Distillation Residue As Heat Source Patents (Class 203/23)
  • Patent number: 10144682
    Abstract: A butadiene extraction processes designed for flexible operations, with or without a compressor, is disclosed. The ability to run at both high and low pressures provides added process flexibility.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 4, 2018
    Assignee: Lummus Technology Inc.
    Inventors: Robert J. Brummer, Thomas Alexander Dwyer
  • Publication number: 20150129412
    Abstract: A method for recovering base oil from waste lubricating oil by separating base oil range constituents from a waste lubricating oil mixture, thereafter separating higher quality base oil constituents and lower quality base oil constituents from the base oil recovered from the waste lubricating oil mixture and thereafter treating the lower quality base oil constituents to produce marketable base oil. The total base oil produced from a waste lubricating oil mixture by this process is greater than the quantity producible by previous processes using only base oil separation from the waste lubricating oil mixture or processes which use only treatment of the base oil recovered from the waste lubricating oil mixture to produce the product base oil.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventor: Martin R. MacDonald
  • Patent number: 8951391
    Abstract: A solar distillation apparatus utilizing a substantially vertical reactor assembly is disclosed. The reactor includes a tubular outer shell, a base, a cap, and a central tension member. The annular space between the outer tube and the central tension member forms the reactor chamber. Seawater or other feed liquid enters the reactor chamber through the base plate. Reflected or direct solar energy heats the feed liquid, generating low pressure vapor. The vapor exits the reactor through the cap structure or the base. The concentrate left behind settles by gravity to the bottom region of the reactor's liquid column. Extension tubes on the feed openings allow feed liquid to enter the liquid column above the concentrate layer and avoid excessive mixing of the feed liquid and the concentrate. The concentrate exits the reactor through one or more openings in the base.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 10, 2015
    Inventor: Miles McClure
  • Publication number: 20140246302
    Abstract: The invention relates to the petroleum-processing industry, in particular, to a retarded coking process directed to the production of gas oil fractions (light gas oil and two types of heavy gas oil). The method comprises heating a starting stock, feeding same into an evaporator for mixing with recycled material and forming a secondary stock, coking the secondary stock and fractionating the resulting coking products in a rectification column, thereby producing gas, petrol; light and heavy coking gas oils, and bottoms. Heavy coking gas oil is used as the recycled material. The method envisages feeding cooled heavy gas oil to mass-exchange devices in the lower part of the rectification column, and feeding a metered quantity of cooled light gas oil to mass-exchange devices in the upper part of the rectification column. The quantity of cooled light and heavy gas oils which can be fed in changes depending on the required quantity and quality of the light and heavy gas oils and bottoms being produced.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 4, 2014
    Inventors: Gennady Georgievich Valyavin, Victor Pavlovich Zaporin, Sergei Vital'evich Sukhov, Mikhail Vladimirovich Mamaev, Igor Viktorovich Bidilo, Konstantin Gennad'evich Valyavin
  • Patent number: 8771478
    Abstract: A modular distillation apparatus including at least one heat exchanger that preheats contaminated liquids: a heater that heats the contaminated liquid from the heat exchanger; an evaporator condenser adapted o boil the contaminated liquid coming out of the heater to produce water vapor and contaminant concentrate, and condenser the water vapor into distilled water; a vacuum chamber capable of operating at below atmospheric pressure, the vacuum chamber housing the evaporator condenser and including at least one partition to separate the distilled water from the contaminate concentrate; a vapor compressor operably associated with the vacuum chamber to receive water vapor from the evaporator condenser in the vacuum chamber and pump the water vapor at pressure back through the evaporator condenser, wherein the heat exchanger recovers sensible heat from outgoing condensed distilled water and contaminant concentrate recycled from the vacuum chamber.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: July 8, 2014
    Assignee: Equus Environmental Ltd.
