Acid Patents (Class 203/61)
  • Patent number: 4861436
    Abstract: When 4-methyl-2-pentanone and acetic acid mixtures are subjected to extractive distillation with a dimethyl sulfoxide - pelargonic acid mixture as the agent, the acetic acid is converted to gaseous ketene which is easily recovered from the 4-methyl-2-pentanone.
    Type: Grant
    Filed: February 7, 1989
    Date of Patent: August 29, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Richard R. Rall, Marc W. Paffhausen
  • Patent number: 4859285
    Abstract: 2-Pentanone cannot be completely removed from 2-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 2-Pentanone can be readily removed from 2-pentanone-formic acid mixtures by extractive distillation in which the extractive agent is a ketone, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are cyclohexanone; diisobutyl ketone and octanoic acid; isophorone, hexanoic acid and butyl ether.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: August 22, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Rudolph J. Szabados, Thomas H. Flower
  • Patent number: 4840707
    Abstract: 3-Methyl-2-butanone cannot be removed from 3-methyl-2-butanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope between 3-methyl-2-butanone and formic acid. 3-Methyl-2-butanone can be readily removed from 3-methyl-2-butanone - formic acid mixtures by extractive distillation in which the extractive agent is dimethylacetamide, dimethylformamide or these with certain high boiling organic compounds.
    Type: Grant
    Filed: December 30, 1988
    Date of Patent: June 20, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Richard R. Rall
  • Patent number: 4806209
    Abstract: Dioxane cannot be completely removed from dioxane and formic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or admixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, neodecanoic acid and methyl salicylate.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: February 21, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4801357
    Abstract: Dioxane cannot be completely removed from dioxane and acetic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane-acetic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: January 31, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4801358
    Abstract: Dioxane cannot be completely removed from dioxane and acetic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - acetic acid mixtures by extractive distillation in which the extractive agent is N,N-dimethylacetamide or dimethylformamide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are N,N-dimethylacetamide; dimethylformamide and heptanoic acid; N,N-dimethylacetamide, heptanoic acid and diethylene glycol diethyl ether.
    Type: Grant
    Filed: July 28, 1988
    Date of Patent: January 31, 1989
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4793901
    Abstract: 2-Pentanone cannot be completely removed from 2-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 2-Pentanone can be readily removed from 2-pentanone formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: December 27, 1988
    Assignee: Hoechst Celanese Chemical Co.
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 4786370
    Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid - water mixtures by extractive distillation in which the extractive agent is ethylene carbonate or propylene carbonate, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are ethylene carbonate and heptanoic acid; propylene carbonate, benzoic acid and isophorone; propylene carbonate, heptanoic acid and 2-hydroxyacetophenone.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: November 22, 1988
    Inventor: Lloyd Berg
  • Patent number: 4756803
    Abstract: 2-Butanol cannot be completely removed from 2-butanol - t-amyl alcohol mixtures by distillation because of the proximitry of their boiling points. 2-Butanol can be readily removed from mixtures containing it and t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling benzoate. Typical examples are methyl benzoate; methyl benzoate and salicylic acid; methyl benzoate, cinnamic acid and hexahydrophthalic anhydride.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: July 12, 1988
    Inventor: Lloyd Berg
  • Patent number: 4738755
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional rectification or distillation because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is ethyl-2-hydroxybenzoate; methyl benzoate plus benzophenone; methyl benzoate, butyl benzoate and dimethylsulfoxide.
    Type: Grant
    Filed: March 10, 1987
    Date of Patent: April 19, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4735690
    Abstract: Impure formic acid cannot be completely removed from formic acid-water-impurity mixtures by distillation because of the presence of the maximum azeotrope between formic acid and water. Formic acid can be readily removed from mixtures containing it, water and impurities of the ether, ester, ketone or diketone type by using extractive distillation in which the extractive agent is a higher boiling oxygenated, nitrogenous or sulfur containing organic compound or a mixture of these. Examples of effective agents are adiponitrile; sulfolane and salicyclic acid; dimethylformamide, N,N-dimethylacetamide and ethylene glycol ethyl ether acetate.
