With Shield For Lead-in Seal Or Between The Lead-in Conductors Patents (Class 174/50.59)
  • Patent number: 11648409
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) comprises a first gold braze sealing an insulator to the ferrule of a glass-to-metal seal (GTMS) and a lead wire that is sealed in a passageway through the insulator by a second gold braze. A circuit board is disposed adjacent to the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization connected to its active electrode plates and a ground end metallization connected to its ground electrode plates. A ground electrical path extends from the ground end metallization of the chip capacitor, through a circuit board ground plate disposed on or within the circuit board, and to the ferrule. An active electrical path extends from the active end metallization of the chip capacitor to the lead wire of the GTMS.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: May 16, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 11147977
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active metallization that is electrically connected to the active electrode plates and a ground metallization that is electrically connected to the ground electrode plates of the capacitor. A ground electrical path extends from the ground metallization of the chip capacitor to the ferrule. A conductive ground pin is electrically and mechanically connected to the ferrule. The ground path comprises an internal ground plate disposed within the circuit board substrate.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: October 19, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 11013928
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: May 25, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10874866
    Abstract: A three-terminal flat-through EMI/energy dissipating filter comprises an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. Both the effective capacitance area or overlapping surface area of the active electrode plate and the surrounding ground shield plates and the dielectric constant of the insulating layers between the active electrode plate and the ground shield plates is raised to achieve a higher capacitance value for the three-terminal flat-through capacitor.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 29, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10722706
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: July 28, 2020
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10124164
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 13, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10099051
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. There is also an active path electrically extending between the active end metallization of the chip capacitor and the lead wire.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 16, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10016595
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the chip capacitor. There is a ground path electrically extending between the ground end metallization of the chip capacitor and the ferrule.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 10016596
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: July 10, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz
  • Patent number: 9895534
    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: February 20, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel
  • Patent number: 8913395
    Abstract: This is directed to connecting two or more elements using an intermediate element constructed from a material that changes between states. An electronic device can include one or more components constructed by connecting several elements. To provide a connection having a reduced or small size or cross-section and construct a component having high tolerances, a material can be provided in a first state in which it flows between the elements before changing to a second state in which it adheres to the elements and provides a structurally sound connection. For example, a plastic can be molded between the elements. As another example, a composite material can be brazed between the elements. In some cases, internal surfaces of the elements can include one or more features for enhancing a bond between the elements and the material providing the interface between the elements.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: December 16, 2014
    Assignee: Apple Inc.
    Inventors: Scott Myers, Mattia Pascolini, Richard Dinh, Trent Weber, Robert Schlub, Josh Nickel, Robert Hill, Nanbo Jin, Tang Tan
  • Patent number: 8759677
    Abstract: Frames (3) applied on a wafer (1) are leveled and covered with a covering film, such that gas-tight housings are formed for component structures (5), in particular for filter or MEMS structures. Inner columns (4) can be provided for supporting the housing and for the ground connection; outer columns (4) can be provided for the electrical connection and are connected to the component structures by means of conductor tracks (6) that are electrically insulated from the frames (3).
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 24, 2014
    Assignee: Epcos AG
    Inventors: Christian Bauer, Hans Krueger, Juergen Portmann, Alois Stelzl
  • Patent number: 8575482
    Abstract: An interface for an enclosure comprises at least one enclosure wall that separates an enclosure interior from an enclosure exterior, an opening in the enclosure wall, and a recess in the enclosure wall. The recess adjoins the opening. A dielectric connector is configured to securely fasten to the enclosure wall. The connector extends into the recess. A seal is situated in the recess between the enclosure wall and the connector. An inserted member is inserted through the opening and surrounded by the seal and the connector. Where the connector is securely fastened to the enclosure wall, the seal is compressed to form a moisture-resistant barrier between the enclosure interior and the enclosure exterior.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Deere & Company
    Inventors: Andrew D. Wieland, Joe S. Sauvageau
  • Patent number: 8525024
    Abstract: A hermetically sealing device includes a conductive seal member (2) which is integrated with a conductive member (1) extending into a casing (3) and seals a space between the conductive member (1) and an inserting section for the conductive member (1) on the casing (3). In the conductive member (1), an electromagnetic wave shield layer (11) is laminated on a cover film which protects the surface of a base film having a circuit pattern, an insulating layer (12) is laminated on the electromagnetic wave shield layer (11), the insulating layer (12) has an opening section (12a) such that a part of the flat section of the electromagnetic wave shield layer (11) is exposed, and the seal member (2) is integrated with the conductive member (1) to cover the opening section (12a) and is brought into contact with the electromagnetic wave shield layer (11) through the opening section (12a).