    Inventor: Dudley Edgar James Ward
  • Publication number: 20130240346
    Abstract: An anti-thermosensitization rectification tower comprising a rectification tower, a T-shaped condenser, a baffle plate, a tower bottom, a falling-film reboiler and a recirculation system, wherein the T-shaped condenser is secured exactly on the top of the rectification tower without any pipeline in between, and the circular baffle plate is installed in the T-shaped condenser; an annular sump located between the rectification tower and the T-shaped condenser for collecting the liquid condensed in the T-shaped condenser and channeling it out of the rectification tower into a liquid-collecting tank, and a centrifugal pump utilized to connect together the tower bottom and the falling-film reboiler to form a high-speed circulation system, wherein the tower bottom is an elongated conduit and the falling-film reboiler is in the form of a stout shell-and-tube heat exchanger is provided.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 19, 2013
    Applicant: NANJING UNIVERSITY
    Inventors: Zhibing Zhang, Zheng Zhou, Gaodong Yang, Defang Sun, Ling Zhang
  • Patent number: 8535487
    Abstract: A process for purifying an aqueous stream from a Fischer-Tropsch reaction that includes feeding the aqueous stream to a system that includes a distillation column equipped with a partial condenser and a total condenser, at least partially condensing the vaporized stream leaving the head of the distillation column and collecting a first distillate in which in heavier by-products, totally condensing the remaining portion of the vaporized stream leaving the partial condenser and collecting a liquid stream which is returned to the distillation column as a reflux and removing a purified aqueous stream from the bottom of the distillation column.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 17, 2013
    Assignee: ENI S.p.A.
    Inventors: Lino Carnelli, Carla Lazzari, Gianni Pandolfi
  • Publication number: 20130001062
    Abstract: A process for recovering butanol from a mixture comprising a water-immiscible organic extractant, water, butanol, and optionally a non-condensable gas, is provided. The butanol is selected from 1-butanol, 2-butanol, isobutanol, and mixtures thereof. The extractant comprises at least one solvent selected from the group consisting of C7 to C22 fatty alcohols, C7 to C22 fatty acids, esters of C7 to C22 fatty acids, C7 to C22 fatty aldehydes, and mixtures thereof.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventors: MICHAEL CHARLES GRADY, William D. Parten, Bruce M. Vrana, Yihui Tom Xu, Joseph J. Zaher
  • Patent number: 8282790
    Abstract: Embodiments of the invention are directed toward a novel pressurized vapor cycle for distilling liquids. In an embodiment of the invention, a liquid purification system is revealed, including the elements of an input for receiving untreated liquid, a vaporizer coupled to the input for transforming the liquid to vapor, a head chamber for collecting the vapor, a vapor pump with an internal drive shaft and an eccentric rotor with a rotatable housing for compressing vapor, a condenser in communication with the vapor pump for transforming the compressed vapor into a distilled product, and an electric motor with motor rotor and magnets hermetically sealed within the fluid pressure boundary of the distillation system.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 9, 2012
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Scott A. Leonard, Kingston Owens
  • Publication number: 20120145529
    Abstract: A fluid delivery apparatus is provided for supplying a fluid mixture to a distillation column or reactor. The apparatus can be used to enhance the heat duty, the flow and/or the flow stability of an existing thermosiphon reboiler which supplies a heated fluid to the column or reactor. The apparatus includes an integrated eductor which receives and increases the fluid velocity of a supplemental fluid into which the heated fluid is aspirated to form a fluid mixture then delivered to the column or reactor. A process and a system utilizing the apparatus are also disclosed, as well as a method of retrofitting an existing system with the apparatus.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Alphonzo George Nelson, Les Jackowski
  • Publication number: 20120145530
    Abstract: There is provided a method for a purification of trichlorosilane, the method including: performing a pretreatment for separating a chlorosilane mixture from reaction products of a trichlorosilane production reaction; performing a first purification for separating the chlorosilane mixture into a first top stream and a first bottom stream; performing a second purification for separating the first top stream into a second top stream and a second bottom stream; and performing a third purification for separating the second bottom stream into a third top stream and a third bottom stream, wherein the performing of the third purification is carried out under pressure conditions higher than those of the performing of the second purification, and a heat exchange is generated between the second bottom stream and the third top stream.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Chul-Hwan CHOI, Jeong-Seok LEE, Kwang-Wook CHOI, Joon-Ho SHIN, Dong-Kyu KIM
  • Publication number: 20120097520
    Abstract: The invention provides a process and apparatus for the separation of a gaseous feed comprising a mixture of hydrocarbons and nitrogen gas, the process comprising the steps of: (i) cooling and at least partially condensing the gaseous feed; (ii) feeding the cooled and at least partially condensed feed from step (i) to a fractionation column comprising reboil to produce an overhead hydrocarbon vapour stream enriched in nitrogen and a condensed hydrocarbon product stream low in nitrogen, wherein prior to the fractionation, the feed stream is divided into at least two streams including: a) a first stream which is expanded and fed to the fractionation column; b) a second stream which is expanded, heated and fed to a lower stage of the fractionation column than the first stream, (iii) removing a hydrocarbon product stream low in nitrogen from the fractionation column; and (iv) removing a hydrocarbon vapour stream enriched in nitrogen from the fractionation column.