    Type: Grant
    Filed: April 28, 1986
    Date of Patent: April 5, 1988
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4732653
    Abstract: Ethanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzyl benzoate and benzoic acid; methyl salicylate, hexahydrophthalic anhydride and salicylic acid.
    Type: Grant
    Filed: October 7, 1985
    Date of Patent: March 22, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4730082
    Abstract: A process for the preparation of methyltrifluoroacetate. Trifluoroacetic acid is contacted with an excess of methanol and distilled to form a methyltrifluoroacetate/methanol azeotrope. The azeotrope is contacted with trifluoroacetic acid in the presence of a catalytic quantity of a strong acid followed by distillation to obtain methyltrifluoroacetate. The methyltrifluoroacetate can be used as a synthesis intermediate in the pharmaceutical industry.
    Type: Grant
    Filed: June 12, 1986
    Date of Patent: March 8, 1988
    Assignee: Rhone-Poulenc Specialties Chimiques
    Inventor: Louis Amiet
  • Patent number: 4729818
    Abstract: Acetic acid cannot be easily removed from acetic acid--water mixtures by distillation because of the closeness of their boiling points and the deviation from ideal solution behavior. Acetic acid can be readily removed from mixtures containing it and water by using extractive distillation in which the extractive distillation agent is a mono carboxylic acid, either singly or admixed with high boiling organic compounds. Typical examples of effective agents are pelargonic acid; heptanoic acid and isophorone; neodecanoic acid, acetophenone and nitrobenzene.
    Type: Grant
    Filed: April 16, 1987
    Date of Patent: March 8, 1988
    Inventor: Lloyd Berg
  • Patent number: 4718987
    Abstract: Isopropanol cannot be completely removed from isopropanol--isopropyl acetate--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling benzoate mixed with certain oxygenated or nitrogeneous organic compounds. Typical examples are butyl benzoate and ethylene carbonate; methyl benzoate, 2-nitropropane and n-decanol.
    Type: Grant
    Filed: February 12, 1987
    Date of Patent: January 12, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4715933
    Abstract: n-Propanol and 2-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from 2-butanol using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzoic acid and methyl benzoate; cinnamic acid, phthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 16, 1985
    Date of Patent: December 29, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4710275
    Abstract: Isopropanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Isopropanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; methyl benzoate and hexahydrophthalic anhydride; phthalic anhydride, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 20, 1985
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4710274
    Abstract: Ethanol and isopropanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; salicylic acid and hexahydrophthalic anhydride; salicylic acid, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: August 4, 1986
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4693788
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated from isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylformamide; N,N-dimethylacetamide; N,N-dimethylacetamide and dimethylsulfoxide; dimethylformamide, N,N-dimethylacetamide and phthalic anhydride.
    Type: Grant
    Filed: March 17, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4693787
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated form isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylsulfoxide; dimethylsulfoxide and N,N-dimethylacetamide; dimethylsulfoxide, dimethylformamide and phthalic anhydride.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4692219
    Abstract: Formic acid cannot be easily removed from acetic acid by distillation because of the closeness of their vapor pressures. Formic acid can be readily removed from acetic acid by extraction distillation. Typical extractive distillation agents are carboxylic acids in the range of hexamoic acid to neodecanoic acid with or without solvents such as methyl benzoate, acetophenone and nitrobenzene.
    Type: Grant
    Filed: December 3, 1986
    Date of Patent: September 8, 1987
    Assignee: Celanese Chemical Co.