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: September 3, 2013
    Assignee: NOK Corporation
    Inventors: Hiroaki Kaneda, Takeshi Yamada
  • Patent number: 8410360
    Abstract: A sealing structure for wire lead-out hole is provided with a wire lead-out hole (11) formed in a case (10), a resilient seal (20) to be mounted into the wire lead-out hole (11), and a bracket (40) for retaining the resilient seal (20) in the wire lead-out hole (11) by being fixed to the case (10). The resilient seal (20) includes a seal main body (21) including a plurality of wire insertion holes (22) for allowing insertion of wires (Y), outer lips (24) formed on the outer peripheral surface of the seal main body (21), inner lips (23) formed on the inner peripheral surfaces of the wire insertion holes (22), and a wire protecting portion (25) provided on the seal main body (21).
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: April 2, 2013
    Assignee: Sumitomo Wiring Systems, Ltd.
    Inventor: Anna Nishimura
  • Patent number: 8400031
    Abstract: The invention provides an electrical connection for an electric motor having a casing which houses a drive device, embodied especially a stator in a casing interior. The drive device is contacted via a conductor, embodied especially in the form of a pin. The conductor is guided from the exterior into the interior of the casing via a casing opening. A cylindrical sealing element is provided on the casing opening in the casing interior to seal the conductor from the casing opening. The sealing element is provided with a continuous collar and a through-opening through which the conductor extends and in which the conductor is sealed in the through-opening via at least one radial sealing lip that is formed in the through-opening on the sealing element and that rests on a surface of the conductor. The conductor is then sealed towards the housing via at least one axial sealing lip that is formed on the collar and that rests on an inside of the casing.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: March 19, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Harold Bitzer
  • Patent number: 8378212
    Abstract: An electrical feed-through assembly and method of making an electrical feed-through assembly provide an electrical feed-through assembly that can survive exposure in a high pressure liquid, for example, seawater at least 9000 psi, for substantial periods of time, for example, twenty years, without substantial leakage of the high pressure liquid into or through the electrical feed-through assembly.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 19, 2013
    Assignee: Raytheon Company
    Inventors: James L. Sturges, Robert E. Walsh, George L. Fix
  • Patent number: 8288654
    Abstract: A feedthrough assembly includes a ferrule, an insulating structure, at least one terminal pin and a glass seal that fixedly secures the insulating structure within the ferrule. The insulating structure has a top portion, a bottom portion, and an inner diameter portion. The inner diameter portion defines at least one aperture extending from the top portion to the bottom portion of the insulating structure. The at least one terminal pin extends through the at least one aperture. The glass seal comprises about 30% B2O3, about 30% to about 40% of a member selected from the group consisting of CaO, MgO, SrO, and combinations thereof, with the proviso that the individual amounts of CaO and MgO are each not greater than about 20%, about 5% La2O3, about 10% SiO2, and about 15% Al2O3, wherein all percentages are mole percentages.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Medtronic, Inc.
    Inventors: William John Taylor, Brad C. Tischendorf
  • Patent number: 8084698
    Abstract: A current lead-through for providing an electrically conductive path between an interior of a vessel and the exterior of the vessel. The electrically conductive path is electrically isolated from the material of the vessel. The current lead-through comprises an electrically conductive pin surrounded by an electrically isolating sealing material, and retained within a tubular carrier body by the sealing material, the electrically conductive pin being exposed at each end of the tubular carrier body to enable electrical connection thereto.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 27, 2011
    Assignee: Siemens Plc
    Inventors: Neil John Belton, Martin Howard Hempstead, Stephen Paul Trowell
  • Patent number: 8072047
    Abstract: An integrated circuit package system includes: providing a tie bar and a lead adjacent thereto; connecting an integrated circuit and the lead; mounting a shield over the integrated circuit with the shield connected to the tie bar; and encapsulating the integrated circuit and the shield. An integrated circuit package system also includes: forming a lead and a support structure with substantially the same material as the lead and elevated above the lead; connecting an integrated circuit and the lead; mounting a shield over the integrated circuit with the shield on the support structure; and encapsulating the integrated circuit and the shield.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: December 6, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Zigmund Ramirez Camacho, Lionel Chien Hui Tay, Henry Descalzo Bathan, Guruprasad Badakere Govindaiah
  • Publication number: 20110162864
    Abstract: Provided are a hermetically sealing device and a hermetically sealing structure having improved shielding characteristics against electromagnetic waves. The hermetically sealing device is provided with a conductive seal member (2) which is integrated with a flexible flat conductive member (1) extending to the outside from the inside of a casing (3) and seals a space between the conductive member (1) and an inserting section for the conductive member (1) on the casing (3).