    Type: Application
    Filed: March 23, 2010
    Publication date: April 26, 2012
    Applicant: COSTAIN OIL, GAS & PROCESS LIMITED
    Inventors: Grant Leigh Johnson, Adrian Joseph Finn, Terence Ronald Tomlinson
  • Patent number: 8128787
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Nicholas P. Wynn, Yu Huang, Masakatsu Urairi, Richard W Baker
  • Patent number: 8114255
    Abstract: Processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc.
    Inventors: Leland M Vane, Franklin R Alvarez, Yu Huang, Richard W Baker
  • Patent number: 8021519
    Abstract: A system for distilling sea or brackish water includes a feed water arrangement for supplying feed water from a feed water source to one or more flashing stages. Each flashing stage has a water flash evaporator for vaporizing at least part of the water therein, and a condenser for receiving the vapour and converting at least a part of the vapour into distilled water. A heat storage arrangement provided with a heat generating source for storing heat energy is used to heat a fluid medium flowing through it. A heat exchange arrangement receives the hot fluid medium and transfers heat to a stream of vapour flowing under pressure from each flashing stage. The vapour leaving the heat exchange arrangement being at a raised temperature is arranged to be condensed into water at the condenser and to transfer some of its latent heat to the evaporator.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 20, 2011
    Inventor: Gregory Mark Paxton
  • Patent number: 8002953
    Abstract: An energy-efficient extractive distillation process for producing anhydrous ethanol from aqueous/ethanol feeds containing any range of ethanol employs an extractive distillation column (EDC) that operates under no or greatly reduced liquid reflux conditions. The EDC can be incorporated into an integrated process for producing anhydrous ethanol used for gasoline blending from fermentation broth. By using a high-boiling extractive distillation solvent, no solvent is entrained by the vapor phase to the EDC overhead stream, even under no liquid reflux conditions. The energy requirement and severity of the EDC can be further improved by limiting ethanol recovery in the EDC. In this partial ethanol recovery design, ethanol which remains in the aqueous stream from the EDC is recovered in a post-distillation column or the aqueous stream is recycled to a front-end pre-distillation column where the ethanol is readily recovered since the VLE curve for ethanol/water is extremely favorable for distillation.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 23, 2011
    Assignees: AMT International Inc., CPC Corporation, Taiwan
    Inventors: Fu-Ming Lee, Kuang-Yeu Wu, Lindsey Vuong, Fong-Cheng Su, Tzong-Bin Lin, Jyh-Haur Hwang, Hung-Chung Shen, Po-Sung Cheng, Tai-Ping Chang
  • Publication number: 20110132741
    Abstract: The invention comprises an absorption heat pump to supply energy to a distillation process or an outside process. The streams used to effect the absorption heat pump are to be combined in any case as a feedstream to a conversion process, and energy thus is conserved by avoiding the necessity of reseparating the streams.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 9, 2011
    Applicant: UOP LLC
    Inventors: Paul A. Sechrist, Stanley J. Frey
  • Patent number: 7955478
    Abstract: A solar distillation apparatus utilizing a substantially vertical reactor assembly is disclosed. The reactor includes a tubular outer shell, a base, a cap, and a central tension member. The annular space between the outer tube and the central tension member forms the reactor chamber. Seawater or other feed liquid enters the reactor chamber through the base plate. Reflected or direct solar energy heats the feed liquid, generating low pressure vapor. The vapor exits the reactor through the cap structure or the base. The concentrate left behind settles by gravity to the bottom region of the reactor's liquid column. Extension tubes on the feed openings allow feed liquid to enter the liquid column above the concentrate layer and avoid excessive mixing of the feed liquid and the concentrate. The concentrate exits the reactor through one or more openings in the base.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 7, 2011
    Inventor: Miles McClure
  • Publication number: 20100288623
    Abstract: The invention relates to the oil processing industry and can be used for producing vacuum in a vacuum petroleum distillation column. The inventive method involves pumping out a vapour-gas medium from the column by means of a gas-gas ejector in such a way that a vapour-gas mixture is formed at the entry thereof and supplying said mixture to a condenser for producing a gas mixture and a vapour phase condensate. The gas mixture is supplied from the condenser to a liquid-gas jet apparatus and the condensate is delivered to an additional separator. A hydrocarbon-containing condensate is removed from the additional separator for the intended use thereof and a water-containing condensate is fed to a steam generator for producing steam by supplying heat of a hot distillate evacuated from the vacuum column. The thus obtained steam is used in the gas-gas ejector as a high-pressure gas.