    Inventor: Lloyd Berg
  • Patent number: 4676971
    Abstract: A method is disclosed for reducing alkali metal chlorate impurities in an aqueous alkali metal hydroxide solution by heating a mixture of the alkali metal hydroxide solution with a hydroxycarboxylic acid or a salt thereof at temperature above about 125.degree. C. and for a period of time sufficient to substantially eliminate the chlorate, the hydroxycarboxylic acid or salt thereof being substantially non-volatile at the heating temperature.
    Type: Grant
    Filed: December 24, 1985
    Date of Patent: June 30, 1987
    Assignee: PPG Industries, Inc.
    Inventors: William H. Cooper, Ana G. Brunet, William F. Campbell
  • Patent number: 4673466
    Abstract: n-Hexyl alcohol cannot be completely removed from n-hexyl acetate- n-hexyl alcohol - water mixtures by distillation because of the presence of the minimum ternary azeotrope. n-Hexyl alcohol can be readily removed from mixtures containing it, n-hexyl acetate and water by using extractive distillation in which the extractive distillation agent is a benzoate or a mixture of benzoates with higher boiling organic compounds. Typical examples of effective agents are benzyl benzoate; methyl benzoate and adiponitrile; ethyl benzoate, benzyl benzoate and methyl salicylate.
    Type: Grant
    Filed: January 27, 1986
    Date of Patent: June 16, 1987
    Inventor: Lloyd Berg
  • Patent number: 4673465
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional distillation or rectification because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is a mixture polychloro aromatic compounds. Typical examples of effective agents are 2,3,4,6-tetrachlorophenol and p-dichlorobenzene; dimethyltetrachloroterephthalate, 2,3,4,6-tetrachlorophenol and 1,2,4,5-tetrachlorobenzene; 2,4,5-trichlorophenol, benzene hexachloride, o-dichlorobenzene and dioctyl phthalate.
    Type: Grant
    Filed: April 21, 1986
    Date of Patent: June 16, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4654123
    Abstract: Water cannot be completely removed from ethanol by distillation because of the presence of the minimum azeotrope. Ethanol can be readily dehydrated by using extractive distillation in which the water is removed as overhead product and the ethanol and extractive agent as bottoms and subsequently separated by conventional rectification. Typical examples of suitable extractive agents are hexahydrophthalic anhydride; methyl tetrahydrophthalic anhydride and pentanol-1; trimellitic anhydride, ethyl salicylate and resorcinol.
    Type: Grant
    Filed: January 2, 1986
    Date of Patent: March 31, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4642166
    Abstract: Formic acid cannot be completely removed from formic acid - water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from mixtures containing it and water by using extractive distillation in which the extractive distillation agent is a sulfone. Typical examples of effective agents are thiophan sulfone; dimethyl sulfone and adiponitrile; phenyl sulfone, adiponitrile and acetophenone.
    Type: Grant
    Filed: February 10, 1986
    Date of Patent: February 10, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4631115
    Abstract: Water cannot be completely removed from ethanol by distillation because of the presence of the minimum azeotrope. Ethanol can be readily dehydrated by using extractive distillation in which the water is removed as overhead product and the ethanol and extractive agent as bottoms and subsequently separated by conventional rectification. Typical examples of suitable extractive agents are methyl benzoate; trimellitic anhydride and methyl benzoate; dipropylene glycol dibenzoate, ethyl salicylate and resorcinol.
