabilize the fines, e.g. clays.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: October 2, 2012
    Assignee: Baker Hughes Incorporated
    Inventor: Tianping Huang
  • Patent number: 8256511
    Abstract: A process is disclosed for using heavy petroleum fraction as a drive fluid in the recovery of hydrocarbons from a subterranean formation. The hydrocarbons may be in the form of bitumen or heavy oil. The heavy petroleum fraction may be injected into at least one injection well and hydrocarbons produced out of at least one distinct production well. The heavy petroleum fraction may be co-injected together with steam and/or hot water and/or solvent. The heavy petroleum fraction may be a heavy fraction of a process used to upgrade crude oil, such as a heavy asphaltene fraction produced from solvent deasphalting crude oil produced by this recovery process.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: September 4, 2012
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Thomas J. Boone, Mori Y. Kwan, J. Pierre Lebel, Brad C. Harker
  • Patent number: 8251147
    Abstract: The present disclosure is directed to a wellbore injection system. The wellbore injection system comprises a capillary fluid flow path positioned in a subsurface wellbore so as to allow fluid communication through the wellbore, the wellbore having a wellbore pressure. A receptacle is in fluid communication with a second fluid flow path that is positioned below the capillary fluid flow path in the wellbore. An injector is attached to a distal end of the capillary fluid flow path, the injector comprising an injector flow path. The injector is capable of being removably attached to the receptacle to provide fluid communication between the capillary fluid flow path and the second fluid flow path through the injector flow path. An isolation mechanism is capable of isolating the capillary fluid flow path from the wellbore pressure when the injector is not attached to the receptacle.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: August 28, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Maximiliano Mondelli, Jeffrey L. Bolding, Don Sanders
  • Patent number: 8210259
    Abstract: An enhanced oil recovery method is provided. This method includes; introducing a first essentially pure oxygen stream into a subterranean hydrocarbon-bearing formation traversed by at least one injection well and at least one production well, and initiating and sustaining in-situ combustion in the vicinity of the injection well. This method also includes introducing a second essentially pure oxygen stream and a hydrocarbon-containing fuel gas stream into the combustion device of a power generation system, wherein the combustion device produces an exhaust gas stream comprising water and carbon dioxide. This method also includes separating the exhaust gas stream into a stream of essentially pure water, and a stream of essentially pure carbon dioxide, and introducing at least a portion of the essentially pure carbon dioxide stream into the subterranean hydrocarbon-bearing formation prior to initiating the in-situ combustion.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: July 3, 2012
    Assignee: American Air Liquide, Inc.
    Inventor: Errico De Francesco
  • Publication number: 20120145386
    Abstract: We provide an evaporator technology for treatment of produced water that may be deoiled water. Systems described herein utilize a vertical tube heat exchanger bundle where the brine is distributed in a falling film along the inside of the tube wall. Condensing steam causes a portion of the deoiled water to evaporate; this water vapor travels upward in a counterflow direction relative to the deoiled water. This evaporator technology provides several design advantages over the conventional vertical tube co-current flow evaporators (where the vapor flows downward with the falling film). These advantages include a minimal total installed cost (TIC) as well as offering optimal design features for water chemistry management.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Inventors: Daniel P. Bjorklund, David Kersey, Gregory J. Mandigo, Chandrakant Tiwari
  • Patent number: 8176982
    Abstract: A method and system of generating a range of petroleum products from bitumen or heavy oil reservoir by installing wells from a combination of surface and underground well-head platforms while controlling carbon dioxide emissions during thermal recovery operations are provided.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: May 15, 2012
    Assignee: Osum Oil Sands Corp.