    Type: Application
    Filed: November 6, 2008
    Publication date: November 18, 2010
    Inventor: Valery Grigorievich Tsegelsky
  • Patent number: 7737318
    Abstract: The invention relates to a process for preparing 1-butenic fractions having less than 2000 ppm of isobutene in relation to 1-butene from technical mixtures of C4 hydrocarbons I which contain at least 1-butene and 2000 ppmw to 8% by mass of isobutene based on the 1-butene, with or without n-butane, isobutane and/or 2-butenes.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: June 15, 2010
    Assignee: Evonik Oxeno GmbH
    Inventors: Silvia Santiago-Fernandez, Armin Rix, Jochen Praefke, Dirk Roettger, Markus Winterberg, Wilfried Bueschken
  • Patent number: 7641772
    Abstract: A distillation unit (10) employs a fluid circuit (FIG. 8) in which a counterflow heat exchanger (102, 104, 106, 108, 110) transfers heat from condensate and concentrate to feed liquid to be distilled. The pumping system (100, 238) that drives fluid through the circuit is arranged to keep the pressure in the counterflow heat exchanger's condensate higher than that in its feed-liquid passage. This tends to discourage the contamination that could otherwise occur in the concentrate if the fluid isolation ordinarily maintained between those passages is compromised.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: January 5, 2010
    Assignee: Zanaqua Technologies, Inc.
    Inventor: William H. Zebuhr
  • Patent number: 7619126
    Abstract: A process for recovering crude 1,3-butadiene from a C4 fraction by extractive distillation using a selective solvent in a dividing wall column (TK) in which a dividing wall (T) is arranged in the longitudinal direction of the column to form a first subregion (A), a second subregion (B) and a lower common column region (C) and which is preceded by an extractive scrubbing column (K), wherein the operation of the dividing wall column (TK) is set by regulation of the energy input into the dividing wall column (TK) via a bottom vaporizer (V) and setting of the number of the theoretical plates in the lower common column region (C) so that a bottom stream (17) consisting of purified solvent is obtained from the dividing wall column (TK), is proposed.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: November 17, 2009
    Assignee: BASF Aktiengesellschaft
    Inventor: Bernd Heida
  • Patent number: 7572352
    Abstract: Salt-containing water is desalinated by first passing salt-containing water through a heat exchanger disposed in a basin containing solar-heated brine formed by several layers of water lying one above the other in the basin, each of the layers of water forming the brine having a higher salt content than the layer present there above. The heat exchanger is in the lowermost layer of water having a higher temperature than the temperature of the layers of water lying above the lowermost layer of water. The salt-containing water is heated in the basin by solar energy indirect heat exchange with the solar-heated brine to obtain heated salt-containing water. At least part of the heated salt-containing water is evaporated to obtain water vapor, and the water vapor is condensed to obtain desalinated water.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: August 11, 2009
    Inventor: Hans Josef Van Els
  • Publication number: 20090057128
    Abstract: An improved process for separation of liquid mixtures involves vapor stripping followed by mechanical compression of the vapor which is then exposed to a permeation membrane for separation of the compressed vapor.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Inventors: Leland Vane, Franklin R. Alvarez
  • Patent number: 7465376
    Abstract: The invention provides for the removal of impurities from treatment fluid including a base liquid and a variety of impurities contained in the base liquid by conveying the treatment fluid to at least one preheating separating device, including a preheating heat exchanger and a separator unit, before the admixture of a carrier gas to the treatment fluid. The treatment fluid is preheated by the preheating heat exchanger to a temperature below the boiling temperature of a base liquid so that the liquid impurities with lower boiling temperatures than the base liquid are evaporated and expelled thermally, whereby the evaporated and expelled impurities are separated in the separator unit of the preheating separator device. The treatment fluid is then evaporated and separated from impurities having a higher boiling point than the base liquid.