    Type: Grant
    Filed: December 23, 1985
    Date of Patent: December 23, 1986
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4599145
    Abstract: Methacrylonitrile higher in purity than that obtained by the conventional process is efficiently produced by the present improved process for producing purified methacrylonitrile in which the reaction mixture formed by the ammoxidation of isobutylene or tert-butyl alcohol is distilled using water as solvent to obtain a crude methacrylonitrile solution which contains methacrylonitrile as major constituent, methacrolein, hydrogen cyanide, and isobutyronitrile, and the crude methacrylonitrile solution is then purified in a product column, wherein the improvement comprises first removing isobutyronitrile from said crude solution, then feeding the remaining solution to the product column, withdrawing from the top a vapor containing methacrolein, condensing the vapor, returning a greater part of the condensate to the product column while removing the remainder from the distillation system, and withdrawing purified methacrylonitrile from the middle or lower section, preferably from a point lower than the feeding sta
    Type: Grant
    Filed: June 20, 1983
    Date of Patent: July 8, 1986
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Kawakami, Hiroyuki Ohashi, Tsutomu Katsumata
  • Patent number: 4514262
    Abstract: Benzene is virtually impossible to separate from similar close boiling non-aromatic hydrocarbons by conventional rectification or distillation. Benzene can be readily separated from similar boiling non-aromatic hydrocarbons by using extractive distillation in which the extractive agent is a mixture of benzoic acid, maleic anhydride and/or phthalic anhydride plus a suitable solvent. A typical mixture comprises phthalic anhydride, maleic anhydride and adiponitrile.
    Type: Grant
    Filed: August 2, 1982
    Date of Patent: April 30, 1985
    Inventor: Lloyd Berg
  • Patent number: 4488937
    Abstract: m-Xylene is difficult to separate from o-xylene by conventional rectification or distillation because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is ethyl-2-hydroxybenzoate; propoxypropanol puls 1,4-butanediol; sulfolane plus dimethylsulfoxide plus ethyl benzoate.
    Type: Grant
    Filed: April 11, 1984
    Date of Patent: December 18, 1984
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4470881
    Abstract: A method for separating ethyl acetate from methyl ethyl ketone is described including distilling in an anhydrous condition a mixture of ethyl acetate-methyl ethyl ketone in a plate column in the presence of an effective amount of an organic extractive solvent which has the following properties: (1) is soluble in a boiling ethyl acetate-methyl ethyl ketone mixture; (2) does not form an azeotrope with ethyl acetate or methyl ethyl ketone; (3) boils higher than ethyl acetate and methyl ethyl ketone and (4) in combination with the ethyl acetate-methyl ethyl ketone mixture, results in a relative volatility of ethyl acetate to methyl ethyl ketone greater than 1.20.
    Type: Grant
    Filed: September 27, 1982
    Date of Patent: September 11, 1984
    Assignee: Celanese Corporation
    Inventor: Lloyd Berg
  • Patent number: 4444624
    Abstract: The disclosure relates to a process for separating acetone from reaction mixtures originating from the reaction of methyl acetate and/or dimethylether with carbon monoxide and optionally hydrogen in the presence of a catalyst system consisting of carbonyl complexes of noble metals of group VIII of the Periodic System of the elements, acetic acid, an organophosphorus or organonitrogen compound, methyl iodide and optionally carbonyl-yielding compounds of common metals.
    Type: Grant
    Filed: August 27, 1982
    Date of Patent: April 24, 1984
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Heinz Erpenbach, Klaus Gehrmann, Winfried Lork, Peter Prinz
  • Patent number: 4439278
    Abstract: The present invention provides an improvement in methods for preparing and processing ethylenically unsaturated aromatic monomer. The improvement comprises employing 3,5-dinitrosalicylic acid or a derivative or isomer thereof as a process inhibitor. The process inhibitor is present in a concentration of about 50 to 3000 ppm, preferably about 250 to 2,000 ppm, and most preferably about 500 to 1,000 ppm.
    Type: Grant
    Filed: April 28, 1983
    Date of Patent: March 27, 1984
    Assignee: Eastman Kodak Company
    Inventors: Ted L. Douglas, Ambrose J. Clonce, Glenn C. Jones
  • Patent number: 4389285
    Abstract: The present invention provides an improvement in methods for preparing and processing ethylenically unsaturated aromatic monomer. The improvement comprises employing 3,5-dinitrosalicylic acid as a process inhibitor. The DNSA is present in a concentration of about 50 to 3000 ppm, preferably about 250 to 2000 ppm, and most preferably about 500 to 1000 ppm.