    Type: Application
    Filed: September 30, 2009
    Publication date: July 7, 2011
    Applicant: NOK CORPORATION
    Inventors: Hiroaki Kaneda, Takeshi Yamada
  • Patent number: 7745725
    Abstract: A power terminal feed-through incorporates a metallic body through which extend one or more current conducting pins that are hermetically sealed to the metallic body by a glass-to-metal seal. The metallic body includes an annular lip with a protrusion. During welding installation of the power terminal feed-through, the protrusion serves to assist in the welding process, better controlling the location and definition of the weld between the metallic body and a housing, and to focus the welding heat at the protrusion, thereby protecting the glass-to-metal seal. The glass-to-metal seal can be a single glass insert through which the current conducting pins extend, thereby reducing the pin circle diameter and the overall size of the power terminal feed-through.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Emerson Electric Co.
    Inventors: Franz Dieter Paterek, Albertus Jan Hendrik Kolkman, Scott Schuckmann
  • Patent number: 7064270
    Abstract: An implantable component including a feedthrough assembly and a method for forming the feedthrough assembly wherein a coating forming a fluid barrier over an insulator, an insulator-to-terminal pin interface and an insulator-to-ferrule interface is incorporated.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: June 20, 2006
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, James R. Svensk, Kenneth E. Cobian, Richard D. Ries
  • Patent number: 6903268
    Abstract: An implantable component including a feedthrough assembly and a method for forming the feedthrough assembly wherein a coating forming a fluid barrier over an insulator, an insulator-to-terminal pin interface and an insulator-to-ferrule interface is incorporated.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, James R. Svensk, Kenneth E. Cobian, Richard D. Ries
  • Patent number: 6861586
    Abstract: A welding apparatus having a metal enclosure and a plastic end panels affixed to the enclosure to contain therein the various electrical components of the welding apparatus. There is an internal negative electrical stud within the metal enclosure that has a high voltage applied to the stud. A protective, non-conductive electrical shield is located between the electrical stud and other conductive components within the welding apparatus to prevent arcing between the electrical stud and those conductive components as well as to prevent arcing between the electrical stud and the metal enclosure itself.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: March 1, 2005
    Assignee: Illinois Tool Works Inc.
    Inventor: James J. Cigelske, Jr.
  • Publication number: 20030201112
    Abstract: This invention aims to provide a through terminal capable of maintaining air-tightness stably and an X-ray tube having the through terminal. The through terminal comprises a tubular member, a plate member formed of an insulating ceramic material and bonded to an inner periphery of the tubular member in a hermetically sealed state, and pins extending through the plate member so that the portions thereof fitted through the plate member are located inside metallic tubes respectively and bonded to the plate member in a hermetically sealed state through the tubes. The tubular member is provided on an inner periphery thereof with a stepped portion for abutment thereagainst of a plate face of the plate member. The tubular member is formed of an alloy comprising at least iron, nickel, and cobalt.
    Type: Application
    Filed: April 29, 2003
    Publication date: October 30, 2003
    Applicant: GE India Technology Centre Pvt. Ltd.
    Inventors: Gorur N. Sridhar, Uma Sridharan, Manohar G. Kollegal
  • Patent number: 6509525
    Abstract: A hermetic terminal assembly including a body member with a bottom portion and a surrounding boundary or flange portion with at least one current conducting pin sealed in an opening in the bottom portion. The hermetic terminal assembly may include an over-surface stratum or disk disposed in close fit relation in said body member in facing relation with said bottom and flange portions and/or an electrically insulating coating.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: January 21, 2003
    Assignee: Emerson Electric Co.
    Inventors: Glenn A. Honkomp, Tariq Quadir, Stephanie S. Chapman
  • Patent number: 6362424
    Abstract: A hermetic terminal assembly including a body member with a bottom portion and a surrounding boundary or flange portion with at least one current conducting pin sealed in an opening in the bottom portion and an over-surface stratum or disk disposed in close fit relation in said body member in facing relation with said bottom and flange portions and having disk retention means therefore, and preselectively sized and positioned fuse-like burn-off apertures in the current conducting pin to interrupt current conductivity at selected times, temperatures and amperage density.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: March 26, 2002
    Assignee: Emerson Electric Co.
    Inventors: Glenn A. Honkomp, Tariq Quadir, Stephanie S. Chapman