    Type: Grant
    Filed: February 9, 2002
    Date of Patent: December 16, 2008
    Inventors: Joachim Neubert, Karl-Ferdinand Staab
  • Patent number: 7442348
    Abstract: A sulfur-bearing residue treatment system is provided for the recovery of valuable organic components and the reduction of capital costs and operating costs. The treatment system involves the use of a stripping vessel in conjunction with a heating apparatus. All elements of the treatment system may be coupled together to form one integral piece of equipment.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: October 28, 2008
    Assignee: Rohm and Haas Company
    Inventors: Curtis Instad Carlson, Jr., Michael Stanley DeCourcy, Jamie Jerrick John Juliette, Thomas Albert Kaminski, Nelson Ivan Quiros, Paul Benjamin Schladenhauffen
  • Patent number: 7408074
    Abstract: Process for preparing an alkene oxide, which comprises at least the steps (i), (ii) and (v): (i) providing a stream S1 comprising compressed, liquid alkene; (ii) depressurizing at least part of the stream S1 with absorption of heat and with at least partial vaporization of the liquid alkene; (v) reacting the alkene obtained in (ii) with a hydroperoxide in the presence of at least one solvent and at least one catalyst to give a mixture comprising alkene oxide and the solvent or solvents.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: August 5, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Georg Goebbel, Peter Bassler, Joaquim Henrique Teles, Peter Rudolf
  • Patent number: 7378536
    Abstract: Process for preparing propylene oxide, which comprises at least the steps (iii) and (iv) (iii) separating off propylene oxide from a mixture (M1) comprising propylene oxide and at least one solvent by distillation in a distillation column, giving a bottom stream and a vapor stream consisting essentially of propylene oxide; (iv) compressing the vapor stream obtained in (iii) by means of at least one compressor to give a compressed vapor.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: May 27, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Georg Goebbel, Peter Bassler, Joaquim Henrique Teles, Peter Rudolf
  • Patent number: 6966974
    Abstract: The invention relates to a method for evaporating a solution and an evaporator applied to it. The evaporator (1) has parallel plate heat exchanger elements (3) fitted inside a jacket (2), consisting of a flexible plastic film, for example, and a liquid distribution space (4) common to the elements, from where the solution to be evaporated can be spread, through supply channels (6), on the heat transmission surfaces (4) of the elements to run from the top downwards. The solution (10) that has not evaporated on the surfaces is recycled from the bottom of the evaporator back to the liquid distribution space, and from there to the heat transmission surfaces (4) of the elements for re-evaporation. In connection with evaporation, precipitate is separated from the solution as a result of over-saturation, ending up in the recirculation flow with the solution and being separated from the solution in the liquid distribution space (14) that works as a separator for the precipitate.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: November 22, 2005
    Assignee: Oy Casparado AB
    Inventors: Leif Ramm-Schmidt, Kari Myreen, Matti Laajaniemi
  • Patent number: 6939444
    Abstract: A sulfur-bearing residue treatment system is provided for the recovery of valuable organic components and the reduction of capital costs and operating costs. The treatment system involves the use of a stripping vessel in conjunction with a heating apparatus. All elements of the treatment system may be coupled together to form one integral piece of equipment.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: September 6, 2005
    Assignee: Rohm and Haas Company
    Inventors: Curtis Instad Carlson, Jr., Michael Stanley DeCourcy, Jamie Jerrick John Juliette, Thomas Albert Kaminski, Nicole Rendon Koegel, Nelson Ivan Quiros, Paul Benjamin Schladenhauffen, Peter John Schmeidler, Robert R. Maven, William Harry Engle, Jr., Arthur Meisch
  • Patent number: 6835287
    Abstract: An apparatus comprising first to third columns, wherein the outlet of a first column reboiler and the inlet of a second column condenser are connected by a first introduction conduit, and the outlet of a second distillation column reboiler and the inlet of a third column condenser are connected by a second introduction conduit, and additionally the outlet of the second column condenser and the inlet of the first column reboiler are connected by a first return conduit, and the outlet of the third column condenser and the inlet of the second column reboiler are connected by a second return conduit.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: December 28, 2004
    Assignee: Nippon Sanso Corporation
    Inventors: Hitoshi Kihara, Hiroshi Tachibana, Shigeru Hayashida, Hiroshi Kawakami
  • Publication number: 20040026225
    Abstract: The invention concerns appliances, one of which uses solar energy as sole source of power. It comprises an accumulation solar water heater (222) and quasi-reversible liquid/vapour heat exchanging alveolar elements, provided with hydrophilic coatings. Elements of types E and C, respectively assigned to water evaporation (224a, b, c) and to vapour condensation (226a-b) are interposed, with narrow free spaces, in a heat-insulated treatment chamber (223), arranged above the boiler (222). Hot water coming from the heater (222) flows in closed circuit, by thermosiphon, from the top downwards of elements E and from the bottom upwards of elements C. A slightly cooling member (242) is interposed between the bottom collectors (240-244) of elements E and C. Hot water spills over slowly from the top of the hydrophilic coatings of elements E and the vapour produced is condensed opposite, on the walls of elements C.