    Type: Grant
    Filed: June 21, 1982
    Date of Patent: June 21, 1983
    Assignee: Eastman Kodak Company
    Inventors: Ted L. Douglas, Ambrose J. Clonce, Jr., Glenn C. Jones
  • Patent number: 4388154
    Abstract: A process is provided wherein acetaldehyde and methanol are obtained from reaction mixtures which result from the homologization of methanol and which in addition to acetaldehyde essentially contain acetaldehyde dimethylacetal, methanol, methyl acetate and water.
    Type: Grant
    Filed: May 1, 1981
    Date of Patent: June 14, 1983
    Assignee: BASF Aktiengesellschaft
    Inventors: Waldheim Hochstein, Gerd Kaibel, Franz-Josef Mueller, Horst Hartmann
  • Patent number: 4381221
    Abstract: In a process for recovering an aliphatic carboxylic acid and/or an ester thereof by distilling a liquid mixture containing the aliphatic carboxylic acid and/or the ester thereof and a catalyst of a metal of Group VIII of the periodic table of elements, the improvement wherein the distillation is carried out in the presence of carbon monoxide at a partial pressure of at least 0.01 kg/cm.sup.2 (absolute) in the distillation system to prevent the decomposition of said catalyst.
    Type: Grant
    Filed: August 14, 1981
    Date of Patent: April 26, 1983
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Tomiya Isshiki, Hisashi Yoshino, Kaoru Tsuyuki
  • Patent number: 4365081
    Abstract: In a process for producing a 2-hydroxyalkyl acrylate or methacrylate which comprises esterifying acrylic or methacrylic acid with an alkylene oxide having 2 to 4 carbon atoms in the presence of an esterification catalyst and distilling the resulting reaction mixture in a distillation column, the improvement wherein the vapor of the ester monomer from the distillation column, while being maintained in the superheated state, is introduced into a condenser of the gas-liquid direct contact type whose inner wall corresponding to its gas inlet portion is kept at a temperature below the boiling point of the ester at the operating pressure, to contact it directly with a concurrently flowing spray liquid of the ester-precooled to a temperature below the boiling point of the ester at the operating pressure, whereby said vapor is condensed to a liquid at said temperature below the boiling point of the ester at the operating pressure.
    Type: Grant
    Filed: May 15, 1981
    Date of Patent: December 21, 1982
    Assignee: Nippon Shokubai Kagaku Kogyo Co. Ltd.
    Inventors: Noboru Shimizu, Hiroshi Yoshida, Hiromiki Daigo, Shiyouichi Matumoto, Hiroyoshi Uchino
  • Patent number: 4364869
    Abstract: A process for the production of alkyl esters of saturated aliphatic carboxylic acids by reacting in an alkoxycarbonylation stage olefins with carbon monoxide and alkanol in the presence of a catalyst consisting of a cobalt compound and a promoter from the group of pyridine, non-ortho-substituted alkylpyridine or mixtures thereof at elevated pressure and elevated temperature. The reaction mixture produced is reprocessed and the pyridine, non-ortho-substituted alkylpyridine, or mixture used as the promoter is rectified prior to its feedback into the alkoxycarbonylation stage in the presence of a given carboxylic acid which is thermally stable under the conditions of reprocessing and which forms a maximum azeotrope with the promoter under the conditions of rectification.
    Type: Grant
    Filed: July 29, 1981
    Date of Patent: December 21, 1982
    Assignee: Chemische Werke Huls A.G.
    Inventors: Wolfgang H. E. Muller, Peter Hofmann
  • Patent number: 4363704
    Abstract: Toluene is virtually impossible to separate from similar boiling non-aromatic hydrocarbons by conventional rectification or distillation. Toluene can be readily separated from similar boiling non-aromatic hydrocarbons by using extractive distillation in which the extractive agent is a mixture of phthalic anhydride and/or maleic anhydride plus a suitable solvent. A typical mixture comprises phthalic anhydride, maleic anhydride and glycerol triacetate.