    Inventors: Henry Gil, Andrew Squires
  • Publication number: 20120090838
    Abstract: A method of storing CO2 in a porous and permeable hydrocarbon reservoir having at least one injection well and at least one production well penetrating said reservoir, which method comprises the steps of: (a) recovering a produced fluid stream comprising produced hydrocarbons, produced water, and produced CO2 from the production well; (b) passing the produced fluid stream to a production facility where a produced vapour stream comprising carbon dioxide and volatile hydrocarbons is separated from the produced fluid stream; (c) compressing the produced vapour stream to above the cricondenbar for the composition of the produced vapour stream; (d) cooling the compressed stream thereby forming a cooled stream that is in a dense phase state; (e) importing a CO2 stream to an injection facility wherein the imported CO2 is either in a liquid state or a supercritical state; (f) mixing the cooled stream from step (d) with the imported CO2 stream thereby forming a co-injection stream; and (g) injecting the co-injection s
    Type: Application
    Filed: October 30, 2008
    Publication date: April 19, 2012
    Inventors: Ian Ralph Collins, Andrew Russell Mason
  • Patent number: 8136592
    Abstract: A method for producing oil and/or gas comprising injecting a miscible enhanced oil recovery formulation into fractures, karsts, and/or vugs of a formation for a first time period from a first well; producing oil and/or gas from the fractures, karsts, and/or vugs from a second well for the first time period; injecting a miscible enhanced oil recovery formulation into the fractures, karsts, and/or vugs for a second time period from the second well; and producing oil and/or gas from the fractures, karsts, and/or vugs from the first well for the second time period.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 20, 2012
    Assignee: Shell Oil Company
    Inventors: Chia-Fu Hsu, Ronald Jan Schoonebeek
  • Patent number: 8061422
    Abstract: A method for enhancing the production of liquid hydrocarbons from oil-wet, fractured reservoirs comprising injecting a surfactant solution into the reservoir, pressurizing the reservoir, maintaining the pressure, and recovering liquid hydrocarbons. In an embodiment, the method comprises closing production wells for a period to maintain reservoir pressure and surfactant exposure within the matrix.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: November 22, 2011
    Assignee: University of Houston System
    Inventors: Kishore Kumar Mohanty, Bhargaw Adibhatla
  • Patent number: 8056626
    Abstract: Generally, devices and methods of redistribution of fluids produced in well bore environments. Specifically, well bore fluid redistribution apparatuses which can isolate and redistribute fluids produced in well bores between geologic sections to reduce surface discharge of fluids.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 15, 2011
    Assignee: Big Cat Energy Corporation
    Inventors: Raymond P. Murphy, Timothy G. Barritt, Richard G. Stockdale
  • Patent number: 8048311
    Abstract: Methods and systems for a zero discharge waste water treatment system are provided. The system includes a filtration train including filter media having successively smaller diameter filtration elements, a reverse osmosis apparatus including a pump and a membrane coupled in flow communication with said filtration train, a vapor compressor coupled in flow communication with said reverse osmosis apparatus, and a spray dryer coupled in flow communication with said vapor compressor, said spray dryer configured to separate moisture in a brine solution from particulate suspended in the brine solution.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Paul Steven Wallace, James Michael Storey, Aaron John Avagliano
  • Patent number: 8047287
    Abstract: An oil recovery process utilizes one or more membranes to remove silica and/or oil from produced water. In one method, the process includes separating oil from produced water and precipitating silica. The produced water having the precipitated silica is directed to a membrane, such as a ceramic membrane, which removes the precipitated silica from the produced water. In some cases, residual oil is present and is also removed by the membrane.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 1, 2011
    Assignee: HPD, LLC
    Inventors: Keith R Minnich, Kashi Banerjee
  • Patent number: 8028754
    Abstract: Systems and methods for producing a well using a gas are disclosed herein. A compressed lift gas can be provided to a well to obtain a production stream. The production stream can be separated to obtain the product and a recycle gas stream. The recycle gas stream can be immediately recompressed for use as lift gas, or separated to form a lift gas stream, and a power stream containing natural gasses from the well. The lift gas stream is recycled for use as lift gas, while the power stream can be transported and/or collected for sale, recycled for use as lift gas, or consumed as power for the compressor, based on measurements obtained throughout the system, coupled with practical and economic variables. By supplementing or replacing generated lift gas and/or an external power source with natural gas from the well, the present systems and methods can become self-contained after start-up.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: October 4, 2011
    Assignee: Nitro-Lift Hydrocarbon Recovery Sytems, LLC
    Inventors: Danny K. Daniels, John A. Bibaeff, Jr.