    Type: Application
    Filed: June 12, 2003
    Publication date: February 12, 2004
    Inventor: Jean-Paul Domen
  • Patent number: 6689251
    Abstract: A distiller (10) that employs a rotary heat exchanger (32) introduces water to be evaporated into evaporation chambers (56). During most of its operation, it collects the water that has passed through the evaporation chamber (56) without evaporating, and it reintroduces the thus-collected liquid back into the evaporation chamber, where it also adds a minor amount of unrecirculated feed liquid to make up for evaporation and concentrate removal. Simultaneously, a minor amount of feed liquid is fed into one side of a transfer pump (116). During this mode of operation, the impurities concentration in the recirculating liquid tends to increase as a result of the evaporation of pure water vapor. Periodically, the erstwhile recirculating liquid is redirected to the other side of the transfer pump (116), where it causes the feed liquid stored in the transfer pump's first side to be fed without accompanying recirculant liquid into the rotary heat exchanger's evaporation chambers.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: February 10, 2004
    Assignee: Ovation Products Corporation
    Inventor: William H. Zebuhr
  • Publication number: 20040000470
    Abstract: A method to purify N,N-dimethylacetamide (DMAc) from an aqueous solution containing acetic acid as a contaminant. Two fractional distillation columns are arranged in a series. The solution containing the contaminant is provided to the first column with a temperature profile to result in acetic acid partitioning into the overhead water. The material remaining in the bottom portion of the first column is recycled to the first column and also provided into a second column, whereby DMAc free of acetic acid contamination is recovered, and remaining DMAc and acetic acid are returned to the first column for further separation. The method uses standard fractional distillation procedures and equipment, thus eliminating the need for more complex extractions and/or chromatographic separations.
    Type: Application
    Filed: July 1, 2002
    Publication date: January 1, 2004
    Applicant: MALLINCKRODT INC.
    Inventor: Michael J. Gentilcore
  • Publication number: 20030209419
    Abstract: A mechanical water still (10) includes an impervious dome-like upper surface (12) and a membrane base (14) that is coupled (26) to the impervious dome-like structure (12) to form, when inflated, a chamber (20). The membrane base (14) supports a water pervaporation process therethrough. A water collection well (16) has an opening into which water droplets condensed from the water pervaporation process collect. The water collection well (16) is sited within the membrane base (14) and generally extends outwardly and downwardly from the membrane base (14), as shown in FIG. 1. In use, a contaminated water source (24) is brought into, ideally, complete contact with the membrane base (14), with the water collection well (16) arranged both to act as a heat sink into the water source (24) and to provide stability to the water still (10) when floating and immersed in the water source (24).
    Type: Application
    Filed: June 10, 2003
    Publication date: November 13, 2003
    Inventors: Mark Christopher Tonkin, Mark Andrew Young, Neil David Eckert
  • Publication number: 20030132095
    Abstract: A method for distilling water includes the steps of entering brine to be distilled into a sub-atmospheric boiler having a brine section with a brine output and a water vapor output; concentrating brine in the brine section to a concentration of at least 250 grams of salt or contaminants per liter; stirring the brine in the brine section; and exiting the brine through the brine output. A distiller with a subatmospheric boiler having a stirring device is also provided.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Brian Kenet, Pedro Joaquin Sanchez Belmar
  • Publication number: 20030132097
    Abstract: A desalination device includes a saltwater input line and a desalinator having a water input connected to the input line, a fresh water output and a brine output. A fuel cell generates electricity and is connected to an energy source for the desalinator. A heat exchanger transfers waste heat from the fuel cell to desalinator.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Inventors: Brian Kenet, Pedro Joaquin Sanchez Belmar
  • Publication number: 20030019736
    Abstract: The present invention provides a system and method for utilizing DDGS by-products from an ethanol plant. In one embodiment, the DDGS is burned to release thermal energy, which is used to produce steam needed for the operation of the ethanol plant. This method can realize approximate 67% savings in the fuel cost over the conventional propane-fueled ethanol plant.