    Type: Grant
    Filed: November 20, 1981
    Date of Patent: December 14, 1982
    Inventor: Lloyd Berg
  • Patent number: 4358609
    Abstract: A process for the recovery of carboxylic acids from mixtures containing glycol esters derived from these acids. The process comprises reacting these mixtures at boiling with water to form carboxylic acid and entraining the carboxylic acid formed by means of the water by azeotropic distillation, so as to separate off a mixture of carboxylic acid and water. This mixture is subjected to extractive distillation by means of an organic solvent which is insoluble in water and in which water is insoluble. A mixture of water and organic solvent is thereby separated from a solution of carboxylic acid in the organic solvent.
    Type: Grant
    Filed: October 1, 1980
    Date of Patent: November 9, 1982
    Assignee: Propylox (Societe Anonyme)
    Inventor: Nicolas Hardy
  • Patent number: 4297456
    Abstract: This invention relates to a process for working up the distillation residue obtained in the commercial production of tolylene diisocyanate by grinding, optionally accompanied and/or followed by chemical modification reactions. The finely divided powder obtained may be used as a reactive filler in the production of a variety of plastics.
    Type: Grant
    Filed: July 17, 1980
    Date of Patent: October 27, 1981
    Assignee: Bayer Aktiengesellschaft
    Inventors: Artur Reischl, Kuno Wagner
  • Patent number: 4289587
    Abstract: Chlorinated phenols, e.g. pentachlorophenol, are stabilized against degradation, including degradation to chlorinated dibenzo-p-dioxins, caused by heat and other adverse conditions, by combining with them stabilizing amounts of at least one stabilizer selected from the group consisting of high-boiling epoxides and epoxidized oils, drying oils, unsaturated fatty acids and unsaturated esters of fatty acids.
    Type: Grant
    Filed: April 29, 1980
    Date of Patent: September 15, 1981
    Assignee: Vulcan Materials Company
    Inventor: Ray C. Christena
  • Patent number: 4265711
    Abstract: A method for destructive distillation of hydrocarbonaceous distilland is disclosed wherein a dienophile is introduced into the vaporous phase to reduce the production of non-distillable polymeric product. Specifically dienophiles available economically in large amounts such as maleic anhydride are disclosed. The introduction of additional sulfide to further reduce production of asphaltenic polymeric product is also described.
    Type: Grant
    Filed: October 23, 1979
    Date of Patent: May 5, 1981
    Inventor: William K. T. Gleim
  • Patent number: 4260847
    Abstract: The invention relates to an improved process, wherein polyolefins are freed from saturated liquid residual hydrocarbons with the aid of water and steam. The improvement comprisesA. introducing the hydrocarbon-containing polyolefin into an aqueous emulsifier-containing solution having a surface tension at 20.degree. C. of about 50 to 60 dynes/cm with respect to air; stirring the resulting mixture and converting it to a homogeneous dispersion, the aqueous dispersion containing about 10 to 40 weight % of the polyolefin;B. introducing the dispersion into the upper portion of a column provided with 5 to 30 sieve plates and overflow weirs and contacting the dispersion in countercurrent fashion with steam of about 100.degree. to 120.degree. C.
    Type: Grant
    Filed: January 28, 1980
    Date of Patent: April 7, 1981
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Karl Kaiser, Robert Willms, Bernhard Kuxdorf
  • Patent number: 4219388
    Abstract: A process for the recovery of maleic anhydride from distillation residues containing the same is described whereby a residue containing phthalic anhydride is added to the residue of maleic anhydride prior to or after distillation of the maleic anhydride residue. By such a process maleic anhydride recovery is improved and the distillation residue remaining from distillation of the maleic anhydride out of the maleic anhydride residue remains removable by simple mechanical means from the distillation vessel.