  • Patent number: 8016041
    Abstract: A method and apparatus for hydrocarbon recovery and/or treatment of frac water includes introducing a volume of water into a formation, recovering the introduced water, with the recovered introduced water further comprising suspended hydrocarbon product. The recovered liquid is treated to remove substantial amounts of the suspended hydrocarbon product, provide the treated recovered liquid with a ORP in a range of 150 mv to 1000 mv, and partially desalinated, and is either re-introduced as treated recovered liquid with the ORP into a formation to assist in recovery of additional hydrocarbon deposits in the formation, or is stored to reduce the ORP and then subsequently discharged into surface waters.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: September 13, 2011
    Inventor: William B. Kerfoot
  • Patent number: 8012243
    Abstract: An apparatus is disclosed for removing water from gases produced from a hydrocarbon reservoir penetrated by a well, the apparatus comprising: a first conduit extending through the well for producing gases; a second conduit extending through the well for producing liquid hydrocarbons; a pump connected to pump liquid hydrocarbons from the hydrocarbon reservoir through the second conduit; and a gas dehydrator located in the first conduit below a ground surface for removing water from produced gases flowing through the first conduit.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 6, 2011
    Assignee: Brightling Equipment Ltd.
    Inventor: Codey Alan Saville
  • Patent number: 7975762
    Abstract: A method of increasing biogenic production of a combustible gas from a subterranean geologic formation is described. The method may include extracting formation water from the geologic formation, where the extracted formation water includes at least a first species and a second species of microorganism. The method may also include analyzing the extracted formation water to identify the first species of microorganism that promotes the biogenic production of the combustible gas. An amendment may be introduced to the formation water to promote the growth of the first species of microorganism, and the biological characteristics of the formation water may be altered to decrease a population of the second species in the geologic formation.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 12, 2011
    Assignee: Luca Technologies, Inc.
    Inventors: Robert S. Pfeiffer, Glenn Ulrich, Gary Vanzin, Verlin Dannar, Roland P. DeBruyn, James B. Dodson
  • Publication number: 20110146978
    Abstract: The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, and an air separation process for generating (i) an oxygen stream for use, for example, in the syngas process or a combustion process, and (ii) a nitrogen stream for EOR use.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 23, 2011
    Applicant: GREATPOINT ENERGY, INC.
    Inventor: Andrew Perlman
  • Publication number: 20110146979
    Abstract: The present invention relates to an enhanced oil recovery process that is integrated with a synthesis gas generation process, such as gasification or reforming, involving capture and recycle of a sour carbon dioxide stream for EOR use.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 23, 2011
    Applicant: GREATPOINT ENERGY, INC.
    Inventor: Paul Wallace
  • Publication number: 20110132602
    Abstract: A system for producing oil and/or gas comprising a mechanism for releasing at least a portion of a sulfur containing compound into a formation; a first mechanism for converting at least a portion of the sulfur containing compound into a carbon disulfide formulation and/or a carbon oxysulfide formulation, the first mechanism for converting within the formation; and a second mechanism for converting at least a portion of the carbon disulfide formulation and/or a carbon oxysulfide formulation into another compound, the second mechanism for converting within the formation.
    Type: Application
    Filed: April 14, 2009
    Publication date: June 9, 2011
    Inventors: Claudia Van Den Berg, Paul Clinton, Kees Van Gelder, Carolus Mattias Anna Maria Mesters, Patrick Guy Monin, Gerard Mulder, Raul Valdez, Dean Chien Wang