    Type: Application
    Filed: June 6, 2002
    Publication date: January 30, 2003
    Inventor: Daniel T. Garman
  • Publication number: 20020092758
    Abstract: A distillation unit (10) employs counterflow-heat-exchanger modules (102, 104, 106, 108, and 110) to use the heat from water that has come from a rotary heat exchanger (32) to heat feed water that is being sent to it for distillation. In one of the modules the feed water is heated only by concentrate that results from the distillation process, whereas only condensate heats the feed water in the other modules. By thus employing four different flows in two sets of heat-exchanger modules rather than three flows in a single set, the distillation unit can employ relatively simple counterflow-heat-exchanger modules and easily adjust flows to achieve a desired output concentration in response to different expected feed concentrations while maintaining optimum feed flows.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 18, 2002
    Inventor: William H. Zebuhr
  • Patent number: 6355145
    Abstract: A method for removing a contaminant from a fluid feed stream containing the contaminant. The method includes the steps of providing a feed stream and heating it in a first step to at least partially remove some of the contaminants and recover energy from a concentrate and distillate generated. Further heating the feed stream in a second heating step in a heated separator generates a saturated vapor fraction and a concentrated liquid contaminant fraction. The vapor fraction may be compressed to generate a temperature differential in the reboiler exchanger with the vapor fraction being passed into contact with a reboiler exchanger to provide a stream of condensed vapor from the reboiler. The stream may be circulated through the reboiler exchanger and the heated separator to maintain from about 1% to about 50% by mass vapor in the stream. The apparatus includes a unique configuration of a vapor compressor, heated separator in combination with a forced circulation circuit to generate the decontamination result.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: March 12, 2002
    Assignee: Aqua-Pure Ventures, Inc.
    Inventors: Steve Kresnyak, Minoo Razzaghi, Robert Spiering
  • Patent number: 6120651
    Abstract: A method permits concentration of a water-miscible organic liquid in a mixture of such liquid and water, with recovery of a desired concentrate of the water-miscible organic liquid and water, and a relatively clean water containing only a very low contest of the water-miscible organic liquid which enables disposal of the water in sewage systems, the method thus enhancing the ability to satisfy environmental concerns; the method has particular application to the recovery of a reusable glycol/water mixture from diluted spent aircraft deicer fluid (ADF).
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 19, 2000
    Assignee: Inland Technologies Inc.
    Inventors: Peter Henry Firth Gammon, Gary James Dinn, John Joseph Whitten
  • Patent number: 5968321
    Abstract: Distillation system having an evaporator/condenser core with heat transfer plates welded together along their edges to form alternate boiling and condensing chambers. Feed liquid is supplied to the boiling chambers through a pair of heat exchangers which preheats the liquid and a steam stripper utilizing ceramic pieces to remove gasses from the liquid. Vapor from the boiling chambers is compressed and delivered to the condensing chambers where it is condensed and gives up its heat to the liquid in the boiling chambers. Pumps positioned between the two heat exchangers draw the condensed product and unvaporized feed liquid containing dissolved solids from the evaporator/condenser and circulate them through the heat exchangers to transfer heat to the feed liquid.
    Type: Grant
    Filed: February 13, 1996
    Date of Patent: October 19, 1999
    Assignee: Ridgewood WaterPure Corporation
    Inventor: Stephan B. Sears
  • Patent number: 5925223
    Abstract: A process and apparatus for improving the thermal efficiency of a steam turbine power generating plant while simultaneously desalinating seawater or brine and purifying water which contains minerals, salts, and other dissolved solids. Exhaust gases from a power plant is heat exchanged against water in a secondary ecomomizer which circulates water at a temperature near, or slightly above the dewpoint of the combustion exhaust of the high-pressure boiler. The heated water is flashed to produce low-pressure steam. The low-pressure steam is condensed against the last effect of a multi-effect desalinization unit. Steam from the first effect of the desalination unit is condensed against steam condensate from the power plant turbine to preheat the condensate and thereby recover heat from the power plant's exhaust gas. Salinous water is fed to the multi-effect desalinization unit to produce fresh water and a concentrated brine.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: July 20, 1999
    Inventors: Gary D. Simpson, Karl Lin
  • Patent number: 5882485
    Abstract: A process for the separation of dimethyl ether and chloromethane in mixturesA process for the separation of dimethyl ether and chloromethane in mixtures by two distillation steps. In the first step, the mixture is subjected to an extractive distillation with water, aqueous salt solutions or organic liquids as extractant, the top product being chloromethane. In the second step, the dimethyl ether is separated from the extractant.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 16, 1999
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Roth, Erhard Leistner, Hans Haverkamp, Wolfgang Wendel, Michael Kleiber
  • Patent number: 5770020
    Abstract: The invention relates to a distillation apparatus (1) which is suitable in particular for the distillation of sea water into fresh water. The apparatus includes a plurality of flat, bag-like elements (3) formed from a thin film material such as plastic film and placed one against the other, the elements serving as heat exchangers between a vaporizing liquid flowing along the exterior surfaces of the element and a condensing vapor directed to the inside of the element, and a compressor (15) for increasing the pressure and temperature of the generated vapor before it is directed to the inside of the elements. The essential idea of the invention is that at the upper end of each bag-like element (3) there is a honeycomb-structured end strip (4) having substantially the width of the element, the strip containing parallel feeding ducts (26) separated from each other by partition walls, the ducts distributing the liquid to be evaporated over the entire width of the element surface.