    Type: Grant
    Filed: October 26, 1978
    Date of Patent: August 26, 1980
    Assignee: Bayer Aktiengesellschaft
    Inventors: Karl-Heinz Heller, Gunther Lenz
  • Patent number: 4194952
    Abstract: In the regeneration of aqueous waste sulfuric acid by distilling off water often foam is formed which severely interferes with the work-up of the acid. This formation of foam is suppressed by adding alkylsulfonic and/or alkylarylsulfonic acids.
    Type: Grant
    Filed: December 8, 1977
    Date of Patent: March 25, 1980
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Kurt Bodenbenner, Helmold von Plessen
  • Patent number: 4141925
    Abstract: A method of separating proximate boiling-point hydrocarbons using solutions of monovalent copper salts in solvents, said solvents being alkyl-substituted amides and alkyl esters of phosphorus-containing acids having a P.dbd.O group, N-alkyl-substituted amides of carboxylic acids, N-alkyl-substituted lactams, dialkyl sulphoxides, alkoxynitriles and N-alkyl-substituted aminonitriles. The method can be used for separating hydrocarbons from small quantities of acetylene compounds and cyclopentadiene.Large quantities of acetylene compounds are separated from the mixture of proximate boiling-point hydrocarbons by contacting the mixture with said solvents containing no salts of monovalent copper.
    Type: Grant
    Filed: October 12, 1976
    Date of Patent: February 27, 1979
    Inventors: Stanislav J. Pavlov, Valentina A. Stepanova, Olga V. Bogdanova, Sergei G. Kuznetsov, Tatyana G. Dorofeeva, Alexandr N. Bushin, Gennady A. Stepanov, Leonid K. Eratov, Ariadna B. Kirnos, Boris A. Plechev, Alexei P. Kharchenko, Konstantin N. Bildinov, Oleg P. Yablonsky, Jury V. Orlov, Boris E. Ivanov, Valerian M. Sobolev, Mikhail A. Korshunov, Svetlana B. Boikova, Rimma G. Kuzovleva
  • Patent number: 4132601
    Abstract: Disclosed is a process for the distillation of readily polymerizable vinyl aromatic compounds which comprises subjecting such compounds to distillation conditions in the presence of an effective amount of a polymerization inhibitor selected from the group consisting of 3-nitro-2, 5-cresotic acid and 3-nitro-2, 5-cresotaldehyde.
    Type: Grant
    Filed: November 23, 1977
    Date of Patent: January 2, 1979
    Assignee: Cosden Technology, Inc.
    Inventor: James M. Watson
  • Patent number: 4061633
    Abstract: A method of recovering primary or secondary amines from aqueous, organic or aquo-organic solutions of said amines by subjecting these solutions to distillation or rectification in the presence of carbonic acid.
    Type: Grant
    Filed: February 25, 1974
    Date of Patent: December 6, 1977
    Inventors: Lazar Isaevich Blyakhman, Sergei Lvovich Davydov, Valentina Fedorovna Kashina
  • Patent number: 4061546
    Abstract: Formic acid is removed from acetic acid substantially free of halide impurities but containing small amounts of formic acid by contacting the acid with a compound of hexavalent chromium and recovering the purified acid from the resulting mixture by distillation, ion-exchange, or the like. In a preferred embodiment, the acid to be purified is distilled in the presence of a solution of the hexavalent chromium compound, the purified acid being obtained as the overhead product while the bottoms stream contains the reduced chromium compound. With the preferred chromium trioxide as treating agent, this compound can be recovered for re-use by adding a strong mineral acid to the bottoms stream from the distillation, electrolytically oxidizing the chromium compound contained therein, and separating chromium trioxide from the strong mineral acid solution.
    Type: Grant
    Filed: March 29, 1976
    Date of Patent: December 6, 1977
    Assignee: Monsanto Company
    Inventor: Thomas C. Singleton