    Type: Grant
    Filed: November 18, 1996
    Date of Patent: June 23, 1998
    Assignee: Keeran Corporation N.V.
    Inventors: Peter Koistinen, Reijo Rantala
  • Patent number: 5670027
    Abstract: A method of drying a gas making use of the distillation of a liquid desiccant, the method comprising the introduction of a stream of make-up liquid containing water and of an organic solvent miscible with water, the solvent being a more volatile solvent than water under the conditions of the method and forming no azeotropes with water, in an intermediate zone of an elongated vertical contact and fractional distillation zone.
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: September 23, 1997
    Assignee: Technip
    Inventor: Henri Paradowski
  • Patent number: 5645694
    Abstract: An improved vapor compression distillation process and apparatus are provided having a container with a substantially horizontal longitudinal center axis, two opposing end plates closing each end of the container, a first and second passage area defined within and on opposing ends of the container, each adjacent one of the end plates, a collecting chamber defined within the container between the first and second passage areas, a plurality of generally horizontal tubes spacedly exposed within the collecting chamber generally parallel to the longitudinal axis of the container, each of the tubes having two opposing ends which open into the first and second passage areas respectively, two opposing plates positioned on opposite ends of the horizontal tubes, each plate engaging similar ends of the horizontal tubes, a vapor compressor attached to the container such that the vapor compressor communicates with an upper area of the collecting chamber and communicates with the first passage area, at least one passage fo
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: July 8, 1997
    Assignee: Vacom II, L.P.
    Inventors: James M. Stewart, Bobby D. Morris
  • Patent number: 5622605
    Abstract: A process and apparatus for desalinating seawater or brine and purifying water which contains minerals, salts, and other dissolved solids while simultaneously generating power. The salinous water is heated in a boiler to form steam and a concentrated brine. The concentrated brine is removed from the boiler, the steam produced in the boiler is washed with fresh water to remove trace salts and inorganic materials, and water bearing trace salts and inorganic materials are returned to the boiler. The washed steam is expanded across a turbine to generate electrical or mechanical power which is utilized as a product. The steam exhausted from the turbine is collected and condensed, and one portion of the condensed water is utilized as a fresh water product and another portion of the condensed water is used as the wash water to wash the steam produced in the boiler. Energy efficiency is improved by heat exchanging the hot concentrated brine against the salinous feed water or by flashing the brine to produce steam.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: April 22, 1997
    Inventors: Gary D. Simpson, Karl Lin
  • Patent number: 5591310
    Abstract: An apparatus for distillation of a liquid near or above its critical point wherein the liquid contains a dissolved solid. The apparatus includes a separation section wherein the liquid may be separated into a vapor and a liquid residue separated by a liquid surface. The apparatus includes a pump for pumping liquid into the apparatus so as to establish and maintain the liquid and vapor in the separation section at a desired pressure and a heat source for heating the liquid and vapor so as to establish a rising temperature profile in the separation section. The pump and heat source are cooperatively controllable for regulating the position of the liquid surface so that liquid residue can be discharged from immediately below the liquid surface.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: January 7, 1997
    Assignee: Grundfos International A/S
    Inventor: Henrik G. Olrik
  • Patent number: 5587054
    Abstract: A vapor compression distillation system including a boiler/condenser assembly wherein a portion of the condensate is redirected back to the condenser inlet to extract superheat from the compressed vapor and transfer it to the liquid in the boiler. The vapor entering the condenser is reduced to a saturation condition to prevent heat build up in the condenser to improve heat transfer efficiency. When the temperature of the incoming feed water is within the operating range of the boiler/condenser assembly, the system is operated under vacuum sufficient to match the boiler temperature with the temperature of the incoming feed water so that no preheater or waste heat recovery exchanges are required.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: December 24, 1996
    Assignee: Grano Environmental Corporation
    Inventor: Robert C. Keith